L90 Practical, Part II
Overview of Natural Language Processing

Simone Teufel

2016/11/25
We assume you now have (a) working baseline system(s)
You can now automatically classify a given review from IMDB into Negative or Positive
You used machine learning (NB, maybe SVM) on bags of words (maybe POS, bigrams etc)
But this does not take much of the linguistic processing you encountered in L90 into account.
Today – get you started on extending this to a more sophisticated system
... and do good science while you’re at it
Goal of this Practical – “good science”

- Getting high numerical results isn’t everything – neither in this practical nor in science in general.
- Good science means:
 - an interesting research question
 - sound methodology
 - insightful analysis (something non-obvious)
- First part – choose your research question
Possible Research Questions

• You know from L90 some techniques how syntactic information can be automatically determined.

• Can this information capture additional meaning (beyond words) in a way that demonstrably helps with this task?

• Should we determine other units but verbs or bigrams? “Adjective + Noun” units?

• The clearest case of semantic information is negation.
 • Is negation present in a sentence (at all)?
 • Which unit in the sentence is negated?
 • If so, how can the negation information be gainfully used?
More Possible Research Questions

• Wordnet is an ontology listing *lexical relations* between (mainly) nouns – how could this help (maybe in connection with a sentiment lexicon?)
 • One relationship between adjectives is antonymy, eg. “boring” / “exciting”

• Turning to *discourse* effects – why would anaphora resolution possibly help?

• **Pragmatic** effects:
 • Plot Description vs. Evaluation
 • Advice to the reader
 • Violation of expectations; “underdog” story lines
 • Rhetorical questions? Irony?
Don’t overdo the mixing and matching

- **One** research question is enough.
- In fact, exploring **one** research question well and thoroughly often makes for the best scientific experiment.
Null results

• What to do if you have tried and tried and you cannot beat your best baseline system?
• It’s possible that your idea just didn’t pan out, and that what you have achieved simply is the best possible outcome
• ... if you can show that you have used the right methodology. For instance:
 • Don’t vary more than one variable at a time when measuring effects
 • Test for significance before making any claims that something is better than something else
For testing, only ever use truly unseen data.

How could data be “seen” (and thus tainted) by your system?

In ML systems, parameters are directly estimated from the data (“training corpus”)
 - Cross-validation is a way of pretending to close our eyes and “unsee” data

Even in symbolic systems, characteristics of the data can taint the test because they can “enter the experiment” via the brain of the developer
 - Careful – once the developer has looked at the data (“development corpus”), they can never really “forget” what they have seen.
 - You might want to make sure your test data is unreadable to yourself.
Writing the report

• No more than 4000 words; with word count.
• Submission 12 January 2016, noon
• Must include a pointer to running code on Mphil machines (your account)
Writing tips

• Make it look like a paper (including formatting)
• Use scientific language
 • Eradicate all forms of colloquial language
 • Mimic the author’s voice in published papers
• Introduction: pretend this is not an L90 assignment but your own idea
• Reader has no pre-knowledge
• Describe your methodology appropriately
 • Not too detailed (otherwise you look like a beginner)
 • Enough detail to allow somebody to reimplement your solution
 • Technical terms: use them – define them first
• Describe your numerical results (after your methods, clearly separated).
• Analyse your numerical results, using your brain and the English language.