
LLVM IR and Transform Pipeline

L25: Modern Compiler Design

What Is LLVM IR?

• Unlimited Single-Assignment Register machine instruction set

• Strongly typed

• Three common representations:
• Human-readable LLVM assembly (.ll files)
• Dense ‘bitcode’ binary representation (.bc files)
• C++ classes

Unlimited Register Machine?

• Real CPUs have a fixed number of registers

• LLVM IR has an infinite number

• New registers are created to hold the result of every
instruction

• CodeGen’s register allocator determines the mapping from
LLVM registers to physical registers

• Type legalisation maps LLVM types to machine types and so
on (e.g. 128-element float vector to 32 SSE vectors or 16
AVX vectors, 1-bit integers to 32-bit values)

Static Single Assignment

• Registers may be assigned to only once

• Most (imperative) languages allow variables to be... variable

• This requires some effort to support in LLVM IR: SSA
registers are not variables

• SSA form makes dataflow explicit: All consumers of the result
of an instruction read the output register(s)

Multiple Assignment

�
int a = someFunction ();

a++; 	� �
• One variable, assigned to twice.

Translating to LLVM IR

�
%a = call i32 @someFunction ()

%a = add i32 %a, 1 	� �
error: multiple definition of local value named ’a’

%a = add i32 %a, 1

^

Translating to Correct LLVM IR

�
%a = call i32 @someFunction ()

%a2 = add i32 %a, 1 	� �
• Front end must keep track of which register holds the current

value of a at any point in the code

• How do we track the new values?

Translating to LLVM IR The Easy Way

�
; int a

%a = alloca i32 , align 4

; a = someFunction

%0 = call i32 @someFunction ()

store i32 %0, i32* %a

; a++

%1 = load i32* %a

%2 = add i32 %1, 1

store i32 %2, i32* %a 	� �
• Numbered register are allocated automatically

• Each expression in the source is translated without worrying
about data flow

• Memory is not SSA in LLVM

Isn’t That Slow?

• Lots of redundant memory operations

• Stores followed immediately by loads

• The Scalar Replacement of Aggregates (SROA) or mem2reg
pass cleans it up for us�

%0 = call i32 @someFunction ()

%1 = add i32 %0, 1 	� �
Important: SROA only works if the alloca is declared in the

entry block to the function!

Sequences of Instructions

• A sequence of instructions that execute in order is a basic
block

• Basic blocks must end with a terminator

• Terminators are intraprocedural flow control instructions.

• call is not a terminator because execution resumes at the
same place after the call

• invoke is a terminator because flow either continues or
branches to an exception cleanup handler

• This means that even “zero-cost” exceptions can have a cost:
they complicate the control-flow graph (CFG) within a
function and make optimisation harder.

Intraprocedural Flow Control

• Assembly languages typically manage flow control via jumps /
branches (often the same instructions for inter- and
intraprocedural flow)

• LLVM IR has conditional and unconditional branches

• Branch instructions are terminators (they go at the end of a
basic block)

• Basic blocks are branch targets

• You can’t jump into the middle of a basic block (by the
definition of a basic block)

What About Conditionals?

�
int b = 12;

if (a)

b++;

return b; 	� �
• Flow control requires one basic block for each path

• Conditional branches determine which path is taken

‘Phi, my lord, phi!’ - Lady Macbeth, Compiler Developer

• φ nodes are special instructions used in SSA construction

• Their value is determined by the preceding basic block

• φ nodes must come before any non-φ instructions in a basic
block

• In code generation, φ nodes become a requirement for one
basic block to leave a value in a specific register.

