Lambda calculus (Advanced Functional Programming)

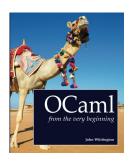
Jeremy Yallop

Computer Laboratory University of Cambridge

January 2017

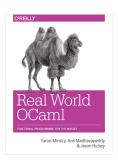
Course outline

Books



OCaml from the very beginning John Whitington

Coherent Press (2013)



Real World OCaml Yaron Minsky, Anil Madhavapeddy & Jason Hickey

O'Reilly Media (2013)

Types and Programming Languages

Benjamin C. Pierce MIT Press (2002)

Tooling

OPAM OCaml package manager

Philosophy and approach

- practical: with theory as necessary for understanding
- real-world: patterns and techniques from real applications
- reusable: general, broadly applicable techniques
- current: topics of ongoing research

Philosophy and approach

- practical: with theory as necessary for understanding
- real-world: patterns and techniques from real applications
- reusable: general, broadly applicable techniques
- current: topics of ongoing research
- opinionated (but you don't have to agree)

Mailing list

cl-acs-28@lists.cam.ac.uk

Announcements, questions and discussion. Feel free to post!

Have a question but feeling shy? Mail me directly and I'll anonymise and post your question:

jeremy.yallop@cl.cam.ac.uk

Exercises assessed and unassessed

Unassessed exercises

Useful preparation for assessed exercises; optional but recommended. Hand in for feedback, discuss freely on mailing list.

Assessed exercises

Mon 30 Jan	Mon 20 Feb	Mon 13 Mar
\downarrow	\downarrow	\downarrow
Mon 13 Feb	Mon 6 Mar	Tue 25 Apr
(~30%)	(~35%)	(~35%)

Course structure

Technical background Lambda calculus; type inference

► Themes Propositions as types; parametricity and abstraction

► (Fancy) types Higher-rank and higher-kinded polymorphism; modules and functors; generalised algebraic types; structured overloading

- Patterns and techniques
 Monads, applicatives, arrows, etc.; datatype-generic programming; staged programming
- ► Applications (E.g.) a foreign function library

Motivation & background

System $F\omega$

Function composition in OCaml:

```
fun f g x \rightarrow f (g x)
```

Function composition in System $F\omega$:

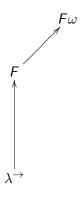
```
egin{aligned} & \Lambda lpha :: * \, . & & & & & & \\ & & & & \Lambda eta :: * \, . & & & & & \\ & & & & \lambda \mathbf{f} : lpha & 
ightarrow eta \, . & & & & \\ & & & & \lambda \mathbf{g} : \gamma & 
ightarrow lpha \, . & & & \\ & & & & \lambda \mathbf{x} : \gamma \cdot \mathbf{f} \, \left( \mathbf{g} \, \, \, \mathbf{x} \right) \end{aligned}
```

What's the point of System $F\omega$?

A framework for understanding language features and programming patterns:

- the elaboration language for type inference
- the proof system for reasoning with propositional logic
- the background for parametricity properties
- ▶ the language underlying higher-order polymorphism in OCaml
- the elaboration language for modules
- the core calculus for GADTs

Roadmap



Inference rules

```
premise 1
premise 2
premise N
conclusion
rule name
```

Inference rules

Inference rules

```
premise 1 all M are P
all S are M
all S are P
modus barbara

premise N
conclusion rule name
```

all programs are buggy

all functional programs are programs

all functional programs are buggy

modus barbara

Typing rules

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash M : N : B} \to -\text{elim}$$

Terms, types, kinds

Kinds: K_1, K_2, \ldots

Environments: **□**

K is a kind

Γ is an environment

Types: A, B, C, . . .

 $\textbf{Terms} \colon \ \mathsf{L}, \ \mathsf{M}, \ \mathsf{N}, \ \ldots$

 $\Gamma \vdash A :: K$

 $\Gamma \vdash M : A$

(simply typed lambda calculus)

λ^{\rightarrow} by example

In λ^{\rightarrow} :

 $\lambda x:A.x$

 $\lambda \mathtt{f} \colon \mathtt{B} o \mathtt{C}$.

