
L28: Advanced functional programming

Exercise 2

Due on 8th March 2017

Submission instructions

Your solutions for this exericse should be handed in to the Graduate Education
Office by 4pm on the due date. Additionally, please email the completed text
file exercise2.ml to jeremy.yallop@cl.cam.ac.uk.
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1 Queues and length invariants

A queue is a type of sequence supporting two operations: enq adds an element to the
front of the queue, and deq removes an element from the back. Besides enq and deq,
queues also support operations for creating an empty queue and checking whether a
queue is empty. Here is an OCaml signature for queues:

module type QUEUE = sig
type +'a queue

exception EMPTY

val enq : 'a * 'a queue -> 'a queue
(** insert an element at the front *)

val deq : 'a queue -> 'a * 'a queue
(** remove & return back element; raise EMPTY if queue is empty *)

val empty : 'a queue
(** an empty queue *)

val is_empty : 'a queue -> bool
(** whether the queue is empty *)

end

Representing a queue as a pair of lists, inq and outq, allows the operations to be
implemented fairly efficiently. The enq operation conses an element onto inq:

a

b c d

g f e

enq ;

a b c d

g f e

and deq removes the first element from outq:

a b c

f e d

deq ; f

a b c

e d
,

If outq is empty, then deq first moves the elements of inq to outq, reversing their order:

a b c

deq ; c

b a
,
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Several invariants govern the behaviour of queues — for example, the element
removed by deq must be the element least recently added by enq — and many of these
invariants can be expressed using OCaml’s types. This exercise focuses on invariants
related to the length of the queue: enq increments the length, deq decrements the
length, and the length of the queue is equal to the sum of the elements of inq and
outq.

(a) Give an implementation of queues that satisifes the QUEUE signature using the
following type definition:

type 'a queue = { inq: 'a list; outq: 'a list }

(3 marks)

(b) The following type represents the addition relation between three natural
numbers (such as the lengths of inq, outq, and the queue formed by combining
the two):

type (_,_,_) add =
AddZ : 'n nat -> (z, 'n, 'n) add

| AddS : ('m, 'n, 'o) add -> ('m s, 'n, 'o s) add

The two constructors represent two facts about addition: the type of AddZ says
that if n is a natural number then 0 + n = n, and the type of AddS says that if
m + n = o then succ(m)+ n = succ(o). The type nat, used in the definition of AddZ

is defined as follows:

type _ nat =
Z : z nat

| S : 'n nat -> 'n s nat

This question asks you to define various additional functions representing further
facts about addition that may be useful in the questions that follow.

(i) Define a function jiggle whose type says that if m + succ(n)= o then
succ(m)+ n = o.

(ii) The type of AddZ states that for any nat n, 0 + n = n, i.e. that zero is a left
unit for addition. Define a function addzr whose type shows that zero is
also a right unit for addition, i.e. that for any nat n, n + 0 = n.

(iii) Define a function rz that turns a proof that m + 0 = n into a proof that m = n.

(iv) Define two functions addsr and inv_addsr whose types show that m + n = o is
equivalent to m + succ(n)= succ(o).

(v) Define a type commadd whose type says that addition is commutative, i.e. that
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if m + n = o then n + m = o.

(6 marks)

(c) Here is a definition of vectors (length-indexed lists):

type ('a,'n) vec =
Nil : ('a, z) vec

| Cons : 'a * ('a, 'n) vec -> ('a, 'n s) vec

Define a function rev of the following type:

val rev : ('a, 'n) vec -> ('a, 'n) vec

such that rev v is the reverse of the vector v.

You may find it helpful to start by implementing the following function that
catenates the reverse of one vector onto another:

val rev_append: ('a,'m) vec -> ('a,'n) vec -> ('m,'n,'o) add -> ('a,'o) vec

(3 marks)

(d) The following signature gives a more carefully-typed interface to queues:

module type TQUEUE = sig
type ('a, 'n) queue
val empty : (_, z) queue
val isEmpty : (_, 'n) queue -> 'n isz
val enq : 'a * ('a, 'n) queue -> ('a, 'n s) queue
val deq : ('a, 'n s) queue -> 'a * ('a, 'n) queue

end

where the type isz indicates whether a natural number is zero:

type _ isz = IsZ : z isz | IsS : _ s isz

Starting from the following type definition, give an implementation of TQUEUE:

type ('a, 'n) queue =
Queue : ('n, 'm, 'o) add * ('a, 'n) vec * ('a, 'm) vec ->

('a, 'o) queue

To receive full marks your implementation should return a valid value for every
input, and should contain no unreachable code (i.e. assert false or similar).

(5 marks)

(e) Complete the implementation of the following functor that builds an implemen-
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tation of QUEUE from an implementation of TQUEUE.

module Queue_of_tqueue(T: TQUEUE) : QUEUE = (* . . . *)

(3 marks)

(f ) A deque is a generalisation of a queue that support two additional operations:
qne adds an element to the rear of the queue,

g

a b c

f e d

qne ;

a b c

g f e d

and qed removes an element from the front:

a b c

f e d

qed ; a

b c

f e d
,

Starting from your implementation of TQUEUE, give an implementation of the
following interface to deques:

module type TDEQUE =
sig

include TQUEUE

val qne : ('a, 'n) queue * 'a -> ('a, 'n s) queue
val qed : ('a, 'n s) queue -> 'a * ('a, 'n) queue

end

(3 marks)
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2 Sorted data structures

Lectures 8 and 9 showed how GADTs can be used to describe and constrain the
shape of data. However, many programs have additional constraints on data that go
beyond restrictions on shape. For example, it is often useful to order the elements in
a sequence or a tree according to a user-defined function.

The Set module in the OCaml standard library is an example of parameterisation by
order. The user of Set instantiates the functor Set.Make with a module O matching the
OrderedType signature containing the type of elements and a function that compares
two elements:

module type OrderedType = sig
type t
val compare : t -> t -> int

end

and Set.Make uses O to build an implementation of sets whose elements are stored in
order.

However, nothing in the definition of Map ensures that the code used to implement
ordered maps respects the order defined by compare. This exercise investigates how to
make use of types to introduce ordering guarantees for an implementation of ordered
trees, increasing confidence in the correctness of the code.

Changing the types to enforce ordering involves three steps.

First, we will associate a unique existential type variable with each element in the
tree. Distinct elements x and y will be represented using distinct types 'x el and
'y el, and the types 'x and 'y will be used to represent elements in predicates.
(Similar techniques appear in the presentation of singletons in Lecture 9 and in
the presentation of Lightweight Static Capabilities in Lecture 7).

Second, we will introduce a type le to represent an ordering relation between
variables. A value ('x,'y) le serves as a proof of the fact that 'x el is less than
or equal to 'y el. We will wrap the comparison function to return values of type le.

Finally, we will add suitable proofs (i.e. values of type le) to the constructors of the
map, so that it is only possible to construct well-ordered maps.

The following module, Typed_ordered, will form the core of our implementation:

7



1 module Typed_ordered(O:ORDERED) : sig
2 type _ t
3 type ext = E : _ t -> ext
4 val inj : O.t -> ext
5
6 type (_,_) le
7 val le_refl : ('a,'a) le
8 val le_trans : ('a,'b) le -> ('b,'c) le -> ('a,'c) le
9
10 type ('a,'b) compare_result =
11 LE : ('a,'b) le -> ('a,'b) compare_result
12 | EQ : ('a,'b) le * ('b,'a) le -> ('a,'b) compare_result
13 | GE : ('b,'a) le -> ('a,'b) compare_result
14 val compare : 'x t -> 'y t -> ('x,'y) compare_result
15 end

Lines 2–4 define a type t, a wrapper type ext, and an injection function inj that
builds a value of type t (wrapped as a value of type ext) from a value of type O.t.
The existential type in the definition of ext ensures that each call to inj returns a
value of type t whose parameter type is distinct from every other type in the program.

