
A Brief Introduction to Garbage Collection

L25: Modern Compiler Design



TB;DL

David F. Bacon, Perry Cheng, and V. T. Rajan. 2004. A unified
theory of garbage collection. In Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA ’04). ACM, New
York, NY, USA, 50-68.



The (basic) problem

• Objects are allocated

• Some are still in use

• Some are not (garbage)

• We want to find the ones that are not (and delete them)



Approach 0: make it the programmer’s problem

• Requires the programmer to be careful about ownership

• Cyclical data structures are problematic

• Very hard to get right if objects are aliased between threads

• Closures are almost impossible to get right by hand

• Making every programmer solve the same problem is not
efficient



Approach 1: Tracing

• Find a set of known-live objects (’roots’)
• Registers
• Stack slots
• Globals

• Follow every pointer (mark)

• Delete everything else (sweep)

• Dijkstra and Steele’s approach for Lisp (state of the art Circa
1960)



Problems with (simple) tracing

• Requires walking all live memory
• Kills swapping
• Kills caches
• Doesn’t scale well with multiprocessor systems

• Needs extra data structures for tracking unreferenced objects

• Concurrency? (more later)



Approach 2: reference counting

• Maintain a count of the number of references to each object

• Increment / decrement on every assignment

• Delete objects when their reference count hits 0

• Deallocation is deterministic in the absence of cycles
• Reference counting is used in realtime Java implementations

for this reason



Problems with reference counting

• Assignment becomes expensive
• Also cause false sharing - two threads have read-only access to

an object but must write to the refcount
• Recall the costs of cache coherency

• Garbage cycles are not detected



Full GC with reference counting: cycle detection

• Almost the same algorithm as tracing

• Start with a possibly-dead object (refcount decremented,
object not destroyed)

• Recursively visit every reachable object

• Decrement reference counts for reference found

• Delete objects if you can account for all references



Reference counting with cycle detection example

A (1)

A (0)A (1)A (0)A (0)

B (3)

B (2)B (1)B (2)B (1)B (0)

C (1)

C (0)C (1)C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)

A (0)A (1)A (0)A (0)

B (3)

B (2)

B (1)B (2)B (1)B (0)

C (1)

C (0)C (1)C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)

A (0)A (1)A (0)A (0)

B (3)

B (2)

B (1)B (2)B (1)B (0)

C (1)

C (0)

C (1)C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)

A (0)

A (1)A (0)A (0)

B (3)

B (2)

B (1)B (2)B (1)B (0)

C (1)

C (0)

C (1)C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)

A (0)

A (1)A (0)A (0)

B (3)B (2)

B (1)

B (2)B (1)B (0)

C (1)

C (0)

C (1)C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)

A (1)

A (0)A (0)

B (3)B (2)B (1)

B (2)

B (1)B (0)

C (1)C (0)

C (1)

C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)

A (1)

A (0)A (0)

B (3)B (2)B (1)

B (2)

B (1)B (0)

C (1)C (0)

C (1)

C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)

A (1)

A (0)A (0)

B (3)B (2)B (1)B (2)

B (1)

B (0)

C (1)C (0)

C (1)

C (0)C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)

A (1)

A (0)A (0)

B (3)B (2)B (1)B (2)

B (1)

B (0)

C (1)C (0)C (1)

C (0)

C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)A (1)

A (0)

A (0)

B (3)B (2)B (1)B (2)

B (1)

B (0)

C (1)C (0)C (1)

C (0)

C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)A (1)

A (0)

A (0)

B (3)B (2)B (1)B (2)B (1)

B (0)

C (1)C (0)C (1)

C (0)

C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)A (1)

A (0)

A (0)

B (3)B (2)B (1)B (2)B (1)B (0)

C (1)C (0)C (1)C (0)

C (0)

D (1)

E (1)

F (2)

G (1)



Reference counting with cycle detection example

A (1)A (0)A (1)A (0)

A (0)

B (3)B (2)B (1)B (2)B (1)B (0)

C (1)C (0)C (1)C (0)C (0)

D (1)

E (1)

F (2)

G (1)



A note about determinism

• Some languages require code to run when objects are
destroyed

• Some try to impose deterministic destruction order

• See std::lock_guard in C++11 for a simple example



Improving performance for cycle detection

• Add potential-garbage objects to a set

• Remove from set if refcount incremented (definitely not
garbage, may be cyclic)

• Large buffer means less tracing work

• Smaller buffer means faster deallocation (more determinism)



Reducing resident set for tracing

• Infant mortality hypothesis:
• Most objects die young
• Not limited to GC environments: motivation for stack vs heap

separation

• Therefore, most GC work is deleting short-lived objects

• How do we optimise the collector for deleting short-lived
objects?



Generational GC

• Partition memory space into multiple regions

• Allocate in the ’young’ region

• Pointers can only point into the same region or an older one
(oversimplification!)

• Incremental collection just needs to run within the young
generation

• Same techniques can be used within a generation as for the
whole address space



Special spaces

Very large objects:

• Typically big arrays

• Bigger than a page

• Expensive to copy, don’t contribute to internal fragmentation

• Allocated from separate heap

Immutable objects

• Constant data (e.g. strings / classes)

• Never deallocated

• Never needs scanning

• Can be memory-mapped file for better swapping

Code!



Thread-local collection

• Thread-local hypothesis:
• Most objects are never reachable from threads other than the

one that created them
• Extension of the infant mortality hypothesis

• Collection within a thread-local generation can be fast (no
synchronisation required)

• Objects must be promoted as soon as they might be
referenced from another thread



Tracking references from the old generation to the new:
Card marking

• Scanning every object is slow (burns cache, memory
bandwidth), most objects are not updated frequently

• Remembered set keeps list of cross-generation pointers

• Card marking can improve update performance
• Create a bitmap that is updated by pointer stores
• Only scan objects indexed by bitmap
• (Note: Naive implementation has really, really bad cache

coherency properties!)



Young generation GC in hardware

• Maxwell project at Sun, 2006

• Young generation is approximately equal to stuff-in-cache

• Make this pairing more explicit

• Run a GC pass on the cache periodically

• Don’t store objects out to main memory if they are not
referenced



Reducing fragmentation: copying collectors

• GCs often make allocation very cheap by using a
bump-the-pointer allocator

• This causes fragmentation

• Defragmenting memory is only possible if you can accurately
identify all pointers to an object

• Fortunately, accurately identifying pointers is what a GC is
designed to do!



Canonical ‘semi-space’ copying GC

• Partition memory space into two regions

• Allocate from one (bump-the-pointer)

• Once it’s full, trace all still-valid objects

• Copy to the other half

• Swap spaces

• In real collectors, this is commonly used for the young
generation



Mark and compact

• Trace objects as in mark-and-sweep collector

• Identify pages with few objects on them

• Move these objects into linear region

• Not useful if relocated objects are often immediately destroyed

• Typically used for old generation collection

• Can run incrementally

• Lots of clever tricks needed for forwarding pointers



Conservative GC

• Treat some memory addresses as ‘might be pointers’

• Don’t deallocate objects if something might point to them

• Requires knowledge of where valid allocations are, for tracing
(don’t follow might-be-valid pointers!)

• Allows GC to be retrofitted to languages

• Can’t do copying / relocating

• Mostly-accurate GCs have some typed memory, can relocate
when all possible pointers are typed



Accurate GC in uncooperative environments

• Often languages that can benefit from GC want to use a
compiler designed for C

• Sometimes using C as an IR

• C compilers do many things that make GC difficult!

Fergus Henderson. 2002. Accurate garbage collection in an
uncooperative environment. In Proceedings of the 3rd
international symposium on Memory management (ISMM ’02).
ACM, New York, NY, USA, 150-156.
http://doi.acm.org/10.1145/512429.512449

http://doi.acm.org/10.1145/512429.512449


Solution: Force a fixed memory layout

• Emit a struct type with all of the variables for a function
• Variables that can be statically proven never to contain

pointers can be normal locals.

• Emit an instance of the struct on the stack

• Create a linked list of such structures with the head in a global

• Emit a function for walking each structure along with each
function

• The C compiler may not modify the layout of the struct



When should you trigger GC?

• A little bit on every allocation?

• When you run out of memory?

• All of the time in the background?

Trade between latency and throughput (and determinism) - no
right answer



When should you trigger GC?

• A little bit on every allocation?

• When you run out of memory?

• All of the time in the background?

Trade between latency and throughput (and determinism) - no
right answer



Stopping the world

You are doing it 
wrong!

• Real-world code
only has one thread
(right?)

• Stopping every
thread to do GC is
fine



Meanings of parallel, concurrent GC

• Marking is done in parallel (fairly easy)

• Collection is done in parallel (also trivial, modulo finalisers)

• Collection is done in parallel with mutators (really hard!)



Problems with concurrent GC: Writes

Mutation can happen in the middle of collection

1. GC sees reference A to object X

2. Mutator updates reference A to object Y

3. Mutator deletes reference B to object Y

4. GC scans reference B, sees no references to object Y, deletes it

5. Reference A is now dangling

6. Ooops!



Problems with concurrent GC: Reads

Relocation can happen in the middle of use

1. Mutator A reads address of object

2. GC begins copying

3. Mutator B reads (new) address of object

4. GC finishes copying

5. Classic data race

Also a problem with zeroing weak references, even without copying
(object must persist after read started)



Solution: barriers

• GC read and write barriers notify the collector of mutations
• Not the same as CPU memory fences!

• Explicit synchronisation on every read / write is very slow!

• Lots of work on making it fast



Azul hardware GC

• Conventional RISC processor with hardware read barrier
(special load instruction)

• Pages are marked as being relocated, triggering traps when
they are read

• Can be emulated on conventional hardware by marking the
page as no-access (requires mapping it with read access
elsewhere for the collector)

• Read barrier trap handler rewrites reference to point to new
address

• Read proceeds correctly after trap handler returns



Avoiding write barriers in the Azul collector (simplified
version)

• Global 1-bit counter indicating collector iteration

• Not-marked-through (NMT) flag on every reference should
match collector iteration

• Read trap on mismatch, mark object as live (flip its bit and
add it to tracing list)

• The clever bit: trap happens when pointer is loaded, not when
pointer is dereferenced.



GC vs the scheduler

• GC threads are intrinsically lower priority than mutator threads

• ...except when memory is very scarce

• Can the scheduler dynamically adjust their priority?

• Ideally, GC should never run for short-lived processes

• When memory is plentiful, exit() is the most efficient GC



GC vs pmap

• GC wants to cheaply identify modified objects

• The MMU provides dirty bits for pages

• Can the OS make them available in a sensible way?

• The OS wants to clear them at a different time to the GC!

• For read barriers, the GC wants a clean interface for mapping
a physical page twice.

• For efficient card marking, per-thread bitmaps would help
(fast TLS at fixed virtual address)



GC vs the pager

• GC is cheaper than swapping (usually)

• Swapping makes GC very slow

• When swapping is required, can the GC identify things
sensible to swap?

• Objects only reachable from sleeping threads?
• Objects that haven’t been touched for a long time?
• Can it combine them in contiguous memory for easy swapping?



GC vs NUMA

• Data on the same memory controller as the thread is good

• The GC can identify data that is reachable from specific
threads

• Can it give the OS hints to move threads or data?



GC vs the network

• Send a request to 100 machines in a datacentre

• One is in a GC pause (very likely!)

• Big latency spike every time

• How do you solve this (hack: explicit GC invokes at specific
times)

• How do you trace objects across distributed object systems?