 $\lambda exttt{g:A}
ightarrow exttt{B.} \ \lambda exttt{x:A.f (g x)}$

In OCaml:

fun $x \rightarrow x$

fun f g x \rightarrow f (g x)

Kinds in λ^{\rightarrow}

* is a kind *-kind

Kinding rules (type formation) in λ^{\rightarrow}

$$\overline{\Gamma \vdash \mathcal{B} :: *}$$
 kind- \mathcal{B}

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash A \to B :: *} \text{ kind-} \rightarrow$$

A kinding derivation

Environment formation rules

Typing rules (term formation) in λ^{\rightarrow}

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \text{ tvar}$$

$$\frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash \lambda x:A.M:A\to B}\to\text{-intro}$$

$$\frac{\Gamma\vdash M:A\to B}{\Gamma\vdash M:B}\to\text{-elim}$$

A typing derivation for the identity function

$$\frac{\cdot, x : A \vdash x : A}{\cdot \vdash \lambda x : A \times A} \rightarrow \text{-intro}$$

Products by example

In λ^{\rightarrow} with products:	In OCaml:
$\lambda \mathtt{p} \colon (\mathtt{A} o \mathtt{B}) imes \mathtt{A} \ . \ \mathbf{fst} \ \mathtt{p} \ (\mathbf{snd} \ \mathtt{p})$	fun (f,p) -> f p
$\lambda \mathtt{x}:\mathtt{A}.\langle \mathtt{x}$, $\mathtt{x} angle$	fun x -> (x, x)
$\begin{array}{c} \lambda \texttt{f} \colon \texttt{A} \to \texttt{C} . \\ \lambda \texttt{g} \colon \texttt{B} \to \texttt{C} . \\ \lambda \texttt{p} \colon \texttt{A} \times \texttt{B} . \\ \langle \texttt{f} (\texttt{fst} \texttt{p}) , \\ \text{g} (\texttt{snd} \texttt{p}) \rangle \end{array}$	fun f g (x,y) -> (f x, g y)
$\lambda \mathtt{p}.\mathtt{A} imes \mathtt{B}.\langle \mathbf{snd} \ \mathtt{p}$, $\mathbf{fst} \ \mathtt{p} angle$	fun (x,y) -> (y,x)

Kinding and typing rules for products

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash A \times B :: *} \text{ kind-} \times$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash N : B} \times -intro$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{fst } M : A} \times -elim-1$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{snd } M : B} \times -elim-2$$

Sums by example

In λ^{\rightarrow} with sums:

$\begin{array}{c} \lambda f : A \to C. \\ \lambda g : B \to C. \\ \lambda s : A + B. \\ \mathbf{case \ s \ of} \\ x . f \ x \\ \mid \ y . g \ y \end{array}$

λs:A + B.

case s of
 x.inr [B] x
 | y.inl [A] y

In OCaml:

```
fun f g s ->
match s with
Inl x -> f x
| Inr y -> g y
```

function
 Inl x -> Inr x
| Inr y -> Inl y

Kinding and typing rules for sums

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash A + B :: *} \text{ kind-+}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \text{inl } [B] \ M : A + B} + \text{-intro-1} \qquad \frac{\Gamma \vdash L : A + B}{\Gamma, x : A \vdash M : C}$$

$$\frac{\Gamma \vdash N : B}{\Gamma \vdash \text{inr } [A] \ N : A + B} + \text{-intro-2} \qquad \frac{\Gamma, y : B \vdash N : C}{\Gamma \vdash \text{case } L \text{ of } x.M \mid y.N : C} + \text{-elim}$$

System F

(polymorphic lambda calculus)

System F by example

```
\begin{array}{l} \Lambda\alpha :: * . \lambda x : \alpha . x \\ \\ \Lambda\alpha :: * . \\  & \Lambda\beta :: * . \\  & \Lambda\gamma :: * . \\  & \lambda f : \beta \to \gamma . \\  & \lambda g : \alpha \to \beta . \\  & \lambda x : \alpha . f \ (g \ x) \\ \\ \\ \Lambda\alpha :: * . \Lambda\beta :: * . \lambda p : (\alpha \to \beta) \times \alpha . \ \mathbf{fst} \ \ \mathbf{p} \ \ (\mathbf{snd} \ \ \mathbf{p}) \end{array}
```

New kinding rules for System F

$$\frac{\Gamma, \alpha :: K \vdash A :: *}{\Gamma \vdash \forall \alpha :: K.A :: *} \text{kind-} \forall$$

$$\frac{\alpha :: K \in \Gamma}{\Gamma \vdash \alpha :: K}$$
 tyvar

New environment rule for System F

 $\frac{\Gamma \text{ is an environment}}{\Gamma, \alpha :: K \text{ is an environment}} K \text{ is a kind} \Gamma -::$

New typing rules for System F

$$\frac{\Gamma, \alpha :: K \vdash M : A}{\Gamma \vdash \Lambda \alpha :: K.M : \forall \alpha :: K.A} \forall \text{-intro}$$

$$\frac{\Gamma \vdash M : \forall \alpha :: K.A \qquad \Gamma \vdash B :: K}{\Gamma \vdash M [B] : A[\alpha ::= B]} \forall \text{-elim}$$