Interactive Formal Verification

Lawrence C Paulson
Computer Laboratory
University of Cambridge

This lecture course introduces interactive formal proof using Isabelle.The lecture notes
consist of copies of the slides, some of which have brief remarks attached. Isabelle
documentation can be found on the Internet at the URL http://www.cl.cam.ac.uk/research/
hvg/Isabelle/documentation.html. The most important single manual is the Tutorial on Isabelle/
HOL. Reading the Tutorial is an excellent way of learning Isabelle in depth. However, the
Tutorial is very long and a little outdated; although its details remain correct, it presents a
style of proof that has become increasingly obsolete with the advent of structured proofs
and ever greater automation. These lecture notes take a very different approach and refer
you to specific sections of the Tutorial that are particularly appropriate.

Tobias Nipkow has just written a new tutorial entitled Programming and Proving in Isabelle/
HOL. It is much shorter than the original Tutorial,and much more up-to-date. If you would like
to read a tutorial from cover to cover, this is the one to read.

The other tutorials listed on the documentation page are mainly for advanced users.

Interactive Formal Verification
| : Introduction

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Motivation

e Complex systems almost inevitably contain bugs.

® Debugging suffers from diminishing returns. Many
critical bugs are never fixed!

® Critical systems (avionics, ...) are required to meet
a standard of 10 failures per hour. Testing to such
a standard is infeasible.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

What is Interactive Proof?

® Work in a logical formalism
¢ with precise definitions of concepts
¢ and a formal deductive system

e Construct hierarchies of definitions and proofs
¢ libraries of formal mathematics

¢ specifications of components and properties

Interactive Theorem Provers

® Based on higher-order logic
* |sabelle, HOL (many versions), PVS
® Based on constructive type theory
¢ Coq,Twelf,Agda, ...
® Based on first-order logic with recursion

e ACL2

Here are some useful web links:

Isabelle: http://www.cl.cam.ac.uk/research/hvg/
Isabelle/

HOL4: http://hol.sourceforge.net/

HOL Light: http://www.cl.cam.ac.uk/~jrh13/hol-
light/

PVS: http://pvs.csl.sri.com/

Coq: http://coqg.inria.fr/

ACL2: http://www.cs.utexas.edu/users/moore/acl2/

The LCF Architecture

® A small kernel implements the logic and can
generate theorems.

® All specification methods and automatic proof
procedures expand to full proofs.

e Unsoundness is less likely with this architecture

e ... but the implementation is more complicated, and
performance can suffer.

® Used in Isabelle, HOL, Coq but not PVS or ACL2.

Theorem Provers: Key Features

® Logical formalism (higher-order, type theory etc.)
e Control issues:

¢ User interface / Proof language

¢ Automation
e Libraries of formalised mathematics

e Tools: typesetting, library search and more!

Isabelle

Isabelle is a generic interactive theorem prover,
developed by Lawrence Paulson (Cambridge) and
Tobias Nipkow (Munich). First release in 1986.

Integrated tool support for

* Automated provers

¢ Counter-example finding

¢ Code generation from logical terms

¢ LaTeX document generation

Higher-Order Logic

First-order logic extended with functions and sets
Polymorphic types, including a type of truth values
No distinction between terms and formulas

ML-style functional programming

“HOL = functional programming + logic”

Basic Syntax of Formulas

formulas A, B, ... can be written in ASCII| as

(A) t=u ~A
A&B A|B A-->B
A<->B Ix.A ’x. A

(Among many others)

Isabelle also supports symbols such as
SZFAV VI

See the Tutorial, section 1.3: “Types, terms and formulae”.
The ASCII notation for logical symbols can be used to input
them to Isabelle, which will offer to replace them by special
symbols.

See the Tutorial, section 1.3: “Types, terms and formulae”

Some Syntactic Conventions

In vx. A A B, the quantifier spans the entire formula
Parentheses are required in A A (Vx y. B)

Binary logical connectives associate to the right:
A— B = Cis the sameas A— (B = ()

“AAB=CvDisthesameas ("A)A(B=C))vD

See the Tutorial, section 1.3: “Types, terms and formulae”

Basic Syntax of Terms

® The typed A-calculus:
® constants, c
e variables, x and flexible variables, 7x
* abstractions Ax. t
¢ function applications t u

® Numerous infix operators and binding operators
for arithmetic, set theory, etc.

Types

e Every term has a type; Isabelle infers the types of
terms automatically.We write ¢ :: 7

e Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

® A formula is simply a term of type bool.
e There are types of ordered pairs and functions.

e Other important types are those of the natural
numbers (nat) and integers (int).

Product Types for Pairs

e (x1, x2) has type 71 x 72 provided x; :: @
o(x1, .., Xn1, Xn) abbreviates (xi, .., (xn-1, X1))

* Extensible record types can also be defined.

Function Types

® Infix operators are curried functions

e + :: nat => nat => nat
e & :: bool => bool => bool
¢ Curried function notation: Ax y. ¢

e Function arguments can be paired

e Example:nat*nat => nat

* Paired function notation: A(x,y). ¢

Arithmetic Types

e nat:the natural numbers (nonnegative integers)

¢ inductively defined: @, Suc n

* operators include + - * div mod

* relations include < < dvd (divisibility)
® int:the integers,with + - * div mod ...

e rat,real: + - * / sin cos 1n..

e arithmetic constants and laws for these types

Only integer constants are available. Traditional notation for
floating point numbers would be inappropriate, but rational
numbers can be expressed.

HOL as a Functional Language

recursive data type of lists

datatype ’a list = Nil | Coms ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
app Nil ys = ys"
| "app (Cons x xs) ys = Cons x (app xs ys)"

fun re where

rev Nil = Nil"
| "rey (Gons x xs) = app (rev xs) (Cons x Nil)"

recursive functions

(types can be inferred)

Recursive data types can be defined as in ML, although with
somewhat less generality. Recursive functions can also be
declared, provided Isabelle can establish their termination; all
functions in higher-order logic are total. Naturally terminating
recursive definitions pose no difficulties for Isabelle. In
complicated situations, it is possible to give a hint.

Proof by Induction

declaring a lemma

use it to simplify other formulas

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

two steps: induction followed
by automation

end of proof

Example of a Structured Proof

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
® base case and inductive show "app Nil Nil = Nil"
step can be proved nextby auto
explicitly case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
® |nvaluable for proofs by auto
that need intricate qed

manipulation of facts

Interactive Formal Verification
2:lsabelle Theories

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Formal Theories

e Collections of specifications: types, constants,
functions, sets and relations. ..

® even axioms occasionally, but it is safer to define
explicit models satisfying desired properties.

Axiom systems are frequently inconsistent!

® Theories can specify mathematics, formal models
or abstract implementations.

name of the

srem ATiny Theory

theory BT imports Main begin

datatype 'a bt = the theory it builds upon

| Br 'a "'abt" "'abt" :
DU dcclarations of types,
fun reflect :: "'a bt => 'a bt" where constants, etc
"reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"

apply (induct t)
apply auto -
done proving a theorem

end

See the Tutorial, section 1.2 (Theories)
and 2.1 (An Introductory Theory).

Notes on Theory Structure

e A theory can import any existing theories.

e Types, constants and functions must be declared
before use.

® The various declarations and proofs may
otherwise appear in any order.

® Many declarations can be confined to local
scopes, which can be nested.

o A finished theory can be imported by others.

Some Fancy Type Declarations

typedecl lo --"an unspecified type of locations"

type_synonym val = nat --"values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" --"Tfunctions on states"
datatype concrete syntax for commands
com = SKIP
| Assign loc aexp ("_ _ " 60)
| semi com com ("_; _" [60, 60] 10)
Cond bexp com com ("IF _ THEN _ ELSE _" 60)
While bexp com ("WHILE _ DO _" 60)

recursive type of commands

See the tutorial, section 2.5.
Notes on Type Declarations

® Type synonyms merely introduce abbreviations.

® Recursive data types are less general than in
functional programming languages:

* No recursion into the domain of a function.
* Mutually recursive definitions can be tricky.

® Recursive types are equipped with proof
methods for induction and case analysis.

Basic Constant Definitions

000 o Defthy
De.thy (~/Dropbox/ACS/2 - Isabelle Theories)
~ |theory Def imports Main begin a
~ |definition square :: "nat => nat" where g
“square n = n*n" I i
o|definition prime :: "nat => bool" where .
“prime(p::nat) = (L<p A (mdvdp — m=1vm=p))" g
definition prime :: "nat => bool" where H
“prime p= (L<p A (¥n. mdvd p — m =1V m=p))"
™ Auto update | _Update Detach | [100%
Extra variables on rhs: "m"
The error(s) above occurred in definition:
“prime p=1<p A (mdvdp —m=1vm=p)"
@ v rind | Output | Sledgehammer Symbols
5.10188/289 sabellesidekick UTF-8-Isabelle). - UGHG0/398M8_13:19
"

The second one contains an error, which is corrected in the
third example.

See the Tutorial, Section 2.7.2 Constant Definitions.

Notes on Constant Definitions

e Basic definitions are not recursive.

e Every variable on the right-hand side must also
appear on the left.

® |n proofs, definitions are not expanded by
default!

¢ Defining the constant C to denote t yields the
theorem C_def, asserting C=t.

¢ Abbreviations can be declared through a
separate mechanism.

Extended Example: Lists

® We illustrate data types and functions using a
reduced Isabelle theory (one without lists).

® The standard Isabelle environment has a
comprehensive list library:

¢ Functions # (cons), @ (append), map, filter,

nth, take, drop, takeWhile, dropWhile,...

e Cases:(case xs of [] =[] | x#xs = ...)

e Over 600 theorems!

List Induction Principle

To show (xs), it suffices to show the base case and
inductive step:

« @(Nil)
* (xs) = @(Cons(x,xs))
The principle of case analysis is similar, expressing

that any list has one of the forms Nil or Cons(x,xs)
(for some x and xs).

Isabelle/jEdit

800 & Demolist.thy ol
DemoListhy (~/Dropbex/ACS/1 - Inroduction)) :
theory DemoList imports Datatype FunDef (*not Main, because lists are bui
begin

datatype 'a list = Nil | Cons 'a "'a list" |

fun app :: "'a list => 'a list => 'a list" where
"app Nil ys = ys"
| "app (Cons x xs) ys = Cons x (app xs ys)"

<

lemma [simp]: "app xs Nil = xs'[]

apply (induct xs) panels for output,
apply auto

documentation,
symbols, navagation...

proof (prove): step 0

goal (1 subgoal):
1. app xs Nil = xs

© ~ Find | Output | Siedgehammer ~Symbols.
1032 278/1782) Gsabelle,sidekick UTF-8-Isabelle) - UGHED/403MB 17.18

Isabelle’s user interface is the work of Makarius
Wenzel. The entire proof document is processed as far
as possible, errors and all.

Isabelle/jEdit allows inspection of proof states and the
declarations of identifiers, symbols and even Isabelle
keywords.

All documentation is accessible from the sidebar.

Launch using the command “isabelle jedit FILENAME”

Proof by Induction

eoce & Demolist.thy

IE®@E &9 ¢: DB B& 0O B X & @:€»

0 Demolist.thy (~/Dropbox/Teach/ACS/1 - Introduction/) B
theory DemoList imports Sledgehammer (*not Main, because lists are built-in*)
begin

datatype 'a list = Nil | Cons 'a "'a list"

o [fun app :: "'a list => 'a list => 'a list" where
"app Nil ys = ys"
| "app (Cons x xs) ys = Cons x (app xs ys)*

structural induction

on the list xs

apply [finduct xs)[f

© [lemma [simp]: "app xs Nil = xs"
{ apply auto

BuwiL s3u0aYL DPDPIS UoREAWNG (B

@ autou v oo
base case and
proof (prove) : o
goal (2 subgoals): inductive step
1. app Nil Nil = Nil
2. Ax1 xs. app xs Nil = xs = app (Cons x1 xs) Nil = Cons x1 xs

B8 ~ Output Query Sledgehammer State Symbols induction hYPOthESiS

11,20 (295/1704) (isabelle,isabelle,UTF-8-Isabelle) UG EEEI94MB 15:17
—

See the tutorial, section 2.3 (An Introductory Proof). For
the moment, there is no important difference between
induct_tac (used in the tutorial) and induct (used
above). With both of these proof methods, you name an
induction variable and it selects the corresponding
structural induction rule, based on that variable’s type.
It then produces an instance of induction sufficient to
prove the property in question.

Finishing a Proof

ece & DemoListthy

IE®@E & 9¢ X0 @ - BEE B & @ |€»

) DemoList.thy (~/Dropbox/Teach/ACS/1 - Introduction/)
datatype 'a list = Nil | Cons 'a "'a list" o
fun app :: "'a list => 'a list => 'a list" where 2

"app Nil ys = ys" g

| "app (Cons x xs) ys = Cons x (app xs ys)" g
-

lemma [simpl: "app xs Nil = xs" :
apply (induct xs) g
apply auto]l proves both subgoals z
done o
=l

i

. . “ " 2

o [fun rev where We must still issue “done &
El

to register the theorem . v e) g

proof (prove)
goal:
No subgoals!

B v Output Query Sledgehammer State Symbols

12,13 (308/1704) (isabelle,isabelle,UTF-8-Isabelle) UG I

By default, Isabelle simplifies applications of recursive
functions that match their defining recursion
equations. This is quite different to the treatment of
non-recursive definitions.

Another Proof Attempt

eoe & DemoList.thy

IE®d@E S 9 X0 @ 0 B & @«

0 Demoist.thy (~/Dropbox/Teach/ACS/1 - Introduction/) B
done

fun rev where list reversal function ||

“rev Nil = Nil"
| “rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma rev_rev: "rev (rev xs) = xs"
apply [(induct xs)|

apply auto
©| done w

v o100% v

Buiwil S2u0UL IPRPIS UORRAWNG 4 B

proof (prove)

goal (2 subgoals):

1. rev (rev Nil) = Nil
2. Ax1 xs. rev (rev xs) = xs = rev (rev (Cons x1 xs)) = Cons x1 xs

B v Output Query Sledgehammer State Symbols
20,20 (453/1780) Input/output complete (isabelle,isabelle,UTF-8-Isabelle) UG [EED5/ 1172M8 15:23

Stuck!

e0e & Demolist.thy
IEdE & %9¢ XDE B 0S8 BX & @ |€»

O Demolist.thy (~/Dropbox/Teach/ACS/1 - Introduction/)

done

fun rev where
“rev Nil = Nil"
| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma rev_rev: "rev (rev xs) = xs"
apply (induct xs)
apply autof]
@| done

auto made progress

<

8 Auto update |_Update but didn’t finish

Buiwiy S203L DPPRPIS UonEWAWNYG |

proof (prove)
goal (1 subgoal):
1. AL xs. rev (rev xs) = xs = rev (app (rev xs) (Cons x1 Nil)) = Cons x1 xs

looks like we need a lemma
relating rev and app!

@ ~ Output Query Sledgehammer State Symbols

21,13 (466/1780) Input/output complete (isabelle,isabelle,UTF-8-Isabelle)

It isn’t clear how to continue, but it is clear that we
should be able to do something with terms of the form
rev (app xs ys).

Stuck Again!

eoce DemoList.thy
Ie8dE & $¢ Xph @ " 8EE BX & © |€»
1 Demoist.thy (~/Dropbox/Teach/ACS/1 - Introduction/)
& |fun rev where o
“rev Nil = Nil" <
| "rev (Cons x xs) = app (rev xs) (Cons x Nil)" -
© |lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto 2
o| d £
fons we dreamt up a lemma... £
g
©@|lemma rev_rev: "rev (rev xs) = xs"

‘ apply (induct xs)

But it needs

Auto update | Update

proof (prove)
goal (1 subgoal):

lemma!

anagher

3

© 1. Axl xs.
{ rev (app xs ys) = app (rev ys) (rev xs) =
app (app (rev ys) {rev xsJ) [Cons X1 Nil) = app (rev ys) (app {re

B v Output Query Sledgehammer State Symbols

23,1 (495/1877) Input/output complete (isabelle,isabelle,UTF-8-Isabelle)

%s) (Cons xI'Nil}))

UG IEEIL 172M8 15:30
——

The subgoal that we cannot prove looks complicated.
But when we notice the repeated terms, we see that it
is an instance of something simple: the associativity of
the function app. This fact does not involve the
function rev! We see in this example how crucial it is to
prove properties in the most abstract and general form.

The Final Piece of the Jigs

e0e & DemolList.thy

DEd@E: &9 ¢ XD RB@ T DEE B & @ |€»

) DemoList.thy (~/Dropbox /Teach/ACS/1 - Introduction/)

4 |fun rev where
I "rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply [(linduct xs)f|
apply auto
done

lemma [simp]l: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)

@ Auto update _ Update Locate | Search

proof (prove)
goal (2 subgoals):
1. app (app Nil ys) zs = app Nil (app ys zs)
5 2. Ax1 xs.
app (app xs ys) zs = app xs (app ys zs) =
app (app (Cons x1 xs) ys) zs = app (Cons x1 xs) (app ys zs)

@ ~ Output Query Sledgehammer State Symbols

20,20 (474/1704) (isabelle,isabelle,UTF-8-Isabelle)

aw

v 100% v

BuwiL Sau0aYL OPDEPIS UonEBWNG (B

UG [ETETERERMB 15:37
el

This proof of associativity will be successful, and with
its help, the other lemmas are easily proved.

The Finished Proof

eoe & DemoList.thy
D@dE & 9 D0 R EEE B & @ |€»

0 DemoList.thy (~/Dropbox/Teach/ACS/1 - Introduction/)

fun rev where
“rev Nil = Nil®
| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

© |lemma [simp]l: "app (app xs ys) zs = app xs (app ys zs)"
apply [finduct xs)|

apply auto

done

© |lemma [simp]l: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)

apply auto

done

@ |lemma rev_rev: "rev (rev xs) = xs"
apply (induct xs)

apply auto

done

© v Output Query Sledgehammer State Symbols

20,20 (474/1704) (isabelle,isabelle,UTF-8-Isabelle)

bunwil seuosul PPPEPIS uonewawN0d (@

UG EESNENEEMS 15:37
R

The lemmas must be proved in the correct order. Each
is needed to prove the next.

It is actually more usable to give each lemma a name
and to supply the relevant names to auto. The two
lemmas proved above, especially the associativity of
append, do not look like they would always be useful in
simplification, so normally they would be proved
without the [simp] attribute.

Interactive Formal Verification
3: Elementary Proof

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Elements of Interactive Proof

® Quite a few theorems can ® Simplification typically
be proved by a refers to rewriting
combination of induction according to the definition
and simplification. of a recursive function...
® Induction can be a e but it has many
straightforward structural refinements, including
induction rule derived from automatic case splitting,
a type declaration, but simple logical reasoning
other induction rules are and arithmetic reasoning.

quite specialised.

See the Tutorial, 2.3 An Introductory Proof. The list of
subgoals is always flat. However, Isabelle supports

GO&IS and Subgoals structured proofs and they are covered later in the

course.

® We start with a goal: the statement to be proved.

® Proof tactics and methods typically replace a single
subgoal by zero or more new subgoals.

e [But certain methods, notably auto and
simp_all, operate on all outstanding subgoals.]

® When no subgoals remain, the theorem is proved!

Structure of a Subgoal

800 © BT.thy o
) BT.thy -/ Dropbox/ACS/2 - Isabelle Theories/)
|~ |datatype 'a bt =
Lf

| Br 'a "'a bt "'abt"

~ |fun reflect :: "'a bt => 'a bt" where
"reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

= |lemma reflect reflect ident: "reflect (reflect t) = t"

apply [(induct)[]
apply auto

assumptions (two 1

induction hypotheses)

@ Auto update [Update | [Detach | [100% + e Haskabed

a

1. reflect (reflect Lf) = Lf R onoomee

v\z\/\i t1 t2. README.
eflect (reflect t1) = t1 —»

€flect (reflect t2) = t2 —

reflect (reflect (Br a t1 t2)) = Br a tl t2

mmer ~ Symbols

UGINES3M8 1841

parameters (arbitrary
local variables)

conclusion

Proof by Rewriting

app (Cons ?x ?xs) ?ys=pCons ?x (app ?Xs ?ys)
rev (Cons ?x ?xs) app (rev ?xs) (Cons ?x Nil)
rev (app xs ys)

app (rev ys) (rev xs) % ;
app (app ?xs ?ys) ?zs=papp ?xs (app ?ys ?zs) induction hyp
(for fixed xs, ys)
lemma about app
rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

recursive defs

rev (app (Cons a xs) ys) =

rev (Cons a (app Xs ys)) =

app (rev (app xs ys)) (Cons a Nil) =

app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))

At each step, the highlighted term is rewritten to something
else. Eventually, the left hand side and right hand side of the
desired equation have become equal. (This equation is the
induction step for our lemma, rev (app xs ys) = app (rev ys)
(rev xs).)

The equalities on the slide are fully general with the
exception of the third one, which (being an induction
hypothesis) holds only for a fixed value of xs. Here we
indicate the generality of each variable using ?-notation, as
follows:

app (Cons ?x ?xs) ?ys = Cons ?x (app ?Xs ?ys)
rev (Cons ?x ?xs) = app (rev ?xs) (Cons ?x Nil)
rev (app xs ?ys) = app (rev ?ys) (rev xs)

app (app ?xs ?ys) ?zs = app ?xs (app ?ys ?zs)

An identifier preceded by ? is a true variable and can be
substituted by any term, while the other identifiers are fixed.

Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a*b=0)=(a=0vVvb=029)
(A-BESC)=(ASBuUC
(a*c < b*c) = ((B<c @ a £ b) A (c<@ = b £ a))

introduces a case split

on the sign of ¢

(g}

® Logical equivalencies are just boolean equations.
® They give a clear, simple proof style.

® They can also be written with the syntax P < Q.

Automatic Case Splitting

Simplification will replace
P(if b then x else y)
by
(b = P(x)) A (70 = P(y))

* By default, this only happens when simplifying the
conclusion. But assumptions can also be split.

* Other kinds of case splitting can be enabled.

See the Tutorial, 3.1.9 Automatic Case Splits

Conditional Rewrite Rules

xs # [] = hd (xs @ ys) = hd xs
n<m= (Suc m) - n=Suc (m-n)
[l]az®@; bzo|]] =>b/ (a*b) =1/ a

® first match the left-hand side, then recursively
prove the conditions by simplification.

® |f successful, applying the resulting rewrite rule.

Termination Issues

® looping: f(x) = h(g(x)), g(x) = f(x+2)
® [ooping:P(x) = x=0
e simp will try to use this rule to simplify its own
precondition!
® Xx+y = y+X is actually okay!

* Permutative rewrite rules are applied but only if
they make the term “lexicographically smaller”.

The Methods simp and auto

e simp performs rewriting (along with simple
arithmetic simplification) on the first subgoal

® auto simplifies all subgoals, not just the first.

e auto also applies all obvious logical steps

¢ Splitting conjunctive goals and disjunctive
assumptions

¢ Performing obvious quantifier removal

See the Tutorial, 3.1 Simplification. This section
describes the options and possibilities thoroughly.

Variations on simp and auto
omitting a certain rule

simp add: 3pp _alssoc

simp del: rev_rev (no_asm_simp)

simp (no_asm) not simplifying the

assumptions
simp_all (no gasm_simp) add: .. del: ..
auto simp\add: .\del: ..

ignoring all assumptions

do simp for all subgoals

auto with options

Rules for Arithmetic

An identifier can denote a list of lemmas.

® add_ac and mult_ac:associative/commutative
properties of addition and multiplication

e algebra_simps: useful for multiplying out
polynomials

field_simps: useful for multiplying out the
denominators when proving inequalities

Example: auto simp add: field_simps

These identifiers denote lists of theorems that work
together well as rewrite rules for performing various
simplification tasks.