• Alternate representation: named parameters to basic blocks
(used in Swift IR)

Easy Translation into LLVM IR

entry:

; int b = 12

%b = alloca i32

store i32 12, i32* %b

; if (a)

%0 = load i32* %a

%cond = icmp ne i32 %0, 0

br i1 %cond , label %then , label %end

then:

; b++

%1 = load i32* %b

%2 = add i32 %1, 1

store i32 %2, i32* %b

br label %end

end:

; return b

%3 = load i32* %b

ret i32 %3

In SSA Form...

entry:

; if (a)

%cond = icmp ne i32 %a, 0

br i1 %cond , label %then , label %end

then:

; b++

%inc = add i32 12, 1

br label %end

end:

; return b

%b.0 = phi i32 [%inc , %then], [12, %entry]

ret i32 %b.0

The output from
the mem2reg pass

In SSA Form...

entry:

; if (a)

%cond = icmp ne i32 %a, 0

br i1 %cond , label %then , label %end

then:

; b++

%inc = add i32 12, 1

br label %end

end:

; return b

%b.0 = phi i32 [%inc , %then], [12, %entry]

ret i32 %b.0

The output from
the mem2reg pass

And After Constant Propagation...

entry:

; if (a)

%cond = icmp ne i32 %a, 0

br i1 %cond , label %then , label %end

then:

br label %end

end:

; b++

; return b

%b.0 = phi i32 [13, %then], [12, %entry]

ret i32 %b.0

The output from the
constprop pass. No add
instruction.

And After CFG Simplification...

entry:

%tobool = icmp ne i32 %a, 0

%0 = select i1 %tobool , i32 13, i32 12

ret i32 %0

• Output from the simplifycfg pass

• No flow control in the IR, just a select instruction

Why Select?

x86:

testl %edi, %edi

setne %al

movzbl %al, %eax

orl $12, %eax

ret

ARM:

mov r1, r0

mov r0, #12

cmp r1, #0

movne r0, #13

mov pc, lr

PowerPC:

cmplwi 0, 3, 0

beq 0, .LBB0_2

li 3, 13

blr

.LBB0_2:

li 3, 12

blr

Branch is only needed on some architectures.

Would a predicated add instruction be better on ARM?

Why Select?

x86:

testl %edi, %edi

setne %al

movzbl %al, %eax

orl $12, %eax

ret

ARM:

mov r1, r0

mov r0, #12

cmp r1, #0

movne r0, #13

mov pc, lr

PowerPC:

cmplwi 0, 3, 0

beq 0, .LBB0_2

li 3, 13

blr

.LBB0_2:

li 3, 12

blr

Branch is only needed on some architectures.
Would a predicated add instruction be better on ARM?

Canonical Form

• LLVM IR has a notion of canonical form

• High-level have a single canonical representation

• For example, loops:
• Have a single entry block
• Have a single back branch to the start of the entry block
• Have induction variables in a specific form

• Some passes generate canonical form from non-canonical
versions commonly generated by front ends

• All other passes can expect canonical form as input

Functions

• LLVM functions contain at least one basic block

• Arguments are registers and are explicitly typed

• Registers are valid only within a function scope�
@hello = private constant [13 x i8] c"Hello

world !\00"

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [13 x i8]* @hello , i32 0,

i32 0

call i32 @puts(i8* %0)

ret i32 0

} 	� �

Get Element Pointer?

• Often shortened to GEP (in code as well as documentation)

• Represents pointer arithmetic

• Translated to complex addressing modes for the CPU

• Also useful for alias analysis: result of a GEP is the same
object as the original pointer (or undefined)

In modern LLVM IR, on the way to typeless pointers, GEP
instructions carry the pointee type. For brevity, we’ll use the old

form in the slides.

F!@£ing GEPs! HOW DO THEY WORK?!?�
struct a {

int c;

int b[128];

} a;

int get(int i) { return a.b[i]; } 	� �

�
%struct.a = type { i32 , [128 x i32] }

@a = common global %struct.a zeroinitializer ,

align 4

define i32 @get(i32 %i) {

entry:

%arrayidx = getelementptr inbounds %struct.a*

@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx

ret i32 %0

} 	� �

F!@£ing GEPs! HOW DO THEY WORK?!?�
struct a {

int c;

int b[128];

