
11/17/16

1

The	Process	Model	(2)
L41	Lecture	4

Dr Robert	N.	M.	Watson
17	November	2016

Reminder:	last	time
• The	process	model	and	its	evolution
• Isolation via	virtual	addressing	and	rings
• Controlled	transition	to	kernel	via	traps
• Controlled	communication	to	other	processes	via	the	
kernel

• Brutal	(re,pre)-introduction	to	virtual	memory
• Where	processes	come	from:	the	process	life	cycle,	
ELF and	run-time	linking

L41	Lecture	2	- Kernels	and	Tracing 2

11/17/16

2

This	time:	the	process	model	(2)
• More	on	traps and	system	calls
• Synchrony and	asynchrony
• Security and	reliability
• Kernel	work	in	system	calls	and	traps

• Virtual	memory	support	for	the	process	model
• Readings	for	next	time

L41	Lecture	2	- Kernels	and	Tracing 3

System	calls
• User	processes	request	kernel	services	via	system	calls:

• Traps that	model	function-call	semantics
• E.g.:

• open() opens	a	file	and	returns	a	file	descriptor
• fork() creates	a	new	process

• System	calls	appear	to	be	library	functions	(e.g.,	libc)
1. Function	triggers	trap	to	transfer	control	to	the	kernel
2. System-call	arguments	copied	into	kernel
3. Kernel	implements	service
4. System-call	return	values	copied	out	of	kernel
5. Kernel	returns	from	trap	to	next	user	instruction

• Some	quirks	relative	to	normal	APIs;	e.g.,
• C	return	values	via	normal	ABI	calling	convention…
• ...	But	also	per-thread	errno to	report	error	conditions
• ...	EINTR:	for	some	calls,	work	got	interrupted,	try	again

L41	Lecture	2	- Kernels	and	Tracing 4

11/17/16

3

System-call	synchrony
• Most	syscalls behave	like	synchronous C	functions
• Calls	with	arguments	(by	value	or	by	reference)
• Return	values	(an	integer/pointer	or	by	reference)
• When	the	caller	regains	control,	the	work	is	complete
• E.g.:

• getpid() retrieves	the	process	ID via	a	return	value
• read() reads	data	from	a	file:	on	return,	data	in	buffer

• Some	syscalls manipulate	control	flow	or	process	
thread/life	cycle;	e.g.:
• _exit() never	returns
• fork() returns	…	twice
• pthread_create() creates	a	new	thread
• setucontext() manipulates	thread	state

L41	Lecture	2	- Kernels	and	Tracing 5

System-call	asynchrony
• Synchronous	calls	can	perform	asynchronous work
• Some	types	of	work	may	not	be	complete	on	return
• E.g:

• write() writes	data	to	a	file	..	to	disk	eventually	..	maybe
• Caller	can	re-use	buffer	immediately	(copy	semantics)
• mmap()maps	a	file	but	doesn’t	load	data
• Caller	traps	on	access,	triggering	I/O	(demand	paging)

• Copy	semantics	mean	that	user	program	can	be	
unaware	of	asynchrony	(…	sort	of)

• Some	syscalls are	explicitly	asynchronous
• aio_write() requests	an	asynchronous	write
• aio_return()/aio_error() collect	results	later
• Caller	must	wait	to	re-use	buffer	(shared	semantics)

L41	Lecture	2	- Kernels	and	Tracing 6

11/17/16

4

System-call	invocation

kernel

libc

binary main()

getpid()

vector

syscall()

sys_getpid()

vdso __kernel_vsyscall()

• libc system-call	stubs	
provide	linkable	symbols
• Inline	system-call	
instructions	or	dynamic	
implementations
• Linux	vdso
• Xen	hypercall page

• Machine-dependent	trap	
vector
• Machine-independent	
function syscall()
• Prologue	(e.g.,	breakpoints,	
tracing)

• Actual	service	invoked
• Epilogue	(e.g.,	tracing,	signal	
delivery)

L41	Lecture	2	- Kernels	and	Tracing 7

System-call	table:	syscalls.master

• NB:	If	this	looks	like	RPC	stub	generation	..	that’s	because	it	is.
L41	Lecture	2	- Kernels	and	Tracing 8

...
33 AUE_ACCESS STD { int access(char *path, int amode); }
34 AUE_CHFLAGS STD { int chflags(const char *path, u_long flags); }
35 AUE_FCHFLAGS STD { int fchflags(int fd, u_long flags); }
36 AUE_SYNC STD { int sync(void); }
37 AUE_KILL STD { int kill(int pid, int signum); }
38 AUE_STAT COMPAT { int stat(char *path, struct ostat *ub); }
...

UserspaceKernel

init_
sysent.c

System-call
entry array

syscalls
.c

System-call
name array

systrace_
args.c

DTrace
‘systrace’
provider

type array

System-call
numbers and
prototypes

libc
stubs

System-call
stubs in libc

system-
call

headers

syscalls
.master

System-call
table

11/17/16

5

Security	and	reliability	(1)
• User-kernel	interface	is	a	key	Trusted	Computing	
Base	(TCB) surface
• Minimum	software	required	for	the	system	to	be	secure

• Foundational	security	goal:	isolation
• Used	to	implement	integrity,	confidentiality,	availability
• Limit	scope	of	system-call	effects	on	global	state
• Enforce	access	control	on	all	operations	(e.g.,	MAC,	DAC)
• Accountability	mechanisms	(e.g.,	event	auditing)

L41	Lecture	2	- Kernels	and	Tracing 9

Security	and	reliability	(2)
• System	calls	perform	work	on	behalf	of	user	code
• Kernel	thread operations	implement	system	call/trap

• Unforgeable	credential	tied	to	each	process/thread
• Authorises use	of	kernel	services	and	objects
• Resources	(e.g.,	CPU,	memory)	billed	to	the	thread
• Explicit	checks	in	system-call	implementation
• Credentials	may	be	cached	to	authorise asynchronous	
work	(e.g.,	TCP	sockets,	NFS	block	I/O)

• Kernel	must	be	robust	to	user-thread	misbehaviour
• Handle	failures	gracefully:	terminate	process,	not	kernel
• Avoid	priority	inversions,	unbounded	resource	
allocation,	etc.

L41	Lecture	2	- Kernels	and	Tracing 10

11/17/16

6

Security	and	reliability	(3)
• Confidentiality is	both	difficult	and	expensive
• Explicitly	zero	memory	before	re-use	between	processes
• Prevent	kernel-user	data	leaks	(e.g.,	in	struct padding)
• Correct	implementation	of	process	model	via	rings,	VM
• Covert	channels,	side	channels

• User	code	is	the	adversary	– may	try	to	break	
access	control	or	isolation
• Kernel	must	carefully	enforce	all	access-control	rules
• System-call	arguments,	return	values	are	data,	not	code
• Extreme	care	with	user-originated	pointers,	operations

L41	Lecture	2	- Kernels	and	Tracing 11

Security	and	reliability	(4)
• What	if	a	user	process	passes	a	kernel	pointer	to	
system	call?
• System-call	arguments	must	be	processed	with	rights	of	
user	code
• E.g.,	prohibit	read() from	passing	kernel	pointer,	
which	might	overwrite	in-kernel	credentials
• Explicit	copyin(),	copyout() routines	check	
pointer	validity,	copy	data	safely

• Kernel	dereferences	user	pointer	by	accident
• Kernel	bugs	could	cause	kernel	to	access	user	memory	
“by	mistake”
• Kernel	NULL-pointer	vulnerabilities
• Intel	Supervisor	Mode	Access	Prevent	(SMAP)

L41	Lecture	2	- Kernels	and	Tracing 12

11/17/16

7

System-call	entry	– syscallenter
cred_update_thread
sv_fetch_syscall_args
ktrsyscall
ptracestop
IN_CAPABILITY_MODE
syscall_thread_enter
systrace_probe_func
AUDIT_SYSCALL_ENTER
sa->callp->sy_call
AUDIT_SYSCALL_EXIT
systrace_probe_func
syscall_thread_exit
sv_set_syscall_retval

Update	thread	cred	from	process
ABI-specific	copyin() of	arguments
ktrace syscall entry
ptrace syscall entry	breakpoint
Capsicum	capability-mode	check
Thread	drain	barrier	(module	unload)
DTrace	system-call	entry	probe
Security	event	auditing
System-call	implementation!	Woo!
Security	event	auditing
DTrace	system-call	return	probe
Thread	drain	barrier	(module	unload)
ABI-specific	return	value

L41	Lecture	2	- Kernels	and	Tracing 13

• That’s	a	lot	of	tracing	hooks	– why	so	many?

getauid:	return	process	audit	ID

• Current	thread	pointer,	system-call	argument	structure
• Security:	lightweight	virtualisation,	privilege	check
• Copy	value	to	user	address	space	– can’t	write	to	it	directly!
• No	explicit	synchronisation as	fields	are	thread-local

• Does	it	matter	how	fresh	the	credential	pointer	is?
L41	Lecture	2	- Kernels	and	Tracing 14

int
sys_getauid(struct thread *td, struct getauid_args *uap)
{

int error;

if (jailed(td->td_ucred))
return (ENOSYS);

error = priv_check(td, PRIV_AUDIT_GETAUDIT);
if (error)

return (error);
return (copyout(&td->td_ucred->cr_audit.ai_auid, uap->auid,

sizeof(td->td_ucred->cr_audit.ai_auid)));
}

11/17/16

8

System-call	return	– syscallret
userret
➟ KTRUSERRET
➟ g_waitidle
➟ addupc_task
➟ sched_userret

p_throttled
ktrsysret
ptracestop
thread_suspend_check
P_PPWAIT

Complicated	things,	like	signals
ktrace syscall return
Wait	for	disk	probing	to	complete
System-time	profiling	charge
Scheduler	adjusts	priorities
…	various	debugging	assertions...
racct resource	throttling
Kernel	tracing:	syscall return
ptrace syscall return	breakpoint
Single-threading	check
vfork wait

L41	Lecture	2	- Kernels	and	Tracing 15

• That	is	a	lot	of	stuff	that	largely	never	happens
• The	trick	is	making	all	of	this	nothing	fast	– e.g.,	via	per-
thread	flags	and	globals that	remain	in	the	data	cache

System	calls	in	practice:	dd (1)

L41	Lecture	2	- Kernels	and	Tracing 16

syscall:::entry /execname == "dd"/ {
self->start = timestamp;
self->insyscall = 1;

}

syscall:::return /execname == "dd" && self->insyscall != 0/ {
length = timestamp - self->start;
@syscall_time[probefunc] = sum(length);
@totaltime = sum(length);
self->insyscall = 0;

}

END {
printa(@syscall_time);
printa(@totaltime);

}

time dd if=/dev/zero of=/dev/null bs=10m count=1 status=none
0.000u 0.396s 0:00.39 100.0% 25+170k 0+0io 0pf+0w

11/17/16

9

System	calls	in	practice:	dd (2)

L41	Lecture	2	- Kernels	and	Tracing 17

sysarch 7645
issetugid 8900
lseek 9571
sigaction 11122
clock_gettime 12142
ioctl 14116
write 29445
readlink 49062
access 50743
sigprocmask 83953
fstat 113850
munmap 154841
close 176638
lstat 453835
openat 562472
read 697051
mmap 770581

3205967

time dd if=/dev/zero of=/dev/null bs=10m count=1 status=none
0.000u 0.396s 0:00.39 100.0% 25+170k 0+0io 0pf+0w

• NB:	≈3.2ms	total	– but	time(1) reports	396ms	system	time?

Traps	in	practice:	dd (1)

L41	Lecture	2	- Kernels	and	Tracing 18

syscall:::entry /execname == "dd"/ {
@syscalls = count();
self->insyscall = 1;
self->start = timestamp;

}

syscall:::return /execname == "dd" && self->insyscall != 0/ {
length = timestamp - self->start; @syscall_time = sum(length);
self->insyscall = 0;

}

fbt::trap:entry /execname == "dd" && self->insyscall == 0/ {
@traps = count(); self->start = timestamp;

}

fbt::trap:return /execname == "dd" && self->insyscall == 0/ {
length = timestamp - self->start; @trap_time = sum(length);

}

END {
printa(@syscalls); printa(@syscall_time);
printa(@traps); printa(@trap_time);

}

11/17/16

10

time dd if=/dev/zero of=/dev/null bs=10m count=1 status=none
0.000u 0.396s 0:00.39 100.0% 25+170k 0+0io 0pf+0w

Traps	in	practice:	dd (2)

L41	Lecture	2	- Kernels	and	Tracing 19

65
2953756

5185
380762894

• 65	system	calls	at	≈3ms;	5,185	traps	at	≈381ms!
• But	which	traps?