Basics of Proof by Induction

e State the desired theorem using “lemma”, with its
name and optionally [simp]

o |dentify the induction variable

¢ Its type should be some datatype (incl. nat)

¢ |t should appear as the argument of a recursive
function.

e Complicating issues include unusual recursions
and auxiliary variables.

Completing the Proof

e Apply “induction” with the chosen variable.

® The first subgoal will be the base case, and it
should be trivial using“simp”.

e Other subgoals will involve induction hypotheses
and the proof of each may require several steps.

® Naturally, the first thing to try is “auto”, but much
more is possible.

Basics of Isabelle/jEdit

® Based on the jEdit text editor.

® |[sabelle automatically processes the entire visible
window, errors and all, using parallel threads.

® |dentifiers and other elements can be inspected
using hover-click.

e Dockable panels give access to the Isabelle output,
theory structure, manuals, symbols, etc.

AView of Isabelle/jEdit

800

& Primrecithy

[0 Primrec.thy

more panels

<

"ack @ n = Suc n"
| "ack (Suc m) @ = ack m 1"

apply auto

proof (prove): step 1

goal (3 subgoals):
1. An. n<ack@n

- 3. Ann.
n < ack (Suc m) n =

B v Find | Output | Sledgehammer ~Symbols
(438/8062)

fun ack :: "nat => nat => nat" wher|

lenma less_ack2 [iffl: "j < ack i j*
apply (induct i j rule: ack.induct)

out

subsection{* Ackermann's Function * documentation

| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

free variable

@ Auto update | Update | | Detach
t panel

2. Am. 1 <ack m 1 == 0 < ack (Suc m) ©

100%

" system: The lsabelle
Jedit: tsabele/jEdt

S0RL PDPPIS UOREIBWINGG |

@ Haskabele
haskabelle: Haskabell
@8 Release notes
 ANNOUNCE
README
NEwS
 COPYRIGHT
| CONTRIBUTORS

Interactive Formal Verification
4: Advanced Recursion,
Induction and Simplification

Lawrence C Paulson

Computer Laboratory
University of Cambridge

Why does Induction Fail?

In a formal proof—like in a
rogram—even trivial .
prog is too weak, so the

errqrs can be fatal. induction hypothesis is too
Everything must be set up weak.

exactly right...

® The statement being proved

® You have chosen an
inappropriate induction
rule.

® Or maybe you just don’t
know how to make use of
the induction hypotheses.

May as well
give up!

A Failing Proof by Induction

800
© DemoList.thy (~/Dropbox/ACS/ 1 - Introduction/)

length of a list
(tail-recursive)

fun itlen :: "'a list => na
"itlen Nil n = n"

[LS cquivalent to the built-
lenma “itlen xs n = size xs + n* in length function?
apply (induct xs)

apply autd[]
oops

Sawoaul pppPIS uonmwAWn0d 4 @

 Avto update [Update | [Deach | [100x v
roof (prove): step 2
oal (1 subgoal):
1. Axs. itlen xs n = size xs + n = itlen xs (Suc n) = Suc (size xs + n)

Mismatch between induction
hypothesis and conclusion!

8 v find | Output | Symbol

F-g-sabelle) - UGHIEE/427M8 1344

43.13 (848/1786)

Generalising the Induction

®00 + DemoListthy (modified)
5 DemoList.thy (~/Dropbox/ACS/ 1 - Introduction))

o
I PR Insert a universal g
“itlen Nil n = n"| quantiﬂer ;_
| "itlen (Cons yAGl g
[~ [tenma "vn. itlen xs n = size xs + n" 2
apply (induct xs) 2
apply auto -
done H
Induction hypothesis SRSl
holds for all n
goal (2 subgoals):
1. ¥n. itlen Nil n = _siz€ Nil + n
* 2. Aa xs.
¥n. itlen xs n = size xs + n =
¥n. itlen (Cons a xs) n = size (Cons a xs) + n
@~ rind | upit] Symbols
42,20 (839/1789) (isabelle,sidekick UTF-8-lsabelle) UGHEE/419M8 13.46

The need to generalise the induction formula in order
to obtain a more general induction hypothesis Is well
known from mathematics. Logically, note that the
induction formula above has only one free variable: xs.
The induction formula on the previous slide has two
free variables: xs and n.

Generalising: A Better Way

e00 - DemoList.thy (modified) o
2 DemoList.thy (~/Dropbox/ACS/ 1 - Introduction)) :

- |fun itlen :: "'a list => nat => nat" whe
"itlen Nil n = n"

| "itlen (Cons x xs) n = itlen xs (Suc n) as “arbitrary"

~ [temma "itlen xs n = size xs + n*
apply [(induct xs arbitrary: n)[]

Designate a variable

Swoaul ppREPIS uommwAWN0a 4 @

apply auto
done
Induction hypothesis giETali
! (Prome i 8 still holds for all n!

goal (2 subgoals):
1. An. itlen Nid"T = size Nil + n
~ 2. Aa xs nf
(An. itlen xs n = size xs + n) = itlen (Cons a xs) n = size (Cons a xs) + n

© v Find | Output | Symbols
42.33 (848/1708) sabelle,sidekick UTF-8-Isabelle) - UCHEEIE 19M8 1347

The approach described above is logically similar to the
one on the previous slide, but it avoids the use of a
universal quantifier (v) in the theorem statement.
Because Isabelle is a logical framework, it has meta-
level versions of the universal quantifier and the
implication symbol, and we generally avoid universal
guantifiers in theorems. But it is important to
remember that behind the convenience of the method
illustrated here is a straightforward use of logic: we are
still generalising induction formula. For more
complicated examples, see the Tutorial, 9.2.1
Massaging the Proposition.

Unusual Recursions

5 Primrec.thy

Two variables in gk

, g Two variables in
the induction! /G

the recursion!

A special induction rule!
ff]:

i
apply (induct i j rule: ack.induct)

The subgoals follow:
the recursion!

proof (prove): step 1

goal (3 subgoals):

1. An. n<ack @n

2. Am. 1 <ackm1=>0 < ack (Suc m) @

3. Amn. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) m)l
— Suc n < ack (Suc m) (Suc n)

-u-:%%- *goals*

Top L1 (Isar Proofstate Utoks Abbrev;)-----======-===--=
Wrote /Users/1pl15/.emacs

For full documentation, see Defining Recursive
Functions in Isabelle/HOL, by Alexander Krauss.

Recursion: Key Points

e Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

® Recursion in multiple variables, terminating by size
considerations, can be handled using fun.

e fun produces a special induction rule.

* fun can handle nested recursion.

e fun also handles pattern matching, which it
completes.

Isabelle provides the command primrec for primitive
recursion as well. It is closely based on the internal derivation
of recursion, and can handle function definitions involving
certain complicated features (in particular, higher-order
primitive recursion) where fun fails. See the Tutorial, 2.1 An
Introductory Theory. More difficult examples of primrec
are covered in 3.3 Case Study: Compiling Expressions.

Special Induction Rules

® They follow the function’s recursion exactly.
® For Ackermann, they reduce P x y to

e PO0n, forarbitrary n

® P (Suc m)0 assuming P m 1, for arbitrary m

¢ P (Suc m) (Suc n) assuming P (Suc m) n and
P m (ack (Suc m) n), for arbitrary m and n

® Usually they do what you want.Trial and error is
tempting, but ultimately you will need to think!

The Ackermann example proves several lemmas using
the special rule, but several others using ordinary
mathematical induction!

Another Unusual Recursion

000 prre—r recursive calls, -
Mergesothy (-/Dropbox/ACS/4 - Advanced ecursion) Uarcedibycondonsih

- |fun merge :: "'a list = 'a list = ‘'a list"
where
"merge (x#xs) (y#ys) =
(if x <y then x # merge xs (y#ys) else y # merge (x#xs) ys)"
| "merge xs [] = xs"
| "merge [] ys = ys"

- [lemma set_merge [simp]: “set (merge xs ys) = set xs U set ys"
applyfflinduct xs ys rule: merge.induct)[]
apply auto

done 2 induction hypotheses,

Sauoaul pppPIS uonmwAWN0a 4 @

guarded by conditions!

Detach | (100

- 1. Ax xs y ys.

(x <y = set (merge xs (y # ys)) = set xs U set (y # ys)) =
(= x <y = set (merge (x # xs) ys) = set (x # xs) U set ys) =
set (merge (x # xs) (y # ys)) = set (x # xs) U set (y # ys)

2. Axs. set (merge xs []) = set xs U set []

3. Av va. set (merge [] (v # va)) = set [] U set (v # va)

B~ Find | Output | Symbols

| 1,39 371/1040) Input/output complete (sabelle,sidekick, UTF-8-Isabelle) UGHERR 425M8 1435

Again, see Defining Recursive Functions in Isabelle/HOL.
Each induction hypothesis can only be used if the
corresponding condition is provable.

Proof Outline

set (merge (xi#xs) (y#ys)) = set (x # xs) U set (y # ys)

set (if x < y then x # merge xs (y#ys)
else y # merge (xi#xs) ys) =

(x £y — set(x # merge xs (y#ys)) = ...) &
(-~ x £y — set(y # merge (x#xs) ys) = ...)
(x £y = {x} U set(merge xs (y#ys)) = ...) &
(- x £y = {y} u set(merge (x#xs) ys) = ...)
(x £y »* {x} Uset xs Uuset (y#ys)=...)8&
(- x <y — {y} Uuset (x # xs) Usetys=...)

The first rewriting step in the proof unfolds the
definition of merge. The second one is a case-split
involving if. This step introduces a conjunction of
implications, creating contexts that exactly match the
induction hypotheses. But first, the definition of set (a
function that maps a list to the finite set of its
elements) must be unfolded. The last step highlighted
above applies the induction hypotheses. The remaining
steps, not shown, prove the equality between the set
expressions just produced and the right-hand side of
the original subgoal.

The Case Expression

Similar to that found in the functional language ML.

® Automatically generated for every datatype.

The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

Case splits in assumptions (not the conclusion)
never happen unless requested.

Case-Splits for Lists

fun ordered :: "'a list => bool"
where
"ordered [] = True"
| "ordered (x#l) =
(case 1 of [] => True
| Cons y xs => (x<y & ordered (y#xs)))"

The definition shown on the slide describes the same
function as the following one:

fun ordered :: "'a list => bool"
where
"ordered [] = True"
| "ordered [x] = True"
| "ordered (x#y#xs) = (x \<le> y & ordered
(y#xs))"

The version adopted in this example works better in the
simplifier. Two logically equivalent definitions may behave
very differently with respect to formal proof.

Case-Splitting in Action

800 MergeSort.thy

MergeSorthy (-Dropbox/ACS/4 - Advanced ecursion)
- lemna ordered merge [sinp]: "ordered (merge xq Automatic case
apply (induct xs ys rule: merge.induct) S Soray
LT splitting to the rescue!
apply (auto split: list.split

& Auto update | Update Detach | [95%

souosyL PIRPIS vonmuRWN0Q ¢ @

-~ 1. Axxs y ys.
(x<y=

ordered (merge xs (y # ys)) =
hered xs A (case ys of [] = True | ya # xs = y < ya A ordered (ya # xs)))) =
Help! Look at all

the case-splits! it
N

kse xs of [1 = True | y # xs = x < y A ordered (y # xs)) A ordered ys)) —

ge xs (y # ys) of [] = True | y # xs = x < y A ordered (y # xs)) =
Qf [1 = True | y # xs = x < y A ordered (y # xs)) A

ys of (1 = True | ya # xs = y < ya A ordered (ya # xs)))) A
N

g (x # xs) ys of [1 = True | ya # xs = y < ya A ordered (ya # xs)) =
f 0] = True | y # xs = x <y A ordered (y # xs)) A
(case ysMf [] = True | ya # xs = y < ya A ordered (ya # xs))))

B v Find | Output | Symbols

29,16 (66/1040) sabelle,sidekick UTF-8-Isabelle) - UCHIIEDIME 14.42

There isn’'t room to show the full subgoal, but the second part
of the conjunction (beginning with = x <y) has a similar form
to the first part, which is visible above.