Lines 6–8 define the ordering relation le, and two ways of forming proofs. The le_refl

value expresses the fact that le is reflexive, i.e. that x <= x for any x. Similarly, the
le_trans value expresses the fact that le is transitive.

Finally, lines 10–14 define a function compare and its return type. There are three
possible outcomes to a call to compare x y:

• a proof that x <= y (represented by LE)

• a proof that x <= y and y <= x (represented by EQ)

• a proof that y <= x (represented by GE)

The parameter O satisfies the ORDERED signature, which is similar to Map.OrderedType,
but uses a variant as the return type of compare:

type ord = LT | EQ | GT
module type ORDERED = sig
type t
val compare : t -> t -> ord

end

(a) As in question 1, we begin with a loosely-typed implementation of the data type.
Complete the implementation of the following module
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module Tree (O:ORDERED) : sig
type t
val empty : t
val add : O.t -> t -> t
val mem : O.t -> t -> bool
val remove : O.t -> t -> t

end = struct
type topt = t option
and t = Tree : topt * O.t * topt -> t
(* . . . *)

so that empty is an empty tree, add e t adds an element e to a tree t, mem e t

indicates whether t contains e, and remove e t removes e from t.

Furthermore, all the functions should maintain the elements in the tree in sorted
order according to O.compare.

(3 marks)

(b) Here is the beginning of a more carefully-typed implementation of trees.

module TTree (O:ORDERED) = struct

module T = Typed_ordered(O)
type 'a el = 'a T.t
open T

type ('min ,'max) tne =
| Tree : ('min ,'k,'lmax) t

* ('lmax ,'k) le
* 'k el
* ('k,'rmin) le
* ('rmin ,'k,'max) t -> ('min ,'max) tne

and ('min , 'k, 'max) t =
NE : ('min ,'max) tne -> ('min ,'k,'max) t

| E : ('min ,'k) eq * ('k,'max) eq -> ('min ,'k,'max) t

A value of type ('min, 'max) tne is a non-empty tree whose minimum element is
a value of type 'min el and whose maximum element is a value of type 'max el.

Along with the left and right subtrees and the element of type 'k el, a Tree

constructor stores proofs relating 'k to 'lmax (the greatest element in the left
subtree), and to 'rmin (the least element in the right subtree). Together, these
proofs ensure that only well-ordered trees can be constructed.

A value of type ('min, 'k, 'max) t is a possibly-empty tree. There are two
constructors: NE represents a non-empty tree, and E an empty tree. Empty
trees carry proofs that 'min, 'max and 'k are all equal, where equality is built
from ordering:
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type ('a, 'b) eq = ('a, 'b) le * ('b, 'a) le

(i) Continue the implementation of TTree by implementing a membership
predicate with the following type:

val mem : 'k el -> ('min , 'max) tne -> bool

(3 marks)

(ii) Give an implementation of an insertion function add with the following type

val add : 'k el -> ('min ,'max) tne ->
('k,'min ,'max) add_result

where add_result is defined as follows:

type ('k, 'min , 'max) add_result =
| Least : ('k, 'min) le * ('k, 'max) tne ->

('k, 'min , 'max) add_result
| Greatest : ('max , 'k) le * ('min , 'k) tne ->

('k, 'min , 'max) add_result
| InRange : ('min , 'max) tne ->

('k, 'min , 'max) add_result

That is, there are three possibilities when inserting an element k into a tree
with bounds 〈min,max〉:

• k is the least element (i.e. k ≤ min)

• k is the greatest element (i.e. max ≤ k)

• k lies between max and min

(3 marks)

(iii) Define an element removal function remove with the following type

val remove : 'k el -> ('min , 'max) tne ->
('k, 'min , 'max) remove_result

giving a suitable definition of remove_result. (Warning: this is quite tricky!)

(3 marks)
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