} a;

int get(int i) { return a.b[i]; } 	� ��
%struct.a = type { i32 , [128 x i32] }

@a = common global %struct.a zeroinitializer ,

align 4

define i32 @get(i32 %i) {

entry:

%arrayidx = getelementptr inbounds %struct.a*

@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx

ret i32 %0

} 	� �

As x86 Assembly

�
define i32 @get(i32 %i) {

entry:

%arrayidx = getelementptr inbounds %struct.a*

@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx

ret i32 %0

} 	� �
get:

movl 4(%esp), %eax # load parameter

movl a+4(,%eax,4), %eax # GEP + load

ret

As ARM Assembly�
define i32 @get(i32 %i) {

entry:

%arrayidx = getelementptr inbounds %struct.a*

@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx

ret i32 %0

} 	� �
get:

ldr r1, .LCPI0_0 // Load global address

add r0, r1, r0, lsl #2 // GEP

ldr r0, [r0, #4] // load return value

bx lr

.LCPI0_0:

.long a

How Does LLVM IR Become Native Code?

• Transformed to directed acyclic graph representation
(SelectionDAG)

• Mapped to instructions (Machine IR)

• Streamed to assembly or object code writer

Selection DAG

• DAG defining operations and dependencies

• Legalisation phase lowers IR types to target types
• Arbitrary-sized vectors to fixed-size
• Float to integer and softfloat library calls
• And so on

• DAG-to-DAG transforms simplify structure

• Code is still (more or less) architecture independent at this
point

• Some peephole optimisations happen here

dag-combine2 input for main:entry

EntryToken [ID=0]
0x7fae33c1a870

ch

TargetConstant<0> [ID=2]
0x7fae34071260

i64

Constant<0> [ID=3]
0x7fae340714c0

i8

Register %RDI [ID=4]
0x7fae340715f0

i64

Register %AL [ID=5]
0x7fae34071850

i8

TargetGlobalAddress<i32 (i8*, ...)* @printf> 0 [ORD=2] [ID=6]
0x7fae34071ab0

i64

RegisterMask [ID=7]
0x7fae34071be0

Untyped

Register %EAX [ID=8]
0x7fae34800000

i32

Constant<0> [ID=9]
0x7fae34800260

i32

TargetConstant<0> [ID=10]
0x7fae34800390

i16

0 1
callseq_start [ORD=2] [ID=11]

0x7fae34071390
ch glue

0 1 2
CopyToReg [ORD=2] [ID=12]

0x7fae34071720
ch glue

0
X86ISD::WrapperRIP [ORD=2]

0x7fae34800720
i64

TargetGlobalAddress<[13 x i8]* @.str> 0 [ORD=2]
0x7fae34071000

i64

0 1 2 3
CopyToReg [ORD=2] [ID=13]

0x7fae34071980
ch glue

0 1 2 3 4 5
X86ISD::CALL [ORD=2] [ID=14]

0x7fae34071d10
ch glue

0 1 2 3
callseq_end [ORD=2] [ID=15]

0x7fae34071e40
ch glue

0 1 2
CopyFromReg [ORD=2] [ID=16]

0x7fae34800130
i32 ch glue

0 1 2
CopyToReg [ORD=3] [ID=17]

0x7fae348004c0
ch glue

0 1 2 3
X86ISD::RET_FLAG [ORD=3] [ID=18]

0x7fae348005f0
ch

GraphRoot

Instruction Selection

• Pattern matching engine maps subtrees to instructions and
pseudo-ops

• Generates another SSA form: Machine IR (MIR)

• Real machine instructions

• Some (target-specific) pseudo instructions

• Mix of virtual and physical registers

• Low-level optimisations can happen here

Register allocation

• Maps virtual registers to physical registers

• Adds stack spills / reloads as required

• Can reorder instructions, with some constraints

MC Streamer

• Class with assembler-like interface

• Emits one of:
• Textual assembly
• Object code file (ELF, Mach-O, COFF)
• In-memory instruction stream

• All generated from the same instruction definitions

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler

