Lecture 12: Figurative language processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Literal and figurative language

Statistical modelling of metaphor

Metaphor interpretation

Literal and figurative language

Lecture 12: Figurative language processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Literal and figurative language

Statistical modelling of metaphor

Metaphor interpretation

Literal and figurative language

Figurative language

Semantic shift: words do not appear in their default meanings, some semantic incongruity is evident

- Metaphor (Inflation has eaten up all my savings.)
- Metonymy (He played Bach. He bought a Picasso.)
- Irony (November... my favourite month!)
- Humor (Exaggeration is a billion times worse than understatement!)

Interpretation of figurative language and humor is very challenging for NLP.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Literal and figurative language

Figurative language

Semantic shift: words do not appear in their default meanings, some semantic incongruity is evident

- Metaphor (Inflation has eaten up all my savings.)
- Metonymy (He played Bach. He bought a Picasso.)
- Irony (November... my favourite month!)
- Humor (Exaggeration is a billion times worse than understatement!)

Interpretation of figurative language and humor is very challenging for NLP.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Literal and figurative language

Figurative language

Semantic shift: words do not appear in their default meanings, some semantic incongruity is evident

- Metaphor (Inflation has eaten up all my savings.)
- Metonymy (He played Bach. He bought a Picasso.)
- Irony (November... my favourite month!)
- Humor (Exaggeration is a billion times worse than understatement!)

Interpretation of figurative language and humor is very challenging for NLP.

(日) (日) (日) (日) (日) (日) (日)

Literal and figurative language

Figurative language

Semantic shift: words do not appear in their default meanings, some semantic incongruity is evident

- Metaphor (Inflation has eaten up all my savings.)
- Metonymy (He played Bach. He bought a Picasso.)
- Irony (November... my favourite month!)
- Humor (Exaggeration is a billion times worse than understatement!)

Interpretation of figurative language and humor is very challenging for NLP.

(ロ) (同) (三) (三) (三) (○) (○)

Literal and figurative language

Figurative language

Semantic shift: words do not appear in their default meanings, some semantic incongruity is evident

- Metaphor (Inflation has eaten up all my savings.)
- Metonymy (He played Bach. He bought a Picasso.)
- Irony (November... my favourite month!)
- Humor (Exaggeration is a billion times worse than understatement!)

Interpretation of figurative language and humor is very challenging for NLP.

(ロ) (同) (三) (三) (三) (○) (○)

Literal and figurative language

Figurative language

Semantic shift: words do not appear in their default meanings, some semantic incongruity is evident

- Metaphor (Inflation has eaten up all my savings.)
- Metonymy (He played Bach. He bought a Picasso.)
- Irony (November... my favourite month!)
- Humor (Exaggeration is a billion times worse than understatement!)

Interpretation of figurative language and humor is very challenging for NLP.

(ロ) (同) (三) (三) (三) (○) (○)

Statistical modelling of metaphor

Lecture 12: Figurative language processing

Literal and figurative language

Statistical modelling of metaphor

Metaphor interpretation

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Statistical modelling of metaphor

What is metaphor?

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Statistical modelling of metaphor

What is metaphor?

"A political machine"

"The wheels of the regime were well oiled and already turning"

"Time to mend our foreign policy"

"20 Steps towards a Modern, Working Democracy"

- Statistical modelling of metaphor

How does it work?

Conceptual Metaphor Theory (Lakoff and Johnson, 1980. *Metaphors we live by*.)

Metaphorical associations between concepts <u>POLITICALSYSTEM</u> is a <u>MECHANISM</u> target source

Cross-domain knowledge projection and inference

Reasoning about the target domain in terms of the properties of the source

-Statistical modelling of metaphor

Metaphor influences our decision-making

Thibodeau and Boroditsky, 2011. *Metaphors We Think With: The Role of Metaphor in Reasoning*

- investigated how metaphor influences decision-making
- subjects read a text containing metaphors of either
 - 1. CRIME IS A VIRUS
 - 2. CRIME IS A BEAST
- then they were asked a set of questions on how to tackle crime in the city
 - 1. preventive measures
 - 2. punishment, restraint

- Statistical modelling of metaphor

Metaphor processing tasks

- Learn metaphorical associations from corpora "POLITICAL SYSTEM is a MECHANISM"
- 2. Identify metaphorical language in text

"mend the policy"

3. Interpret the metaphorical language

"*mend the policy*" means "improve the policy; address the downsides of the policy"

Example feature vectors (verb-object relations)

N: game	N: politics
1170 play	31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

Example feature vectors (verb–object relations)

N: game	N: politics
1170 play	31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

Example feature vectors (verb-object relations)

N: game	N: politics
1170 play	31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example feature vectors (verb-object relations)

N: game	N: politics
1170 play	31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

Example feature vectors (verb-object relations)

N: game	N: politics
1170 play	31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

Example feature vectors (verb-object relations)

N: game	N: politics
1170 play	. 31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

Example feature vectors (verb-object relations)

N: game	N: politics
1170 play	31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

Example feature vectors (verb-object relations)

N: game	N: politics
1170 play	31 dominate
202 win	30 play
99 miss	28 enter
76 watch	16 discuss
66 lose	13 leave
63 start	12 understand
42 enjoy	8 study
22 finish	6 explain
	5 shape
20 dominate	4 influence
18 quit	4 change
17 host	4 analyse
17 follow	
17 control	2 transform

NEED TO FIND A WAY TO PARTITION THE SPACE

-Statistical modelling of metaphor

Soft clustering

 Hard clustering: each data point assigned to one cluster only (as in our k-means experiment)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Soft clustering: each data point is associated with multiple clusters with a membership probability

Soft clustering for metaphor identification

Shutova and Sun, 2013. Unsupervised metaphor identification using hierarchical graph factorization clustering

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

- Statistical modelling of metaphor

Creating the graph

- ALGORITHM: Hierarchical graph factorization clustering (Yu, Yu and Tresp, 2006. Soft clustering on graphs)
- DATASET: 2000 most frequent nouns in the BNC
- FEATURES: subject, direct and indirect object relations; verb lemmas indexed by relation type (extracted from the Gigaword corpus)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

LEVELS: 10

Statistical modelling of metaphor

Hierarchical clustering using graph factorization

-Statistical modelling of metaphor

Hierarchical clustering using graph factorization

・ロット (雪) (日) (日)

∃ 900

-Statistical modelling of metaphor

Hierarchical clustering using graph factorization

▲□ > ▲圖 > ▲ 国 > ▲ 国 > → 国 → のへで

Statistical modelling of metaphor

Hierarchical clustering using graph factorization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Statistical modelling of metaphor

Hierarchical clustering using graph factorization

(日)

3

Identifying metaphorical associations in the graph

- start with the source concept, e.g. "fire"
- output a ranking of potential target concepts

SOURCE: fire

TARGET: sense hatred emotion passion enthusiasm sentiment hope interest **feeling** resentment optimism hostility excitement anger TARGET: coup **violence** fight resistance clash rebellion battle drive fighting riot revolt war confrontation volcano row revolution struggle

SOURCE: disease

TARGET: fraud outbreak offence connection leak count **crime** violation abuse conspiracy corruption terrorism suicide TARGET: **opponent** critic rival

- Statistical modelling of metaphor

Identifying metaphorical expressions

Statistical modelling of metaphor

Identifying metaphorical expressions

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

Statistical modelling of metaphor

Metaphorical expressions retrieved

FEELING IS FIRE

anger *blazed* (Subj), passion *flared* (Subj), interest *lit* (Subj), *fuel* resentment (Dobj), anger *crackled* (Subj), *light* with hope (lobj) etc.

CRIME IS A DISEASE

cure crime (Dobj), abuse *transmitted* (Subj), *suffer from* corruption (lobj), *diagnose* abuse (Dobj) etc.

Output sentences from the BNC

EG0 275 In the 1930s the words "means test" was a curse, **fuelling the resistance** against it both among the unemployed and some of its administrators.