65	system	calls

2.95ms	in	system	calls

5,185	traps

380.76ms	in	traps

traps	in	practice:	dd (3)

L41	Lecture	2	- Kernels	and	Tracing 20

profile-997 /execname == "dd"/ { @traces[stack()] = count(); }

...
kernel`PHYS_TO_VM_PAGE+0x1
kernel`trap+0x4ea
kernel`0xffffffff80e018e2
5

kernel`vm_map_lookup_done+0x1
kernel`trap+0x4ea
kernel`0xffffffff80e018e2
5

kernel`pagezero+0x10
kernel`trap+0x4ea
kernel`0xffffffff80e018e2
346

• A	sizeable	fraction	of	time	is	spent	in	pagezero:	on-demand	
zeroing	of	previously	untouched	pages

• Ironically,	the	kernel	is	filling	pages	with	zeroes	only	to	
immediately	copyout() zeroes	to	it	from	/dev/zero

11/17/16

11

Last	time:	virtual	memory	(quick,	painful)

Virtual address
space 1

Virtual address
space 2Physical

memory

data

zero

data

code

rwx

rx
rx

r + cow
rwH

ea
p

C
od

e
St

ac
k

0

∞/2

rwx

St
ac

k
H

ea
p

rx

C
od

e

code

data

r + cow

r + cow code
rw
rx

data

Li
br

ar
y

code

r + cow
rxLi

br
ar

y

data

data

code

data

rw
rx

∞

Ke
rn

el

rw
(superpage)

data
(superpage)

r + cow

L41	Lecture	2	- Kernels	and	Tracing 21

So:	back	to	Virtual	Memory	(VM)
• The	process	model’s	isolation	guarantees	incur	real	expense
• The	VM	subsystem	works	quite	hard	to	avoid	expense

• Shared	memory,	copy-on-write,	page	flipping
• Background	page	zeroing
• Superpages to	improve	TLB	efficiency

• VM	avoids	work,	but	also	manages	memory	footprint
• Memory	as	a	cache of	secondary	storage	(files,	swap)
• Demand	paging	vs.	I/O	clustering
• LRU	/	preemptive	swapping	to	maintain	free-page	pool
• Recently:	memory	compression	and	deduplication

• These	ideas	were	known	before	Mach,	but…
• Acetta,	et	al.	impose	principled	design,	turn	them	into	an	art	form
• Provide	a	model	beyond	V→P	mappings	in	page	tables
• And	ideas	such	as	the	message-passing—shared-memory	duality

L41	Lecture	2	- Kernels	and	Tracing 22

11/17/16

12

Kernel	programmer	view	of	VM

L41	Lecture	2	- Kernels	and	Tracing 23

Machine-independent virtual memory (VM) Machine-dependant physical map (PMAP)

page

Read/write,
grows down,
anonymous

objectSt
ac

k

Read/write,
anonymous

objectH
ea

p
Li

br
ar

y Read/copy-on-
write, named

object

C
od

e Read/copy-on-
write, named

object

“vmspace”,
“vm_map”

“vm_map_entry”

anonymous
swap-backed

VM object

vnode
VM object

page

“vm_object”

shadow
anonymous

swap-backed
VM object

page
page

“vm_page”

swap pager

page
page

swap pager

vnode pager

“vm_pager”

vnode
“/bin/dd”

page
page

pte

data

data

data

code

codepage-table
directory

page-table
entry

superpage
data

pte

pde

pte
pte
pte

pte
pte

pte

physical
map

pde

pde

“pmap”

physical
memory

Mach	VM	in	other	operating	systems
• Mach: VM	mappings,	objects,	pages,	etc.,	are	first-class	kernel	
services	exposed	via	system	calls

• In	two	directly	derived	systems,	quite	different	stories:

• In	FreeBSD,	Mach	is	used:
• To	efficiently	implement	UNIX’s	fork() and	execve()
• For	memory-management	APIs	such	as	mmap() and	mprotect()
• By	the	filesystem	to	implement	a	merged	VM-buffer	cache
• By	device	drivers	that	manage	memory	in	interesting	ways
(e.g.,	GPU	drivers	mapping	pages	into	user	processes)

• By	a	set	of	VM	worker	threads,	such	as	the	page	daemon,	swapper,	
syncer,	and	page-zeroing	thread

L41	Lecture	2	- Kernels	and	Tracing 24

Mac	OS	X Although	not	a	microkernel,	Mach’s	VM/IPC	Application	
Programming	Interfaces (APIs)	are	available	to	user	programs,	
and	widely	used	for	IPC,	debugging,	…

FreeBSD Mach	VM	is	used	as	a	foundation	for	UNIX APIs,	but	is	
available for	use	only	as	a	Kernel	Programming	Interface	(KPI)

11/17/16

13

For	next	time
• Lab	2:	DTrace	and	IPC
• Explore	Inter-Process	Communication	(IPC)	performance
• Leads	into	Lab	3:	microarchitectural	counters	to	explain	
IPC	performance

• Ellard	and	Seltzer	2003

L41	Lecture	2	- Kernels	and	Tracing 25