Note that the last step used was simp_all, rather than auto.
The latter would break up the subgoal according to its logical
structure, leaving us with 14 separate subgoals!
Simplification, on the other hand, seldom generates multiple
subgoals. The one common situation where this can happen
is indeed with case splitting, but in our example, case
splitting completely proves the theorem.

Completing the Proof

000 5 MergeSort.thy e
MergeSort.thy (~/Dropbox/ACS/4 - Advanced Recursion/)
'~ |lemma ordered merge [simp]: "ordered (merge xs ys) = (ordered xs & ordered ys)"

apply (induct xs ys rule: merge.induct)
apply simp_all
apply (auto split: list.split

¥ Auto update | Update Detach | [95%

But what is this?

proof (prove): step 3

goal:
No subgoals!

Risk of looping!

All solved, in

<I| second.

B v Find | Output | Symbols
30,31 (697/1040) sabelle,sidekick UTF-8-Isabelle) - UCHEIEDIME 14.44

Suosus pPPEPIS uopmuWN0G 4 @

The identifier ordered.simps refers to the two
equations that make up the definition of the function
ordered. The suffix (2) selects the second of these. Now
“simp del: ordered.simps(2)” tells auto to ignore this
equation. Otherwise, the call will run forever.

Case Splitting for Lists
Simplification will replace
P (case xs of [] => a| Cons xI => bx])

by
(xs=[]P@)A(vxlLxs=x#[—PbxI)

® |t creates a case for each datatype constructor.

e Here it causes the simplifier to loop if combined
with the second rewrite rule for ordered.

Specifically, a case split will create an instance where the list
has the form a#l, and therefore ordered(a#l) will rewrite to
another instance of case, ad infinitum.

Summary

Many forms of recursion are available.

The supplied induction rule often leads to simple
proofs.

The “case” operator can often be dealt with using
automatic case splitting...

but complex simplifications can run forever!

eoo - MergeSort thy (modified)

How to Trace the Simplifier

5 MergeSort thy (~/Dropbox/ACS 4 - Advanced Recursion)
Lenma ordered merge [simp]: "ordered (merge xs ys) = (ordered xs & ordered ys)"
apply (induct xs ys rule: merge.induct)
apply simp_all
using [[simp_trace]]
apply (auto split: list.split

Sauosul pppEPIS uopmuBWN0G 4 @

simp del: ordered.simps(2)) .
done
fun meart s "'a list = 'a list
™ Auto update | _Update Detach | [95%
x < a A ordered (a # list) i
[11Applying instance of rewrite rule "?2.unknown": trace appears in
ordered [] = True OUtPUt Pane|

(1)Rewriting:

ordered [] = True

[1]Applying instance of rewrite rule "HOL.simp_thms 21": tracing is
7y A True = 7y

[1IRewriting: very slow

(x < a A ordered (a # list)) A True = x < a A ordered (a # list)
Tracing paused. Stop, or continue with next 100, 1000, 10000 messages?

B v Find | Output | Symbols
31,1 689/1062) sabelle,sidekick UTF-8-Isabelle) - UCHE/397MB 14:56

An experimental new tracing panel now exists, invoked via
Plugins > Isabelle > Simplifier Trace in conjunction with the
declaration

using [[simp_trace_new mode=full]]
This opens its own panel where the trace is displayed along

with filtering options. Either way, simplifier tracing requires
quite a bit of patience.

Interactive Formal Verification
5:Logic in Isabelle

Lawrence C Paulson
Computer Laboratory
University of Cambridge

What'’s A Logical Framework?

e A formalism to represent other formalisms
e Support for natural deduction
e A common basis for implementations

® Type theories are commonly used, but Isabelle
uses a simple meta-logic whose main primitives
are

* = (implication)

* A (universal quantification)

Isabelle’s Family of Logics

ZF LCF
\ / Modal
FOL HOLCF logics
IFOL CTT LK

Pure Isabelle

Natural Deduction Basics

® Proof is done using e Contrast with Hilbert-
mainly inference rules style proof systems,
rather than axioms. where typically the main
inference rule is modus
® For each logical symbol, ponens...
there are rules to
introduce and eliminate it. ® and there are many
cryptic axioms, each
® Assumptions can be combining a number of
introduced and discharged. logical symbols.

Natural Deduction in Isabelle

See the Tutorial, Chapter 5: The Rules of the Game.
The first of these is an introduction rule, conjl in
Isabelle. The following three are elimination rules:
conjunctl, conjunct2, and mp. Isabelle parlance, these
three are actually destruction rules because they lack

P Q e ,
the general form of an elimination rule in natural
P P A
PAQ = Q=) deduction.
PA
PQ PAQ=P
PrQ PAQ=Q
Q
P=Q P pw= (P=0
Q
The distinction between meta- and object-connectives
. . . is a common source of confusion among students. This
Meta-lmpllcatlon distinction is inherent in the use of a logical

® The symbol = (or ==>) expresses the
relationship between premise and conclusion
® ..and between subgoal and goal.

® |t is distinct from —, which is not part of
Isabelle’s underlying logical framework.

e P=(Q=R) is abbreviated as [P;Q] = R

framework. There is no reason why an object-logic
would have an implication symbol at all. Isabelle gives
a special significance to =, in particular for expressing

the structure of inference rules, as shown on previous
slide. This would be impossible if we make no
distinction between = and —.

A Trivial Proof

ece sasicahy (modified)
O@®dE &9 X @ EOEE B & @ |€»
1 Basic.hy (-/Dropbox/ Teach/ACS ' - Predicae logic/)]

~0lemma "P — P—Q = P A Q']
apply (rule conjI)
wprly assumption reduce the goal
R using the given rule
apply assumption

apply assunption
done

@ Auoupdate Update | | Locate | Search - 1008
proof (prove)
goal (1 subgoal):
1L [P;P—0Q =PAQ

UL sauosuL DRPIS Uomuawned (O

© v Ouput Query Sledgehammer State Symbols
5,24 58/9205) Gsabellesabelle UTF—§-Isabelle) - UG IBER494MB 13:17
—

The method “rule” is fundamental. It matches the conclusion

of the supplied rule with that of the a subgoal, which is
replaced by new subgoals: the corresponding instances of
the rule’s premises. See the Tutorial, 5.7 Interlude: the Basic
Methods for Rules.

Normally, it applies to the first subgoal, though a specific goal
number can be specified; many other proof methods follow
the same convention.

If automation doesn’t help you, then single step proof
construction using the rule method and its variants (drule,
erule) may be the best way forward.

Proof by Assumption

ece e
OE®E & 9¢ XpDE @@ C
 Basicahy (-/Dropbox/Teach/ACSS - Predicte logic))
=0|lemma "P — P—Q =+ P A Q"

apply (rule conjI)

apply assumption]

apply (rule mp)

apply assumption

apply assumption
L done

@ Autoupdate | Update | | Locate | search - 006
proof (prove)
goal (1 subgoal):
L[P—0 =0

BuuwilL sauoL PDRPIS UomAWN0D ¢ O

@ v Ouput Query Sledgehammer State Symbols
7,18 95/9205) Gsabellesabelle UTF-8-Isabelle) - UG IS4 13:22

The method “assumption” proves (and deletes!) a
subgoal if it can unify the subgoal’s conclusion with
one of its premises.

Unknowns in Subgoals

ece Sascthy (modiied)
IE®E & 9¢ XDE Q@ C B 3 & 0 |6»
1 Basic.hy (-/Dropbox/ Teach/ACS S - Predicat logic/) B
20|lemma "P — P—Q = P A Q"

apply (rule conjI)

apply assumption

apply [rute mp)f

apply assumption

apply assumption
L |done

B Auoupdate Update | | Locate | Search ~ 100%

proof (prove)

goal (2 subgoals)
1P P — O — W3 — 0 We need some
2. [P; P — Q] = 7P3

instance of mp!

BuuiL suoL PDRPIS UomAWNND < O

formula placeholder
0 1= G vy s [s
8,16 (111/9205) (isabelle, isabelle, UTF-8-Isabelle) UG NN 4MB 13:28
e ST IR

Isabelle includes a class of variables whose names begin
with the ? character. They are called unknowns or schematic
variables. Logically, they are no different from ordinary free
variables, but Isabelle treats them differently: it allows them
to be replaced by other expressions during unification.
Isabelle rewrite rules and inference rules contain many such
variables, but we normally suppress the question marks to
make them easier to read. For example, the rule conjl is
really 7P ==> (?Q ==> 7P & 7Q).

Unknowns and Unification

ece sasicahy (modified)

0[lema "P —
apply (rule conjI)
apply assumption
apply (rule mp)
apply assumption]
apply assumption
done

uonenawmea ¢ o

B Awoupdate Update | | Locate | Search v s -

proof (prove)

goal (1 subgoal):

1L[PsP—0 =P ?P3 has been
replaced by P

© v Ouput Query Sledgehammer State Symbols
9,18 129/9205) Gsabelleisabelle UTF—§-Isabelle) - UG IEEIEEAE 13:29

sauoauL 0RPIS

Sun

Proving ?P3—Q from the assumption P—Q performs
unification, and the variable ?P3 is updated. All occurrences
of the variable are updated. In this way, proving one subgoal
can make another subgoal impossible to prove. Sometimes
there are multiple choices and only one will allow the proof to
go through.

Discharging Assumptions

P|
é (P = Q) = PQ
P—qQ
Pl [Q
PVvVQ R R [P v Q; P=R; Q=R] = R
R

Such rules take derivations that depend upon particular
assumptions (written as [P] and [Q] above) and “discharge”
those assumptions, which means that the conclusion is not
regarded as depending on them. The backwards
interpretation is more natural: to prove P—Q, it suffices to
assume P and prove Q.

Meta-level implication (=) expresses the discharging of

assumptions as well as the relationship between premises
and conclusion.

A Proof using Assumptions

S be XpDE @@ ¢
o asic by (-/Dropbox) Teach/ACS 5 - Predicate logic/) B
c0[temma "p v P — P

apply (rule impI)

apply (erule disjE)

apply assumptions
L [done

uonewawn0a ¢« @

@ Avoupdte Update | tocate Search: v oo -
proof (prove)

goal (1 subgoal):

1.PVP —P

sauoauL 0RPIS

s

Subgoal is an implication.

No assumptions!

@ v Ouput Query Sledgehammer State Symbols
13.18170/9205) Gsabelle.sabelle UTF—8-Isabelle) - UG 94 13:32

A full list of the predicate calculus rules for higher-order logic
is available in Isabelle’s Logics: HOL, an old but still useful
reference manual.

After Implies-Introduction

ece - sasicihy
@@ S 9e¢e Xpa @ 0=
1 Basic.thy (-/Dropbox/ Teach/ACS ' - Predicae logic/)
~0[temna "P v P — P"

apply [(rute impD)

apply (erule disjE)

apply assumptions
L [done

By & © |€»

Prove P assuming P v P
proof (prove)

goal (1 subggl):
1LPVP=P

Assumption will be used,

then deleted

© v Ouput Query Sledgehammer State Symbols

| 14,15 188/9205) isabellesabele UTF-5-Isabele)

T

UL sauosulL DRPIS Uoumuawned (O

UG BRI <M 13:32
—

Disjunction Elimination

sce ety madad)
(@m0 & 9¢ XDE Q& CE B # @ |«»
o sty -/DropboTeach/AGS/5 - Predcate lsich

=0O(lemma "P vV P — P"

apply (rule impI)
aonty [(erute disie)] erule is good with
apply assumption+

- [done elimination rules

8 Auto update Update Locate | Search:
proof (prove)
goal (2 subgoals):
1. P = P

2.p =P An instance of P v 1Q

has been found

@ v Ouput Query Sledgehammer State Symbols

| 15,20 08/9205) Input/output complete Gsabellesabelle UTF-5-Isabelle)

v ol v

BuuwiL sauoL PDRPIS UomAWN0D ¢ O

UG IR < 13:32
—

The point of the erule method is to apply inference rules
(one at a time) where the first premise of the rule participates
in the matching. There is also drule, which in effect
performs forward reasoning, matching the first premise of a
rule and adding the conclusion as a new assumption.

The Final Step

ece aicthy (modiied)
(E®@0 & 9¢ X0 @ ODEE B & @ |€»
© Basicthy (/Dropbox/Teach/ACS/S - Prdicae ogic/
-0O[lemma "P v P — P"

apply (rule impI)

apply (erule disjE)
apply assunptions] + applies a method
L |done
one or more times

@ Avoupdate | Update | Locate | Search
proof (prove)
goal:
No subgoals!

@ v Ouput Query Sledgehammer State Symbols

| 16,19 27/9205) Gsabellesabelle.UTF-§-Isabelle
T —

v otk o)

yG RIS 13:33

BuuwiL suoL PDRPIS UomAWNND 4 O

Quantifiers

P(t)

m P(x) = 3x.P(x)

Jz. P(x) Q [3x.P(x); Ax.P(x)=Q] = Q

meta-universal quantifier

states the variable condition

Isabelle’s logical framework includes the typed lambda
calculus, so quantifiers can be declared as constants of
appropriate type. Variable-binding syntax can also be
specified.

A Tiny Quantifier Proof

ece sty

OedE & 9¢ XPE K@ COCDEE B & @ |€»

sty DropbosTsch ACS/3 - et i

0|temma "(3x. P (f x) A Q x) = 3x. P x|
SPPLY (erule exE) Find, use, delete an
apply (erule conjE)
apply (rule exI)
apply assumption

L ldone

existential assumption

8 Auto update Update Locate | Search: v 100%
proof (prove)
goal (1 subgoal):
1.3 P (Fx) AQx = 3x. Px £l
g

@ v Ouput Query Sledgehammer State Symbols

2038 272/9205) Gisabellesabelle UTF-8-Isabelle) - UG EEIE94MS 13:37
—

Conjunction Elimination

ece ¥ Bty
OE®d0 & 9 XPDE R CDOEE 3L & @ |€»
eachiACS/3 - Precicne logic) B
S0[Lemna "(3x. P (f) A Q X) = 3x. P x"

apply [(erute exe)]]

apply (erute conjE) Find, use, delete a
apply (rule exI) - % % 5 8
ponty sssumption conjunctive assumption

@ Autoupdate _Update | | Locate | search - 006
proof (prove)
goal (1 subgoal):
1A P (fx) AQx = 3x Px o
5

The x that is

claimed to exist

@ v Ouput Query Sledgehammer State Symbols
Gsabellesabelle UTF-—8-Isabelle) - UG BEEIED4MS 13:37
e ———————————————————

21,18 290/9204) Input/output complete
T —

conjE is an alternative to the conjunctl and conjunct2.
It has the standard elimination format (like disjE for
disjunction elimination) so it can be used with the
method erule.

Now for 3-Introduction

ece & Basi
@@ S 9e¢e Xpa @ 0=
Basicthy (-/Dropbox/Teach/ACS/5 - Predicate ogic/) B
=Otemma "(3x. P (f x) A Q x) = 3x. P x"
apply (erule exE)

apply [(erute conjE)]
apply (rule exI) Apply the rule exI
apply assumption

& |done

O Avoupdate | Update | Locate | Search | aoow -
proof (prove)
goal (1 subgoal):
1A [P (Fx); Qx] = 3x. Px

UL sauosuL DRPIS Uoumuawned (O

Two assumptions

instead of one

© v Ouput Query Sledgehammer State Symbols
22,20 G10/9200) Gsabellesabelle UTF—§-Isabelle) - UG EEIEIAMS 13:37
—

An Unknown for the Witness

eoe v
I@®d0 &9 X PO Q& OE
© Basicthy (-/Dropbox/Teach/ACS/5 - redcate logc/) B

-0ftenma "(3x. P (f x) A Q X) = 3x. P x"
apply (erule exE)

apply (erule conjE)

apply [(rute exn)l

apply assumption

done

8 Auto update Update Locate | Search: v 1008 v
proof (prove)
goal (1 subgoal):
1. Ax [P (f)5 @ x] = P (7x4 x)

BuuwiL sauoL PDRPIS UomAWN0D ¢ O

Proof by assumption will

unify these two terms

@ v Ouput Query Sledgehammer State Symbols
23,17 G28/9200) Gsabellesabelle UTF-8-Isabelley - UG IEREIEI4MS 13:37
—

A proof of existence normally requires a witness,
namely a specific term satisfying the required property.
Isabelle allows this choice to be deferred. The structure
of the term, in this case ?x4 x, holds information about
which bound variables may appear in the witness. Here,
X may appear in the witness.

ece o
OI@®Oo S 9¢ XPDB Q@ CIF
©)Basic hy (-/Dropbox/ Teach/ACS/S - Predicat logic/) B

O[temma "(3x. P (f x) A Q x) = 3x. P x"
apply (erule exE)
apply (erule conjE)
apply (rule exI)
apply assumption]]
5 |done

@ Avoupdate | Update | Locate | Search - 006
proof (prove)
goal:
No subgoals!

BuuiL suoL PDRPIS UomAWNND ¢ O

@ v Ouput Query Sledgehammer State Symbols
24,17 G45/9204) Gsabelle.sabelle UTF—8-Isabelle) - UG IEEIEE4MS 13:37
T — ————————

Final Remarks

There are analogous rules for universal quantifiers.

Higher-order unification respects bound variables,
ensuring that quantifier reasoning is sound.

The examples above illustrate how things work,
but typically most logical reasoning is automatic.

When automation fails, you can try single-step
reasoning using methods such as rule and erule.

Interactive Formal Verification
6: Structured Proofs

Lawrence C Paulson
Computer Laboratory
University of Cambridge

A Proof about “Divides”
bdvda < (3k.a=b x k)

800 Struct.thy (modified)

5 Structthy (~/Dropbox/ACS /6 - Structured Proofs/)

o
£
*O[lemma "(k dvd (n + k)) = (k dvd (n::nat))" 3
apply [(puto simp add: dvd_def)[] H
We unfold the £
definition and get...? -
N Ao update Update Detach 100%
proof (prove): step 1 an assumption
goal (2 subgoals):
1. Akagpn + k = k * ka => Jka. n = k * ka a
2. AapXkb. k * ka + k = k * kb A messy proof with
locally bound variables two subgoals..
0 = o B symoct
94,31 (1685/3943) (isabelle,sidekick, UTF-8-Isabelle) UGIERNNERE M8 2301

Capturing the
Structure in Proofs

® Isabelle provides many tactics that refer to
bound variables and assumptions.

¢ Assumptions are often found by matching.

¢ Bound variables can be referred to by name,
but these names are fragile.

® Structured proofs provide a robust means of
referring to these elements by name.

e Structured proofs are typically verbose but
much more readable than linear apply-proofs.

The old-fashioned tactics mentioned above, have names like
rule_tac and are described in the old Tutorial, particularly

from section 5.7 onwards.

A Structured Proof

800 s Structthy,
Structthy (~/Dropbox/ACS 6 - Structured Proofs)
~O|temma “(k dvd (n + k)) = (k dvd (n::nat))"
proof (simp only: dvd_def, safe)
fix m
assume "n + k = k * n"
then have “n = k * (m - 1)"
by (metis diff_add_inverse diff mult_distrib2 nat_add_commute nat mult 1 right
then show "3m'. n =k * m'"
by blast
next

fix m
show "3m'. k *m+ k =k *m'*
by (metis mult_Suc_right nat_add_commute)
qed

S0yl pPPPIS uoEWAWNG 4 B

& Auto update [Update | [Detach | [100%

I* using this:
N ks But how do you
goal (1 subgoal): write them?
l.n=k* (m-1)

B ~ Find | Output | Symbols

.30 (182/3943) (sabelle,sidekick UTF-8-Isabelle) - UGHER/ 2788 2305

The Elements of Isar

® A proof context holds a local variables and
assumptions of a subgoal.

* In a context, the variables are free and the
assumptions are simply theorems.

¢ Closing a context yields a theorem having the
structure of a subgoal.

® The Isar language lets us state and prove
intermediate results, express inductions, etc.

Structured proofs can be tricky to write at first, and the
Tutorial has little to say about them. This course now
recommends more modern documentation, reserving the
Tutorial as documentation for more old-fashioned but still
useful commands. It also contained a great many extended
examples.

Getting Started

e0o0 Struct.thy (modified)
5 Struct.thy (~/Dropbox/ACS/6 - Structured Proofs/).

~0|lemma " (k dvd (n + k)) = (k dvd (n::nat))"
proof (simp only: dvd_def, safe) [|

indicates the start of a

structured proof
(we avoid auto)

sauoauL pppPIS UonmuBWNG 4 @

& Ao update | Update | [Detach | [100%
proof (state): step 1
goal (2 subgoals):

1. Aka. n + k = k * ka = 3ka. n = k * ka
2. Aka. 3kb. k * ka + k = k * kb

O v Find | Output | Symbols

21,34 (485/4044) Gsabelle.sidekick, UTF-8-Isabelley UCHEEIE 38M8 2308

The simplest way to get started is as shown: applying auto

with any necessary definitions. The resulting output will then
dictate the structure of the final proof.

This style is actually rather fragile. Potentially, a change to
auto could alter its output, causing a proof based on this
precise output to fail. There are two ways of reducing this
risk. One is to use a proof method less general than auto to
unfold the definition of the divides relation and to perform
basic logical reasoning. The other is to encapsulate the
proofs of the two subgoals as local lemmas that can be
passed to auto; this approach is more robust as it does not

depend on the exact output.

Replacing “auto” by “simp only: dvd_def, safe”
produces a more robust proof, since these methods are
much simpler and more stable than auto.

The Proof Skeleton

800 - Struct.thy (modified) ..

assumption

proof (simp only: dvd_def, safe)

8, fixm a name for the bound variable
[\ assume "n + k = k * m"

L o
next separates proofs of goals

5 Struct.thy (~/Dropbox/ACS/6 - Structured Proofs)
[lemma " (k dvd (n + k)) = (k dvd (n::nat))"

sauoauL PORP!

terminates the proof

& Auo update [Update | | Detach | [100%
show 3m'. k *m+ k =k * m"
Successful attempt to solve goal by exported rule:
dm'. k * ?m2 + k = k m'
proof (state): step 9

O v Find | Output | Symbols

Gsabele,sidekick UTF-8-Isabelle) - UCHEBIBBOMS 2310

46,10 (705/4044)

We have used sorry to omit the proofs. These dummy
proofs allow us to construct the outer shell and confirm that it
fits together. We use show to state (and eventually prove for
real!) the subgoal’s conclusion. Since we have renamed the
bound variable ka to m, we must rename it in the assumption
and conclusions. The context that we create with fix/
assume, together with the conclusion that we state with show,
must agree with the original subgoal. Otherwise, Isabelle will
generate an error message, “Local statement will fail to refine
any pending goal’.

Fleshing Out that Skeleton

labels for facts

®00
1 Structhy (~/Dropbox/ACS/6 - Structured Proofs/)
©|temma *(k dvd (n + k)) = (k dvd

sorry

show TSPYRIEIREEIREE using 2 inserting a helpful fact

by blast
next % using it, a real proof|

v fix m
show "3m'. k * m+ k =k * m'"
- sorry]
qed

sauoaL P

 Auto update [Update | [Dewach | [100%
show 3m'. k *m + k= k * m'
Successful attempt to solve goal by exported rule:
In'. k% M2+ k=K*m
proof (state): step 13

© v Find | Output | Symbols
63,10 (974/4044) Gsabelle,sidekick UTF-8-Isabelle) - UGIIHIEREMS 2313

Looking at the first subgoal, we see that it would help to
transform the assumption to resemble the body of the
quantified formula that is the conclusion. Proving that
conclusion should then be trivial, because the existential
witness (m-1) is explicit. We use sorry to obtain this
intermediate result, then confirm that the conclusion is
provable from it using blast. Because it is a one line proof,
we write it using “by”. It is permissible to insert a string of
“apply” commands followed by “done”, but that looks ugly.
The beauty of Isar is that it provides a continuum between
fully structured proofs and fully linear apply-style reasoning.

We give labels to the assumption and the intermediate result
for easy reference. We can then write “using 1”, for
example, to indicate that the proof refers to the designated
fact. However, referring to the previous result is extremely
common, and soon we shall streamline this proof to eliminate
the labels. Also, labels do not have to be integers: they can
be any Isabelle identifiers.

Completing the Proof

800 Struct.thy (modified) ..

0 Struct hy (-/Dropbox/ACS/6 - Sructured Proofs/)
O|lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (simp only: dvd_def, safe)

fix m

assume 1: "n + k = k * m"

have 2: *n = k * (n - 1)* using 1

by (metis diff_add_inverse diff _mult distrib2 nat_add_commute nat_mult_1 right
show "3m'. n = k * m'" using 2]

sauosyy pppRIS UopmwAWN0G ¢ @

et This line came from
hex
- | fixm sledgehammer
show "3m'. K *m+ k=k *m'"
sorry
acd sledgehammer does it again!
o Auto ppdare [Update | [Detach | [100%
proof (prove): step 8
800
i~ using this: v
n=k*(m-1) Provers: | spass remote_vampire 23 remote_e_sine ~| (isarproofs ¢ [Apply
Cancel | [Locate | [75% -

“e": Try this: by (metis comn_semiring 1 class.normalizing_ semiring rules(24)

O~ find |Output| symbols
d SN Symbol “spass”: Try this: by (metis comn semiring 1 class.normalizing_semiring rules(

77.33 (1250/4044) “remote_vampire": Try this: by (metis mult Suc_right nat_add_commute) (7 ms).

"23": Tined out.
“remote_e_sine": Try this: by (metis mult Suc_right nat add_comute) (16 ms).

We have narrowed the gaps, and now sledgehammer can fill
them. Replacing the last “sorry” completes the proof.

There is of course no need to follow this sort of top-down
development. It is one approach that is particularly simple for
beginners.

Streamlining the Proof

assume 1: "n + k = k * m" assume "n + k = k * m"
have 2: "n = k * (m - 1)" using 1 ————> then have "n = k * (m - 1)"
sorry sorry

show "3m'. n = k * m'" using 2 ———> then show "3m'. n =k *m

using the previous fact without mentioning labels
e then have or hence
® then show or thus

There are numerous other tricks of this sort!

Avoiding the contracted forms “hence” and “thus” may be
better for readability, emphasising the role of “then”, which
uses the previous fact.

Another Proof Skeleton

eono § Siructin

Struct.thy (~/Dropbox/ACS /6 - Structured Proofs/) specify ms type

~0|tenna abs_m_1:

fixes m :: int 3
assumes an: "abs (m * n) = 1° declare a premise separately

shows “abs m = 1"
(=) is the null proof step

proof -
by auto
have "~ (2 < abs m)"
<ben show SETEIEITS using o steps towards the result

have 0: "m # 0" using mn

Sauosus pPpEPIS uopmuRWN0G | @

by autof]
qed
now the conclusion is trivial
™ Auto update | Update Detach | [100%
show im} = 1
Successful attempt to solve goal by exported rule:
it =1

proof (state): step 10
0~ Fina JOURH] Sidgeharmer Symbols
130,12 (2012/4043) (isabelle,sidekick,UTF-8-Isabelle) UGCHIEEIoOME 14-06

This is an example of an obvious fact whose proof is not
obvious. Clearly m#0, since otherwise m*n=0. If we can also
show that ImI=2 is impossible, then the only remaining
possibility is Iml=1.

In this example, auto can do nothing. No proof steps are

obvious from the problem’s syntax. So the Isar proof begins
with “-”, the null proof. This step does nothing but insert any
“pending facts” from a previous step (here, there aren’t any)
into the proof state. It is quite common to begin with “proof

»

Starting a Nested Proof

000 5 Struct.thy
Struct.thy (~/Dropbox/ACS /6 - Structured Proofs/)

~O|temma abs_m_1:

fixes m :: int

assumes mn: "abs (m * n) = 1"
shows "abs m = 1"
proof -
have 0: *m # 0" using mn
by auto
have "~ (2 < abs m)* =
proof]|

then show "abs m = 1" using

0 shor the default proof step
Olusa (depends on the goal)

sawoauL pppPIS uonmwAWN0d 4 O

Detach | [100%

error symbols (syntax)

proof (state): step 6

goal (1 subgoal):
1.2 < im} = False

© v Find | Output | Siedgehammer ~Symbols

UGETRIESSMS 1410

(Gsabelle,sidekick UTF-8-Isabelle)

Input/output complete

128,10 (1968/4043)

To begin with “proof” (not to be confused with “proof -”
applies a default proof method. In theory, this method should
be appropriate for the problem, but in practice, it is often
unhelpful. The default method is determined by elementary
syntactic criteria. For example, the formula “- (2 < abs m)”
begins with a negation sign, so the default method applies
the corresponding logical inference: it reduces the problem to
proving False under the assumption 2 < abs m.

A Nested Proof Skeleton

@00 & Suetshy
Struct.thy (-/Dropbox/ACS/6 - Structured Proots))

©O[tenna abs_n_1:

fixes m :: int[]

assumes mn: "abs (m * n) = 1"

<

shows "abs m = 1"
proof -
have 0: *m # 0" using mn
by auto

have "~ (2 < abs m)"
assume "2 < abs m"
then show "Falsely

qed

then show "abs m = 1" using 0
by auto

sl pIRPIS vonmueWM0d 4 O

qed

@ Auto update | Update Detach | [100%

proof (prove): step 0

anal (1 cuhanal) e

B v Find | Output | Siedgehammer ~Symbols
137.17 2053/4043) Input/output complete sabelle,sidekick UTF-8-Isabelle) - UCHEIEEBMS 14.15

Proofs can be nested to any depth. The assumptions
and conclusions of each nested proof are independent
of one another. The usual scoping rules apply, and in
particular the facts mn and 0 are visible within this
inner scope.

A Complete Proof

800 s Structthy -
© Struct.thy (~/Dropbox/ACS/6 - Structured Proofs/) é
O|temma abs_m_1f

fixes m :: int

assumes mn: "abs (m * n) = 1"

<

shows "abs m = 1"
proof -
have 0: "m # 0" "n # 0" using mn
by auto
have "~ (2 < abs m)"
proof

assume "2 < abs m"
then have "2 * abs n < abs m * abs n*
by (simp add: mult_mono)

then have "2 * abs n < abs (m*n)" ;

by (simp add: abs_mult) a chain of steps leads
then have "2 * abs n < 1" . .

by (auto sisp add: an) to contradiction

then show "False” using 0

by auto .
qed such chains can be
then show "abs m = 1" using 0 .
by auto done as calculations

jed

Swoaul ppREPIS uommwAWN0a 4 @

© v Find Output Sledgehammer Symbols

157,14 (2331/4043) Input/output complete Gsabelle,sidekick UTF-8-Isabelle) - Ut

This example is typical of a structured proof. From the
assumption, 2 < abs m, we deduce a chain of consequences
that become absurd. We connect one step to the next using
“hence”, except that we must introduce the conclusion using
“thus”.

Note that we have beefed up the fact “0” from simply m=0 to
include as well n£0, which we need to obtain a contradiction
from 2 x abs n < 1. In fact, “0” here denotes a list of facts.

Calculational Proofs

800 5 Struct.thy =
 Struct.thy (~/Dropbox/ACS/6 - Structured Proofs/) :

assume "2 < abs m"
then have "2 * abs n < abs m * abs n"
by (simp add: mult_mono 0)

- also have "... = abs (m*n)"
by (simp add: abs_muly)
also have "... = 1|

by (simp add: mn)
finally have "2 * abs n < I\ .
- then show "False” using 0

Write a chain of
equalities and inequalities EEBEED

sawoaul ppppIS uonmwAWN0d 4 O

proof (prove): step 15

goal (1 subgoal):
1. im*nj=1

© v Find | Output | Siedgehammer ~Symbols

199.24 (3102/3970) Input/output complete Gsabelle,sidekick UTF-8-Isabelle)” - UCHIBHIBIRME 1502

The chain of reasoning in the previous proof holds by
transitivity, and in normal mathematical discourse
would be written as a chain of inequalities and
inequalities. Isar supports this notation.

The Next Step

e00 - Structthy (modified)

0 Structth (-/DropboR/ACS/6 - Stuctured Froofs)
assume "2 < abs m*
then have "2 * abs n < abs m * abs n"
by (simp add: mult_mono ©)
- also have ... = abs (m*n)" [|
by (simp ad¥ abs_mult)
also have "... '
by (simp ad
finally have "2 * abs\ < 1" .
- then show "False" using ®

@ Auto update |_Update Detach | (100

proof (prove): step 12
. .. refers to the
goal (1 subgoal):

1. imi % inj = im* n}

previous right-hand side

B v Find | Output | Siedgehammer ~Symbols

197,33 (3048/3970) sabelle,sidekick UTF-8-Isabelle) - UCHEREB2VS 1502

syl pIRPIS vonmueWMOd 4 O

The Internal Calculation

800 5 Struct.thy

O Structthy (-/Dropbox/ACS/6 - Sructured Proofs))
assume "2 < abs m"
then have "2 * abs n < abs m * abs n"
by (simp add: mult_mono 0)
structure also have *... = abs (m*n)"
ofa by (simp add: abs_mult)
also have *... = 1"
by (simp add: mn)
finallyfjhave "2 * abs n < 1" .
- then show "False" using @

calculation

™ Auto update | Update Detach | [100%

calculation: 2 * in} <1
proof (chain¥s step 17

WSS The calculation is displayed for

2% <1

also and finally

© v Find | Output | Siedgehammer ~Symbols

20112 3138/3970) sabelle,sidekick UTF-8-Isabelle) - UGB 1503

Swoaul ppREPIS uommwAWN0G 4 @

Use “also” to attach a new link to the chain, extending the
calculation. Use “finally” to refer to the calculation itself. It
is usual for the proof script merely to repeat explicitly what
this calculation should be, as shown above. If this is done,
the proof is trivial and is written in Isar as a single dot (.).

We could instead avoid that repetition and reach the
contradiction directly as follows:

also have "... = 1"

by (simp add: mn)
finally show "False" using ©

by auto

Internally, this proof is identical to the previous one. It merely
differs in appearance, not bothering to note that 2 x abs n <1
has been derived.

Ending the Calculation

800 5 Struct.thy

O Struct.thy (~/Dropbox/ACS 6 - Structured Proofs/)
assume "2 < abs m"
then have "2 * abs n < abs m * abs n"
by (simp add: mult_mono 0)

W also have "... = abs (m*n)"
by (simp add: abs_mult)
also have "... = 1"
by (simp add: mn) (.) denotes a
finally have "2 * abs n < 1" .[| T
- then show "False" using @ trivial PrOOf
™ Auto update | Update Detach | 100%
have 2 * in} < 1
proof (state): step 19 We have deduced
2 xabsn < |
'~ this:
2% int <1

goal (1 subgoal):
1. 2 < !m! = False

© v Find | Output | Siedgehammer ~Symbols

201,35 3161/3970) (Gsabelle,sidekick UTF-8-Isabelle) - UGHERIBEEME 1504

sawoaul ppppIS uonmwAWN0d 4 O

Structure of a Calculation

The first line begins with have or hence

Subsequent lines begin with

also have “... = “

Any transitive relation may be used. New ones may
be declared.

The concluding line begins with

finally have or show

It may repeat the calculation, terminating with (.)

Interactive Formal Verification
/: Sets

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Set Notation in Isabelle

® Set notation is crucial to mathematical discourse.
¢ Union, intersection, power set
¢ Functions: image, inverse image, composition
¢ Relations: transitive closure, image

¢ A setin higher-order logic is similar to a boolean-valued map:
in other words, to a logical predicate.

e The elements of a set must all have the same type!

See the Tutorial, section 6.1 Sets.

Set Theory Primitives

® The membership relation:

® The subset relation: C (reflexive)
® Set comprehensions

® The empty set: {}

o The universal set: UNIV

Type o set is like x=bool, but sets are not functions!

Basic Set Theory Equivalences

e€{z.P(z)} < Ple)
ec{reA P()} < ec ANP(e)

e€e—A < eg¢gA
ecAUB <= ecAvecB
ecANB <= ec ANec B

e€Pou(Ad) <= eCA

Please note that we do not write {xIP(x)}. Isabelle would
interpret the | as expressing disjunction and the expression
as denoting the singleton set containing the element xIP(x)!

The logical equivalences shown above are effectively the
definitions of the primitives shown, and any occurrences of
the left-hand side formula will be replaced by the right-hand
side by Isabelle’s simplifier.

Big Union and Intersection

ee€ (UmB(m)) <= dx.e € B(z)
ee€ (UxEA.B(x)) < Jre€ A.ec B(x)
ec|JA < Trcdecn

And the analogous forms of intersections...

Once again, the logical equivalences are essentially
definitions.

The third form of union is seldom seen, but
fundamental.

A Trivial Set Theory Proof

There’s a popup window!

800 s Examples.thy
Examples.thy (~/Dropbox/ACS/7 - Sets/)

[~ |theory Examples imports Complex Main begin

o8
Auto solve direct: (UxcA. f x U g x) =

SauosuL PPREPIS uoREBWNS

B~ Find | Output | Symbols

UCRERIEIS 1627

5.10184/373)

Special symbols can be inserted using the Symbols panel.
ASCII can simply be typed; auto-completions for symbols will
be offerered. More advanced users can type the names of
these symbols preceded by a)\, if you know what the names
are (typically the same as in Latex).

The main point of this example is that many such proofs are
trivial, using auto or other automatic proof methods.

Also: look for icons in the left-hand “gutter”, since they
indicate errors, warnings or information.

Functions
e€(f'A) < Jxede=f(x)
ee(f—A) « fle)eA
f(z:i=y) = (\z. if z = z theny else f(2))

® Also inj, surj, bij, inv, etc. (injective,...)

® Don't re-invent image and inverse image!!

Inverse image is also known as pre-image. Using the actual
image primitives gives access to the many theorems proved
about them.

Finite Set Notation

{ar,..,an} = insert a; (... (insert a, {})..)
where

xEinsertaB < x=avxEB

Finite sets can be written explicitly, enumerating their
elements in the obvious way.

Finite Sets

A finite set is defined inductively
in terms of {} and insert

finite(AU B) = (finite A A finite B)

finite A = card(Pow A) = 22744

Defining functions over finite sets is tricky, because your
definition has to make sense regardless of the order of the
elements and regardless of whether they are repeated or not,
because the sets {x,y}, {y,x} and {x,y,x} are all equal. The
notion of cardinality is built-in.

The right way to define such functions is through special
“fold” primitives, which give the desired result provided it’s
meaningful. They are analogous to the well-known fold
functionals for lists.

Intervals, Sums and Products

{..<u} == {x. x < u}

{..u} == {x. x £ u}

{1<..} == {x. 1<x}

{1..} == {x. 12x}
{1<..<u} == {1<..} n {..<u}
{1..<u} == {1..} n {..<u}

setsum £ Aand setprod ¥ A
Siel.f and TTiel. f

Isabelle provides syntax for bounded and unbounded
intervals. These are polymorphic: they are defined over all
types that admit an ordering, and in particular they are
applicable to intervals over the natural numbers, integers,
rationals or reals.

Sums and products of functions over sets can also be
written.

A Harder Proof Involving Sets

800 5 Examples.thy
Examples.thy (~/Dropbox/ACS/7 - Sets/)

oo a way to specify the types of variables
fixes ¢ ::“%real”

~ | shows "finite A = setsum (Ai. ¢ * f i) A = c * setsum f A"
apply (induct A rule: finite induct)
apply auto

apply (auto simp add: aloc) induction on the finite set,A

done

onmwaunoa « @ |k

end
& Auto update | Update Detach | [100%
proof (prove): step 0

goal (1 subgoal):
1. finite A = (YieA. ¢ * f i) = ¢ * setsum f A

B v Find | Output | Symbols

UCRERIE 1637

16,61 276/373) (Gsabelle,sidekick UTF -8-Isabelle)

This example needs a type constraint because arithmetic
concepts such as sum and product are heavily overloaded. A
readable way to insert a type constraint is using the fixes
keyword. However, If you use fixes, then you must also use
shows!

Isabelle’s type classes allow this theorem to be proved in an
overloaded form, but for simplicity here we restrict ourselves
to type real.

Outcome of the Induction

800 s Examples.thy
Examples.thy (~/Dropbox/ACS/7 - Sets/)

s

Lemma
fixes ¢ :: "real”
shows “finite A —> setsum (Ai. ¢ * f i) A = c * setsun f A"
apply (induct A rule: finite induct) []
apply auto
apply (auto simp add: alg a_simps)
done ;

@ Avto update [Updte | | Detach | (1005

proof (prove): step 1

goal (2 subgoals) base case:A is empty
1. (ief}. ¢ * f i) = ¢ * setsum f {}

~ 2. A F. [finite F; x ¢ F; (LicF. ¢ * f i) = ¢ * setsum f F]
=> (Yieinsert x F. ¢ * f i) = ¢ * setsum f (insert x F)

© v Find | Output | Siedgehammer ~Symbols

17,38 (314/373)

inductive step:A = insert x F 8

The base case is trivial, because both sides of the equality
clearly equal zero. In the induction step, the induction
hypothesis (which concerns the set F) will be applicable,

because

setsum ¥ (insert a F) = f a + setsum f F

Note that Isabelle uses a fancy notation for summations, but
only if the body of the summation is nontrivial.

Almost There!

800 + Examples.thy
Examples.thy (~/Dropbox/ACS) 7 - Sets/)

v |lemma
fixes c :: "real”
shows "finite A = setsum (Ai. ¢ * f i) A = c * setsum f A"
apply (induct A rule: finite induct)
apply autd]
apply (auto simp add: algebra simps)
done

SouosyL pIRPIS vonmuIWN0Q ¢ @

& Avto update [Update | | Detach | [100%
proof (prove): step 2
goal (1 subgoal):

- 1. Ax F. [finite F; x ¢ F; (XieF. c * f i) = ¢ * setsum f F]
—s c*fx+c*setsunfF=c* (fx+ setsun f F)

EREI™™ need a distributive law!

18.11 325/373)

sabelle,sidekick UTF-8-Isabelle)” - UGHTEB/498MB 1659

Finished!

®00 + Bxamples thy (modified)
1 Examples.thy (~/Dropbox/ACS7 - Sets/)

~ |lemma
fixes ¢ :: "real"
shows "finite A = setsum (Ai. ¢ * f i) A = c * setsum f A"
apply (induct A rule: finite induct)
apply auto
os)_[]

apply (auto simp o
ed for the fir:

<

done

o ne st “auto”...

SwoauL ppREPIS uommwAWN0a 4 O

™ Auto update | Update Detach | [100%

proof (prove): step 3

goal:
No subgoals!

© v Find | Output | Siedgehammer ~Symbols
UGHEI 495M8 17.02

(isabelle.sidekick UTF-8-Isabelle)

19,39 (364/374)

Recall that algebra_simps is a list of simplification rules for
multiplying out algebraic expressions.

Counterexample Finding

® Don’t waste time trying to prove false
statements!

o |[sabelle can find counterexamples quickly...

¢ quickcheck: random testing of executable
specifications (broadly interpreted)

* nitpick:a general, SAT-based disprover
¢ try:calls both of those (and sledgehammer)

® Type these commands right in the document.

Quickcheck Example

@00 Examples.thy (modified)
5 Examples.thy (~/Dropbox/ACS/7 - Sets/)

- Gl tenma *- (A U B) = -A U -B"
(1

o Ao update | Update | [Detach | [100%

goal (1 subgoal):
1.-(AUB) =-AU-B
~ Auto Quickcheck found a counterexample:

souosyL PIRPIS vonmueWN0Q ¢ @

A = {a}
B ={}

Evaluated terms:
- (AU B) = List.coset [a:]
- AU - B = List.coset []

@ v Find | Output | Sledgehammer Symbols
| 25.1 @o1/407) (sabelle,sidekick, UTF -8-Isabelle) IR 2250

A minimal call to quickcheck is performed
automatically. Auto nitpick and even auto
sledgehammer can be configured in the plugin options.

They work especially well for functional programs, but
work in other domains, as we see here.

Proving Theorems about Sets

® |t is not practical to learn all the built-in lemmas.

® |[nstead, try an automatic proof method:

e auto
e force

e blast

® Each uses the built-in library, comprising
hundreds of facts, with powerful heuristics.

Finding Theorems about Sets

e00 Examples.thy (modified)
5 Examples.thy (~/Dropbox/ACS)7 - Sets/)

~ [lemma
fixes ¢ :: "real"
shows "finite A = setsum (Ai. ¢ * f i) A = c * setsum f A"

apply (induct A rule: finite induct)
apply auto

apply (auto simp add: algebra simps) [|
done .

<
sawoauL pppPIS uommwAWN0d 4 O

& Avto update | Update | | Detach | [100%
proof (prove): step 3

goal:
No subgoals!

Step |:click this button!

© v Find | Output | Siedgehammer ~Symbols
19,39 (364/374) sabelle,sidekick UTF-8-Isabelle)” - UCHERER498MB 17.02

See the Tutorial, section 3.1.11 Finding Theorems. Virtually
all theorems loaded within Isabelle can be located using this
function. Unfortunately, it does not locate theorems that are
proved in external libraries.

With some versions of Isabelle, the button is labelled
“Query”.

Finding Theorems about Sets

800 © Examples.thy
Examples thy (-/Dropbox/ACS/7 - Sets/)

v |lemma
fixes c :: "real”
shows "finite A = setsum (Ai. c * f i) A = ¢ * setsuyp

ooyl pIRPIS vonmueWM0d 4 O

apply (induct A rule: finite induct) i

e - press this button
apply auto

apply (auto simp add: algebra simps)

done

Apply | [100%

Step 2: type some patterns

B~ | Find| Output ~Siedgehammer ~Symbols
19,39 (364/374) (Gsabelle,sidekick UTF-8-Isabelle) - UCHEEY371MB 17.21

The easiest way to refer to infix operators is by entering

small patterns, as shown above. More complex patterns are
also permitted. The constraints are treated conjunctively: use

additional constraints if you get too many results, and fewer
constraints if you get no results.

Which Theorems Were Found?

800 s Examples.thy =
© Examples.thy (~/Dropbox/ACS/7 - Sets/) :

Searchcriteria: *_ Int " *_Un * card ~ | | current context ¢ [a0 Duplicates
Apply | [100%

searched for:
R

Wy

“eard’

found 2 theorem(s):

Suoaul ppREPIS uommwAWN0d 4 O

* Finite Set.card Un Int:

[finite ?A; finite ?B] = card ?A + card 7B = card (?A U ?B) + card (?A N ?B)
« Finite Set.card Un_disjoint:

[finite ?A; finite ?B; ?A N 7B = {}] = card (?A U 7B) = card ?A + card ?B

B~ | Find| Output ~Siedgehammer ~Symbols
19,39 (364/374) sabelle,sidekick UTF-8-Isabelle) - UCHE7/391M8_17.23

The Find or Query panel, like all the other panels, can be
detached or docked in various places so that it is always
available.

Interactive Formal Verification
8: Inductive Definitions

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Overview

® An introduction to inductive definitions

e Demonstrating their use with finite sets.

® Demonstrating more automation: the arith

proof method and the sledgehammer proof tool.

Defining a Set Inductively

The set of even numbers is the least set such
that

e Ois even.
* |f nis even, then n+2 is even.
® These can be viewed as introduction rules.

® We get an induction principle to express that no
other numbers are even.

® Induction is used throughout mathematics, and
to express the semantics of programming

See the Tutorial, Chaper 7. Inductively Defined Sets.

Inductive Definitions in Isabelle

800 Ind.thy o
[0 1nd.thy (~/Dropbox/ACS/8 - Inductive)) :

~ |theory Ind o

imports Complex Main -

begin H

H

~ |subsection{*Inductive definition of the even numbers*} H

- |inductive_set Ev :: "nat set" where §

ZeroI: "0 : Ev" 2

| Add2I: "n : Ev ==> Suc(Suc n) : Ev'[| g

@ Auto update | Update Detach | 1008~

Proofs for inductive predicate(s) "Evp"
Proving monotonicity ...
Proving the introduction rules ...
Proving the elimination rules ...
Proving the induction rule ...
Proving the simplification rules ...