HL3 1206 [..] he would strive to **accelerate progress** towards the economic integration of the Caribbean.

HXJ 121 [..] it is likely that some **industries will flourish** in certain countries as the **market widens**.

- Statistical modelling of metaphor

Multilingual metaphor processing

- Statistical methods are portable to other languages
- Metaphor identification systems for Russian and Spanish:
 - work!
 - reveal a number of interesting cross-cultural differences

Cross-cultural differences identified by the system

Spanish: stronger metaphors for poverty ("*fight* poverty, *eradicate* poverty" -> POVERTY IS AN ENEMY, PAIN etc.)

English: stronger metaphors for immigration (IMMIGRATION IS A DISEASE, FIRE etc.)

Russian: sporting events / competitions associated with WAR

Metaphor interpretation

Lecture 12: Figurative language processing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Literal and figurative language

Statistical modelling of metaphor

Metaphor interpretation

-Metaphor interpretation

Metaphor interpretation as paraphrasing

Derive literal paraphrases for single-word metaphors

Phrases

All of this *stirred* an uncontrollable excitement in her. a carelessly *leaked* report

Paraphrases

All of this *provoked* an uncontrollable excitement in her. a carelessly *disclosed* report

Shutova 2010. Automatic metaphor interpretation as a paraphrasing task.

Metaphor interpretation

Paraphrasing system overview

"carelessly leaked report" -> "carelessly ... report"

- 1. Paraphrase selection model: meaning retention
- 2. WordNet similarity filtering
- 3. Selectional preference model: quantifying literalness

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Metaphor interpretation

Context-based paraphrase ranking model

Example

carelessly *leaked* report \rightarrow carelessly (w_1) ... (*i*) report (w_2)

$$P(i, w_1, w_2) \approx P(i)P(w_1|i)P(w_2|i) = \frac{f(w_1, i) \cdot f(w_2, i)}{f(i) \cdot \sum_k f(i_k)}$$
$$P(i) = \frac{f(i)}{\sum_k f(i_k)} \qquad P(w_n|i) = \frac{f(w_n, i)}{f(i)}$$

where f(i) is the frequency of the interpretation on its own

 $f(w_n, i)$ - the frequency of the co-occurrence of the interpretation with the context word w_n .

・ロト・西ト・西ト・日下 ひゃぐ

Metaphor interpretation

Shared features in WordNet

- The paraphrasing model overgenerates
- Thus we need to filter out unrelated verbs
- Metaphor is based on similarity
- We define similarity as sharing a common hypernym in WordNet

Example

How can I *kill* a process? How can I *terminate* a process? *Kill* and *terminate* share a common hypernym.

Metaphor interpretation

Example output

Candidate paraphrases

stir excitement:

-14.28	create
-14.84	provoke
-15.53	make
-15.53	elicit
-15.53	arouse
-16.23	stimulate
-16.23	raise
-16.23	excite
-16.23	conjure

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Metaphor interpretation

Selectional preference model

Selectional preference strength (Resnik, 1993)

$$S_R(v) = D(P(c|v)||P(c)) = \sum_c P(c|v)\lograc{P(c|v)}{P(c)}$$

Selectional association (Resnik, 1993)

$$A_R(v,c) = rac{1}{S_R(v)} P(c|v) \log rac{P(c|v)}{P(c)}$$

P(c) is the prior probability of the noun class, P(c|v) its posterior probability given the verb; R is the GR

・ロト・西ト・西ト・西ト・日 のくの

Metaphor interpretation

Paraphrasing system output

Initial ranking

stir excitement:

-14.28	create
-14.84	provoke
-15.53	make
-15.53	elicit
-15.53	arouse
-16.23	stimulate
-16.23	raise
-16.23	excite
-16.23	coniure

SP reranking

stir excitement: 0.0696 provoke 0.0245 elicit 0.0194 arouse 0.0061 conjure 0.0028 create 0.0001 stimulate ≈ 0 raise ≈ 0 make ≈ 0 excite

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □