Dynamic Dispatch and Duck Typing

L25: Modern Compiler Design

Late Binding

Static dispatch (e.g. C function calls) are jumps to specific
addresses

Object-oriented languages decouple method name from
method address

One name can map to multiple implementations (e.g.
different methods for subclasses)

Destination must be computed somehow

Example: C++

e Mostly static language
e Methods tied to class hierarchy

e Multiple inheritance can combine class hierarchies

class Cls {
virtual void method () ;
};
// object is an instance of Cls or a subclass of
Cls
void function(Cls *object) {
// Will call Cls::method or a subclass
override
object->method () ;

Example: Objective-C

e AoT-compiled dynamic language

e Duck typing

@interface Cls

- (void)method;

Q@end

// object is an instance of any classes

void function(id object) {
// Will call method if object is an instance
// of a class that implements it, otherwise
// will invoke some forwarding mechanism.
[object method];

Example: JavaScript

e Prototype-based dynamic object-oriented language

¢ Objects inherit from other objects (no classes)

e Duck typing

a.method = function() { ... };

// Will call method if b or an object on
// b’s prototype chain provides it. No
// difference between methods and

// instance/ variables: methods are just
// instance variables containing

// closures.

b.method () ;

VTable-based Dispatch

e Tied to class (or interface) hierarchy
e Array of pointers (virtual function table) for method dispatch
e Method name mapped to vtable offset

~

struct Foo {

int x;

virtual void foo();
};
void Foo::foo() {}

void callVirtual (Foo &f) {

f.foo();

}

void create () {
Foo f;

callVirtual (f);

2

Calling the method via the vtable

~

f) uwtable ssp {
Foo*) **x

Itbaa !0
%3 = load void ()struct.Foox*)x*x* %2, align 8
tail call void %3(%struct.Foox*x %f)
ret void

}

N\

define void @_Z11callVirtualR3Foo (%struct.Foo* Y%
%1 = bitcast Y%struct.Foox* %f to void (¥%struct.

%2 = load void (%struct.Foo*)**xx*x %1, align 8,

\S

Call method at index O in vtable.

Creating the object

@_ZTV3Foo = unnamed_addr constant [3 x i8x*] [
i8%* null,
i8% bitcast ({ i8*, i8% }* @_ZTI3Foo to i8%*),
i8* bitcast (void (%struct.Foox)x*
@_ZN3Foo3fooEv to i8x%)]

define linkonce_odr void @_ZN3FooC2Ev (}4struct.
Foo* nocapture %this) {
%1 = getelementptr inbounds Y%struct.Foo* Ythis
, i64 0, i32 O
store i32 (...)** bitcast
(i8*x getelementptr inbounds ([3 x i8*]x*
@_ZTV3Foo, 164 0, i64 2) to 132 (...)*x),
132 (...)**xx Y1

Devirtualisation

Any indirect call prevents inlining
Inlining exposes a lot of later optimisations

If we can prove that there is only one possible callee, we can
inline.

Easy to do in JIT environments where you can deoptimise if
you got it wrong.

Hard to do in static compilation

Problems with VTable-based Dispatch

VTable layout is per-class

Languages with duck typing (e.g. JavaScript, Python,
Objective-C) do not tie dispatch to the class hierarchy

Dynamic languages allow methods to be added / removed
dynamically

Selectors must be more abstract than vtable offsets (e.g.
globally unique integers for method names)

Ordered Dispatch Tables

All methods for a specific class in a sorted list
Binary (or linear) search for lookup
Lots of conditional branches for binary search

Either very big dtables (one entry per class, method pair,
including inherited methods) or multiple searches to look at
superclasses

Cache friendly for small dtables (entire search is in cache)

Expensive to add methods (requires lock / RCU)

Sparse Dispatch Tables

Tree structure, 2-3 pointer accesses + offset calculations
Fast if in cache

Pointer chasing is suboptimal for superscalar chips (inherently
serial)

Copy-on-write tree nodes work well for inheritance, reduce
memory pressure

Inverted Dispatch Tables

Normal dispatch tables are a per-class (or per object) map
from selector to method

Inverted dispatch tables are a per-selector map from class (or
object) to method

If method overriding is rare, this provides smaller maps (but
more of them)

Not common, but useful in languages that encourage shallow
class hierarchies

Lookup Caching

Method lookup can be slow or use a lot of memory (data
cache)

Caching lookups can give a performance boost

Most object-oriented languages have a small number of
classes used per callsite

Have a per-callsite cache

Callsite Categorisation

e Monomorphic: Only one method ever called
e Huge benefit from inline caching
e Polymorphic: A small number of methods called

e Can benefit from simple inline caching, depending on pattern
e Polymorphic inline caching (if sufficiently cheap) helps

e Megamorphic: Lots of different methods called
e Cache usually slows things down

Simple Cache

[object.aMethod(foo);

static struct {
Class cls;
Method method;

} cache = {0, 0};

cache->method = method_lookup(cls,
X

cache->method (object, sel, foo);

.

static Selector sel = compute_selector("aMethod"
)
if (object->isa != cache->cls) {
cache->cls = object->isa

sel);

NS

What's wrong with this approach?

Simple Cache

[object.aMethod(foo);

static struct {
Class cls;
Method method;

} cache = {0, 0};
static Selector sel = compute_selector("aMethod"
)

cache->cls) {
object->isa
method_lookup (cls,

if (object->isa
cache->cls =
cache->method

sel);
}

cache->method (object, foo);

sel,
N\

NS

What's wrong with this approach? Updates? Thread-safety?

Inline caching in JITs

e Cache target can be inserted into the instruction stream
e JIT is responsible for invalidation

e Can require deoptimisation if a function containing the cache
is on the stack

Speculative inlining

e Lookup caching requires a mechanism to check that the
lookup is still valid.

e Why not inline the expected implementation, protected by the
same check?

e Essential for languages like JavaScript (lots of small methods,
expensive lookups)

Inline caching

call lookup_fn bne $cls, $last, fail
nop call method

continue:

e First call to the lookup rewrites the instruction stream

e Check jumps to code that rewrites it back

Variation: Guarded methods

e Specialised version of each method that knows the expected
class

e Jump to the lookup function replaced by call to guarded
method

e Method checks receiver type and tail-calls the lookup function
if it's the wrong type

Polymorphic inline caching

bne $cls, $expected, cls
call method

ret

next:

bne $cls, $expected2, cls
call method

ret

=

NS

e Branch to a jump table

e Jump table has a sequence of tests and calls

e Jump table must grow

e Too many cases can offset the speedup

Trace-based optimisation

Branching is expensive
Dynamic programming languages have lots of method calls
Common hot code paths follow a single path

Chain together basic blocks from different methods into a
trace

Compile with only branches leaving

Contrast: trace vs basic block (single entry point in both,
multiple exit points in a trace)

Prototype-based Languages

o Prototype-based languages (e.g. JavaScript) don't have
classes

e Any object can have methods
e Caching per class is likely to hit a lot more cases than per
object

Hidden Class Transforms

Observation: Most objects don't have methods added to them
after creation

Create a hidden class for every constructor

Also speed up property access by using the class to specify
fixed offsets for common properties

Create a new class whenever a property is added

Difficult problem: Merging identical classes.

Type specialisation

Code paths can be optimised for specific types
For example, elide dynamic lookup

Common case: a+b is much faster if you know a and b are
integers!

Can use static hints, works best with dynamic profiling

Must have fallback for when wrong

Deoptimisation

Disassemble existing stack frame and continue in interpreter /
new JIT'd code

Stack maps allow mapping from register / stack values to IR
values

Fall back to interpreter for new control flow
NOPs provide places to insert new instructions
New code paths can be created on demand

Can be used when caches are invalidated or the first time that
a cold code path is used

LLVM: Anycall calling convention

Used for deoptimisation
All arguments go somewhere
Metadata emitted to find where

Very slow when the call is made, but no impact on register
allocation

Call is a single jump instruction, small instruction cache
footprint

Designed for slow paths, attempts not to impact fast path

Deoptimisation example

JavaScript:

[a = b + c;

Deoptimisable pseudocode:

if (!(is_integer(b) && is_integer(c)))
anycall_interpreter(&a, b, c); // Function
does not return
a = b+tc;

Q”eStions?

«or Fr o«

Q>

