Lecture 8: Multimodal semantics & compositional semantics

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics
Uses of word clustering and selectional preferences

Widely used in NLP as a source of lexical information:

- Word sense induction and disambiguation
- Parsing (resolving ambiguous attachments)
- Identifying figurative language and idioms
- Paraphrasing and paraphrase detection
- Used in applications directly, e.g. machine translation, information retrieval etc.
Outline.

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics
Multimodal semantics

Intuition: Humans learn word meanings from linguistic, perceptual and sensory-motor experience

This includes:
- linguistic input (text or speech)
- visual input (images and videos)
- other sensory modalities: taste, smell, touch etc.
- motor control and its simulation

Multimodal semantics in NLP today mainly focuses on building word representations from text, images and (recently) videos.
Obtaining language+vision representations

1. Need a visual corpus
 - ImageNet
 - Yahoo! Webscope Flickr 100M
 - etc.
 - ...or use an image search engine

2. Need a way to extract visual features:
 - bag-of-visual-words models
 - convolutional neural networks (CNNs)

3. Need a way of combining visual and linguistic information
 - various fusion strategies
ImageNet

- Animals
 - Birds
 - Fish
 - Mammal
 - Invertebrate
- Scenes
 - Indoor
 - Geological formations
- Sport activities
- Materials and fabric
- Instrumentation
 - Tools
 - Appliances
 - ...
- Plants
 - ...

Images of children synsets are not included. All images shown are thus subject to copyright.

Synset WordNet ID: n02129604 (click to get the WordNet ID for all children nodes)

Slide credit: Fei-Fei Li
Bag-of-visual-words models

Elia Bruni, Nam Khanh Tran and Marco Baroni (2014). *Multimodal distributional semantics*.

General intuition:
- inspired by bag-of-words
- train on a corpus of images, e.g. ImageNet
- break images into discrete parts — visual words
- ignore the structure
- represent words as vectors of visual words
Obtaining visual words

Given a corpus of images:

- Identify keypoints (corner detection, segmentation)
- Represent keypoints as vectors of descriptors (SIFT)
- Cluster keypoints to obtain visual words
- Bag of visual words – ignore the location
Representing linguistic concepts

- Retrieve images for a given word, e.g. *dog* (from a corpus or the Web)
- identify keypoints in each of the images
- map to visual words
- represent words as vectors of co-occurrence with visual words
Combining text and visual words

Example task: word similarity estimation, e.g. using cosine

1. Feature level fusion:
 - concatenate textual and visual feature vectors
 - dimensionality reduction (some approaches) – map the features into the same low dimensional space, e.g. using SVD or NMF
 - estimate similarity of the vectors

2. Scoring level fusion:
 - estimate similarity for textual and visual vectors separately
 - take a mean of the similarity scores
Tasks and applications

- word similarity estimation
- predicting concreteness (via image-dispersion)
- selectional preference induction
- bilingual lexicon induction
- metaphor detection
- lexical entailment \approx hypernym identification

Multimodal models **outperform** the linguistic ones in all of these!

But...

- work quite well for nouns and adjectives
- more difficult to extract visual features for verbs
How is visual data different from linguistic data?

Verb classes in Yahoo! Webscope Flickr 100M and BNC corpora
Biases in the data

- Textual corpora: abstract events and topics
- Image corpora: concrete events / actions, also topic bias
- Videos: extended actions, states
The next big questions

1. What semantic information do we learn from the images?
2. Which words benefit from visual information?
3. Other modalities:
 - auditory and olfactory perception (some work done)
 - motor control — really tough one!
Outline.

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics
Compositional semantics

- **Principle of Compositionality**: meaning of each whole phrase derivable from meaning of its parts.
- Sentence structure conveys some meaning
- Formal semantics: sentence meaning as logical form

Kitty chased Rover.
Rover was chased by Kitty.

\[\exists x, y [\text{chase}'(x, y) \land \text{Kitty}'(x) \land \text{Rover}'(y)]\]

or \(\text{chase}'(k, r)\) if \(k\) and \(r\) are constants (*Kitty* and *Rover*)

- **Deep grammars**: model semantics alongside syntax, one semantic composition rule per syntax rule
Compositional semantics alongside syntax

```
S
  ├─ NP
  │   └─ Adj
  │       │
  │       │  carnivorous
  │
  │   └─ N
  └─ VP
      ├─ VP
      │   │
      │   │  slowly
      │
      └─ Adv
           └─ digest
```
Semantic composition is non-trivial

- Similar syntactic structures may have different meanings:

 it barks

 it rains; it snows – pleonastic pronouns

- Different syntactic structures may have the same meaning:

 Kim seems to sleep.

