Lecture 8: Multimodal semantics & compositional semantics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics

Uses of word clustering and selectional preferences

Widely used in NLP as a source of lexical information:

- Word sense induction and disambiguation
- Parsing (resolving ambiguous attachments)
- Identifying figurative language and idioms
- Paraphrasing and paraphrase detection
- Used in applications directly, e.g. machine translation, information retrieval etc.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Multimodal distributional semantics

Outline.

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics

-Multimodal distributional semantics

Multimodal semantics

Intuition: Humans learn word meanings from linguistic, perceptual and sensory-motor experience

This includes:

- linguistic input (text or speech)
- visual input (images and videos)
- other sensory modalities: taste, smell, touch etc.
- motor control and its simulation

Multimodal semantics in NLP today mainly focuses on building word representations from text, images and (recently) videos.

-Multimodal distributional semantics

Obtaining language+vision representations

- 1. Need a visual corpus
 - ImageNet
 - Yahoo! Webscope Flickr 100M
 - etc.
 - ...or use an image search engine
- 2. Need a way to extract visual features:
 - bag-of-visual-words models
 - convolutional neural networks (CNNs)
- 3. Need a way of combining visual and linguistic information
 - various fusion strategies

Multimodal distributional semantics

ImageNet

- Animals
 - Birds
 - Fish
 - Mammal
 - Invertebrate
- Scenes
 - Indoor
 - Geological formations
- Sport activities
- Materials and fabric
- Instrumentation
 - Tools
 - Appliances
 - ...
- Plants
 - ..

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Slide credit: Fei-Fei Li

-Multimodal distributional semantics

Bag-of-visual-words models

Elia Bruni, Nam Khanh Tran and Marco Baroni (2014). *Multimodal distributional semantics*.

General intuition:

- inspired by bag-of-words
- train on a corpus of images, e.g. ImageNet
- break images into discrete parts visual words
- ignore the structure
- represent words as vectors of visual words

-Multimodal distributional semantics

Obtaining visual words

Given a corpus of images:

- Identify keypoints (corner detection, segmentation)
- Represent keypoints as vectors of descriptors (SIFT)
- Cluster keypoints to obtain visual words
- Bag of visual words ignore the location

Multimodal distributional semantics

Representing linguistic concepts

- Retrieve images for a given word, e.g. dog (from a corpus or the Web)
- identify keypoints in each of the images
- map to visual words
- represent words as vectors of co-occurrence with visual words

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

-Multimodal distributional semantics

Combining text and visual words

Example task: word similarity estimation, e.g. using cosine

- 1. Feature level fusion:
 - concatenate textual and visual feature vectors
 - dimensionality reduction (some approaches) map the features into the same low dimensional space, e.g. using SVD or NMF
 - estimate similarity of the vectors
- 2. Scoring level fusion:
 - estimate similarity for textual and visual vectors separately
 - take a mean of the similarity scores

- Multimodal distributional semantics

Tasks and applications

- word similarity estimation
- predicting concreteness (via image-dispersion)
- selectional preference induction
- bilingual lexicon induction
- metaphor detection
- lexical entailment \approx hypernym identification

Multimodal models outperform the linguistic ones in all of these! But...

- work quite well for nouns and adjectives
- more difficult to extract visual features for verbs

Multimodal distributional semantics

How is visual data different from linguistic data?

Verb classes in Yahoo! Webscope Flickr 100M and BNC corpora

・ロト・西ト・ヨト ・日・ うろの

Multimodal distributional semantics

Biases in the data

- Textual corpora: abstract events and topics
- Image corpora: concrete events / actions, also topic bias

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Videos: extended actions, states

-Multimodal distributional semantics

The next big questions

- 1. What semantic information do we learn from the images?
- 2. Which words benefit from visual information?
- 3. Other modalities:
 - auditory and olfactory perception (some work done)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

motor control — really tough one!

-Compositional semantics

Outline.

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Compositional semantics

Compositional semantics

- Principle of Compositionality: meaning of each whole phrase derivable from meaning of its parts.
- Sentence structure conveys some meaning
- Formal semantics: sentence meaning as logical form

```
Kitty chased Rover.
Rover was chased by Kitty.
```

 $\exists x, y [chase'(x, y) \land Kitty'(x) \land Rover'(y)]$

or chase'(k, r) if k and r are constants (*Kitty* and *Rover*)

 Deep grammars: model semantics alongside syntax, one semantic composition rule per syntax rule - Compositional semantics

Compositional semantics alongside syntax

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Compositional semantics

Semantic composition is non-trivial

- Similar syntactic structures may have different meanings: it barks it rains; it snows – pleonastic pronouns
- Different syntactic structures may have the same meaning: *Kim seems to sleep. It seems that Kim sleeps.*
- Not all phrases are interpreted compositionally, e.g. idioms: red tape kick the bucket

but they can be interpreted compositionally too, so we can not simply block them.

- Compositional semantics

Semantic composition is non-trivial

 Elliptical constructions where additional meaning arises through composition, e.g. logical metonymy: fast programmer

fast plane

Meaning transfer and additional connotations that arise through composition, e.g. metaphor

(日) (日) (日) (日) (日) (日) (日)

I cant **buy** this story. This sum will **buy** you a ride on the train.

Recursion

- Compositional semantics

Recursion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Compositional distributional semantics

Outline.

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Compositional distributional semantics

Compositional distributional semantics

Can distributional semantics be extended to account for the meaning of phrases and sentences?

- Language can have an infinite number of sentences, given a limited vocabulary
- So we can not learn vectors for all phrases and sentences

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and need to do composition in a distributional space

- Compositional distributional semantics

1. Vector mixture models

Mitchell and Lapata, 2010. Composition in Distributional Models of Semantics

Models:

- Additive
- Multiplicative

・ロト・日本・日本・日本・日本・日本

- Compositional distributional semantics

Additive and multiplicative models

				addi	tive	multiplicative	
	dog	\mathbf{cat}	old	$\mathbf{old} + \mathbf{dog}$	$\mathbf{old} + \mathbf{cat}$	$\mathbf{old} \odot \mathbf{dog}$	$\mathbf{old} \odot \mathbf{cat}$
runs	1	4	0	1	4	0	0
barks	5	0	7	12	7	35	0

- correlate with human similarity judgments about adjective-noun, noun-noun, verb-noun and noun-verb pairs
- but... commutative, hence do not account for word order John hit the ball = The ball hit John!
- more suitable for modelling content words, would not port well to function words:

e.g. some dogs; lice and dogs; lice on dogs

- Compositional distributional semantics

2. Lexical function models

Distinguish between:

- words whose meaning is directly determined by their distributional behaviour, e.g. nouns
- words that act as functions transforming the distributional profile of other words, e.g., verbs, adjectives and prepositions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Compositional distributional semantics

Lexical function models

Baroni and Zamparelli, 2010. Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space

Adjectives as lexical functions

old dog = old(dog)

- Adjectives are parameter matrices (A_{old}, A_{furry}, etc.).
- Nouns are vectors (house, dog, etc.).
- Composition is simply **old dog** = $\mathbf{A}_{old} \times \mathbf{dog}$.

OLD	runs	barks			dog		I	OLD(dog)
runs	0.5	0	~	runs	1	_	runs	$(0.5 \times 1) + (0 \times 5)$
			~			_		= 0.5
barks	0.3	1		barks	5		barks	$(0.3 \times 1) + (5 \times 1)$
								= 5.3
							< □	

- Compositional distributional semantics

Learning adjective matrices

- 1. Obtain a distributional vector \mathbf{n}_i for each noun n_i in the lexicon.
- 2. Collect adjective noun pairs (a_i, n_j) from the corpus.
- 3. Obtain a distributional vector **p**_{*ij*} of each pair (*a_i*, *n_j*) from the same corpus using a conventional DSM.
- The set of tuples {(n_j, p_{ij})}_j represents a dataset D(a_i) for the adjective a_i.
- 5. Learn matrix \mathbf{A}_i from $\mathcal{D}(a_i)$ using linear regression.

Minimize the squared error loss:

$$L(\mathbf{A}_i) = \sum_{j \in \mathcal{D}(\mathbf{a}_i)} \|\mathbf{p}_{ij} - \mathbf{A}_i \mathbf{n}_j\|^2$$

- Compositional distributional semantics

Polysemy in lexical function models

Generally:

- use single representation for all senses
- assume that ambiguity can be handled as long as contextual information is available

Exceptions:

- Kartsaklis and Sadrzadeh (2013): homonymy poses problems and is better handled with prior disambiguation
- Gutierrez et al (2016): literal and metaphorical senses better handled by separate models
- However, this is still an open research question.