 It seems that Kim sleeps.

- Not all phrases are interpreted compositionally, e.g. idioms:

 red tape

 kick the bucket

 but they can be interpreted compositionally too, so we cannot simply block them.
Semantic composition is non-trivial

- Elliptical constructions where additional meaning arises through composition, e.g. *logical metonymy*:

 - *fast programmer*
 - *fast plane*

- Meaning transfer and additional connotations that arise through composition, e.g. *metaphor*

 - *I cant *buy* this story.*
 - *This sum will *buy* you a ride on the train.*

- Recursion
Recursion

"Of course I care about how you imagined I thought you perceived I wanted you to feel."
Outline.

Multimodal distributional semantics

Compositional semantics

Compositional distributional semantics
Compositional distributional semantics

Can distributional semantics be extended to account for the meaning of phrases and sentences?

- Language can have an infinite number of sentences, given a limited vocabulary
- So we can not learn vectors for all phrases and sentences
- and need to do composition in a distributional space
1. Vector mixture models

Mitchell and Lapata, 2010. *Composition in Distributional Models of Semantics*

Models:
- Additive
- Multiplicative
Additive and multiplicative models

<table>
<thead>
<tr>
<th></th>
<th>dog</th>
<th>cat</th>
<th>old</th>
<th>old + dog</th>
<th>old + cat</th>
<th>old ∘ dog</th>
<th>old ∘ cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>runs</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>barks</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>12</td>
<td>7</td>
<td>35</td>
<td>0</td>
</tr>
</tbody>
</table>

- correlate with human similarity judgments about adjective-noun, noun-noun, verb-noun and noun-verb pairs
- but... commutative, hence do not account for word order

 John hit the ball = The ball hit John!

- more suitable for modelling content words, would not port well to function words:

 e.g. *some dogs; lice and dogs; lice on dogs*
2. Lexical function models

Distinguish between:

- words whose meaning is directly determined by their distributional behaviour, e.g. nouns
- words that act as functions transforming the distributional profile of other words, e.g., verbs, adjectives and prepositions
Lexical function models

Baroni and Zamparelli, 2010. *Nouns are vectors, adjectives are matrices:* Representing adjective-noun constructions in semantic space

Adjectives as lexical functions

\[\text{old dog} = \text{old} (\text{dog}) \]

- Adjectives are parameter matrices (\(A_{\text{old}} \), \(A_{\text{furry}} \), etc.).
- Nouns are vectors (\(\text{house} \), \(\text{dog} \), etc.).
- Composition is simply \(\text{old dog} = A_{\text{old}} \times \text{dog} \).

<table>
<thead>
<tr>
<th>OLD</th>
<th>runs</th>
<th>barks</th>
<th>dog</th>
<th>OLD (dog)</th>
</tr>
</thead>
<tbody>
<tr>
<td>runs</td>
<td>0.5</td>
<td>0</td>
<td>runs</td>
<td>runs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>= (0.5 x 1) + (0 x 5)</td>
</tr>
<tr>
<td>barks</td>
<td>0.3</td>
<td>1</td>
<td>barks</td>
<td>barks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>= (0.3 x 1) + (5 x 1)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{OLD} & = \begin{bmatrix}
0.5 & 0 \\
0.3 & 1
\end{bmatrix} \\
\text{dog} & = \begin{bmatrix}
1 \\
5
\end{bmatrix} \\
\text{OLD (dog)} & = \begin{bmatrix}
0.5 \\
5.3
\end{bmatrix}
\end{align*}
\]
Learning adjective matrices

1. Obtain a distributional vector \mathbf{n}_j for each noun n_j in the lexicon.
2. Collect adjective noun pairs (a_i, n_j) from the corpus.
3. Obtain a distributional vector \mathbf{p}_{ij} of each pair (a_i, n_j) from the same corpus using a conventional DSM.
4. The set of tuples $\{(n_j, p_{ij})\}_{j}$ represents a dataset $\mathcal{D}(a_i)$ for the adjective a_i.
5. Learn matrix \mathbf{A}_i from $\mathcal{D}(a_i)$ using linear regression.

Minimize the squared error loss:

$$L(\mathbf{A}_i) = \sum_{j \in \mathcal{D}(a_i)} \| \mathbf{p}_{ij} - \mathbf{A}_i \mathbf{n}_j \|^2$$
Polysemy in lexical function models

Generally:

▶ use single representation for all senses
▶ assume that ambiguity can be handled as long as contextual information is available

Exceptions:

▶ Kartsaklis and Sadrzadeh (2013): homonymy poses problems and is better handled with prior disambiguation
▶ Gutierrez et al (2016): literal and metaphorical senses better handled by separate models
▶ However, this is still an open research question.