B v Find | Output | Siedgehammer ~Symbols
9,38 (186/3266) (Gsabelle,sidekick UTF-8-Isabelle)

The Tutorial discusses precisely the same example, section
7.1.1.

Even Numbers Belong to Ev

800 5 Indthy o

.0 Ind.thy (~/Dropbox/ACS/8 - Inductive) s

text{*All even numbers belong to this set.*}
lemma "2*k : Ev"

apply
apply auto
apply (auto simp add: Zer
done

<

ordinary induction
yields two subgoals

proof (prove): step 1
goal (2 subgoals):

1.2*0 € Ev
2. Ak. 2 * k € Ev = 2 * Suc k € Ev

B v Find | Output | Siedgehammer ~Symbols

Suoaul ppREPIS uommwAWN0G 4 O

Proving Set Membership

text{*All even numbers belong to this set.*}
lemma “2*k : Ev"

apply (induct k)

apply autd]

apply (auto simp add: ZeroI Add2I)

done

after simplification, the subgoals

proof (prove): step 2 . .
resemble the introduction rules

goal (2 subgoals):
1. 0 € Ev
2. Ak. 2 * k € Ev = Suc (Suc (2 * k)) € Ev

B ~ Find | Output | Siedgehammer ~Symbols
17,11 (280/3266) (sabelle,sidekick UTF-8-Isabelle) - UCH44/387M8 1444

SauoauL ppRPIS uommwAWN0G 4 O

800

Finishing the Proof

s Ind.thy

Ind.thy (~/Dropbox/ACS/8 - Inductive)

text{*ALl even numbers belong to this set.*}
"2%K : EV"

apply (induct k)

apply (auto intro: Zerol Add2I) [|

lemma "

done

proof (prove): step 2

goal:
No subgoals!

B v Find | Output | Siedgehammer ~Symbols
27.33 (437/3266) sabelle,sidekick UTF-8-Isabelle) - UCHED/387M8 14.45

Isabelle also supports

souosyL pIRPIS vonmueWN0Q ¢ @

introduction rules
(backward chaining)

pdate Detach | [100%

Rule Induction

Proving a fact about every element of the set.
It expresses that the inductive set is minimal.
’

It is sometimes called “induction on derivations’

There is a base case for every non-recursive
introduction rule

...and an inductive step for the other rules.

Ev Has only Even Numbers

800

s Ind.thy o

<

 Ind.thy (~/Dropbox/ACS/8 - Inductive/)

text{*ALl elements of this set are even.*}
lenma "n € Ev = 3k. n = 2%k’
apply (induck n rule: Ev.induct)

apply auto
@pply arith naming the induction rule

done

proof (prove): step 0

goal (1 subgoal):
l.ne Ev= 3k. n=2*k

© v Find | Output | Siedgehammer ~Symbols
37,29 (521/3266) Gsabelle,sidekick UTF-8-Isabelle)” - UCHEIEBIME 1503

rule induction is needed!

sawoauL ppppIS uommwAWN0d 4 O

@ Auto update |_Update Detach | (100

The classic sign that we need rule induction is an occurrence
of the inductive set as a premise of the desired result. Of
course, sometimes the theorem can be proved by referring to
other facts that have been previously proved using rule
induction.

An Example of Rule Induction

800 s Ind.thy &

© ndthy (-/Dropbax/ACS/8 - Inductvel)
a
text{*All elements of this set are even.*} M
- |temma "n € Ev — 3k. n = 2%k" H
apply [(induct n rule: Ev.induct)]] 3
apply auto H
apply arith :
done £
7
H

& Avto update [Updane | [Deuach | [100% -

induction step: n

(isabelle,sidekick,UTF-8-Isabelle) UGHEERNEE 7ME 15:03

replaced by Suc (Suc n)

One Tricky Goal Left!

800 s Ind.thy =
O Ind.thy (~/Dropbox/ACS/8 - Inductive/) :

text{*All elements of this set are even.*}
lemma "n € Ev => 3k. n = 2*k"

apply (induct n rule: Ev.induct)

apply autd]

apply arith

done

<

Suoaul ppREPIS uommwAWN0a 4 O

@ Auto update | Update Detach | 1008~

proof (prove): step 2

goal (1 subgoal):
1. Ak. 2 * k € Ev = 3ka. Suc (Suc (2 * k)) =2 * ka

B~ Find | Output | Siedgehammer Sy

a problem too

idekick UTF-8-1sabelle) - UGHERAEE7M8 1503

39,11 (565/3266)

difficult for auto

The auto method provides some support for arithmetic.
However, complicated arithmetic arguments require
specialised proof methods.

The arith Proof Method

800 < Indthy w.

O Ind.thy (~/Dropbox/ACS/8 - Inductive/)

text{*ALl elements of this set are even.*}
lemma “n € Ev —> 3k. n = 2*k"

apply (induct n rule: Ev.induct)

apply auto

for hard arithmetic subgoals

sawoauL ppppIS uommwAWN0d 4 O

@ Auto update |_Update Detach | [100%

proof (prove): step 3

goal:
No subgoals!

© v Find | Output | Siedgehammer ~Symbols
40,12 (577/3266) (sabelle,sidekick UTF-8-Isabelle) - UCHEERIEITME 1504

Aside: Linear Arithmetic

® A decidable class of ® auto can solve simple
formulas arithmetic problems...
* For the operators + ® arith handles logical
-<=<= . :
<=,and... connectives, quantifiers,
etc.

¢ multiplication and
division by constants: ® Decision procedures are

*2,12 necessary: proving
arithmetic facts from
e With variations, this first principles is too
class is decidable for the tedious.

main arithmetic types.

The empty set is finite. Adding one element to a finite set
yields another finite set.

Defining Finiteness

800 s Ind.thy
Ind.thy (~/Dropbox/ACS/8 - Inductive/)
subsection{* Proofs about finite sets *}

<

<

text{*The set of finite sets*}

—

inductive Finset :: "'a set = bool" where
emptyI: “Finset {}"
| insertI: "Finset A — Finset (insert a A)"

O

declare Finset.intros mjnf rol[|

Suoaul ppREPIS uommwAWN0G 4 O

make the rules available

Detach | [100%

to auto,blast

ind | Output | Sledgehammer Symbols
61.30 (877/3266) (isabelle.sidekick UTF-8-Isabelle)

IR 322M8 1524

The goals are easily proved by the properties of sets and the
introduction rules.

The Union of Two Finite Sets

800 5 Ind.thy o
 Ind.thy (~/Dropbox/ACS/8 - Inductive/) :

o
~ |lemma "[Finset A; Finset B] —> Finset (A U B)" M
apply [(finduction A rule: Finset.induct)[] H
apply auto 3
done perform induction on A

™ Auto update | _Update Detach 100%

proof (prove): step 1

goal (2 subgoals):
1. Finset B —> Finset ({} U B)
~ 2. \A a. [Finset A; Finset B —> Finset (A U B); Finset B]
= Finset (insert a A U B)

© v Find | Output | Siedgehammer ~Symbols
67.40 (967/3266) Gsabelle,sidekick UTF-8-Isabelle)” - UCHIEIE22MB 1525

A Subset of a Finite Set

800 -_Ind.thy (modified) o
 ndhy (-/Dropbax/ACS/8 - Inductvel)

o

~ |lemma “[Finset A; B C A] —> Finset B" H

apply minduction A arbitrary: B rule: Finset.induct)[.3

apply auto H

to prove that every £

subset of A is finite P

@ Ao upiee (_Updaie) (_each] [100%
proof (prove): step 1
goal (2 subgoals): as seen in the induction hypothesis
1. AB. B C {} = Finset 8
2. A\A a B. [Finset A; AB. B C A —> Finset B; B C insert a A] — Finset B

B v Find | Output | Siedgehammer ~Symbols
78.53 (1080/3190) sabelle,sidekick UTF-8-Isabelle) - UCHIO/384M8 1526

The proof is far more difficult than the preceding one,
illustrating advanced techniques, in particular the
sledgehammer tool.

A Ciritical Point in the Proof

e00 - Ind.thy (modified) o
1 Ind.thy (~/Dropbox/ACS/8 - Inductive/) :

- [Lenma "[Finset A; B C A] —> Finset B"
apply (induction A arbitrary: B rule: Finset.induct)
apply autd]

1
Suoaul ppREPIS uommwAWN0a 4 @

@ Auto update | Update Detach | [100%

proof (prove): step 2

goal (1 subgoal):
1. AA aB. [AB. B C A —> Finset B; B C insert a A] —> Finset B

now what??
CRET] P———

79.11(1091/3190) Gsabelle,sidekick UTF-8-Isabelle) - UCHES/384M8_15:26

None of Isabelle’s automatic proof methods (auto, blast,

force) have any effect on this subgoal. Informally, we might
consider case analysis on whether aB. This would require
using proof tactics that have not been covered. Fortunately,
Isabelle provides a general automated tool, sledgehammer.

Time to Try Sledgehammer!

e00 Ind.thy (modified)

1 Ind.thy (~/Dropbox/ACS/8 - Inductive/)

s

lemma “[Finset A; B C A] — Finset B"
apply (induction A arbitrary: B rule: Finset.induct)
apply auto

sawoauL ppppIS uonmwAWN0d 4 O

Provers. & spass remote_vampire 23 remote_e_sine ~] O 1sar proofs Apply Cancel Locate | [100%

Selecting the panel

(it can also be detached)

© v Find Output | Sledgehammer | Symbols
79.11(1091/3190) Gsabelle,sidekick UTF-8-Isabelle)” - UGHES) 384M8 1527

Sledgehammer calls several automated theorem provers in
the background: in other words, Isabelle is still receptive to
commands. You can continue to look for a proof manually.

Success!

e00 Ind.thy (modified) o
1 nd.thy (~/Dropbox/ACS/8 - Inductive/) :

o
~ |lemma "[Finset A; B C A] — Finset B" H
apply (induction A arbitrary: B rule: Finset.induct) g
apply auto H
B g's
% 2
this command should
prove the goal
Provers. € 5pass remote_vampire z3 remote_e_sine hd Isar proofs. Apply Cancel Locate 100% 2

“z3": Try this: by (metis Finset.insertI insert subset mk disjoint insert subset inse
“spass": Try this: by (metis (full types) Finset.insertI Set.set insert insertIl inse
: Try this: by (metis (hide lams, no_types) Finset.insertI dual order.trans mk dis
“remote_vampire": Try this: by (metis Finset.simps Int absorb2 Int insert right ife I
“remote_e_sine": Try this: by (metis Collect cong Collect empty eq Collect mem eq Col
To minimize: sledgehammer min [remote e sine, provers = e spass remote vampire z3 ren

B v Find Output | Sledgehammer | Symbols

this one may return a
more compact command

UGHEINE 85M8 1608

2.1 (1094/3189)

All of outputs are highlighted. They are live: clicking on either
will insert that command into the proof script.

The Completed Proof

®00 - Ind.thy (modified) ®.
1 Ind.thy (~/Dropbox/ACS/8 - Inductive/) :

- [Lenma "[Finset A; B C A] —> Finset B"
apply (induction A arbitrary: B rule: Finset.induct)

apply auto

apply (metis Finset.insertI insert subset mk disjoint insert subset insert)]
done

Suoaul ppREPIS uommwAWN0G 4 @

& Auto update | Update Detach | 100% ~
proof (prove): step 3
goal:
No subgoals!
© v Find | Output | Sledgehammer Symbols
80.77 (1168/3271) sabellesidekick UTF-8-Isabelle) - UGEEEIEBSMS 1609

How Sledgehammer Works

Problem and

100s of lemmas

Theorem provers run
in the background.
Isabelle can still be

used!

Notes on Sledgehammer

® [t cannot work miracles. First, break up your
subgoal into the smallest possible pieces.

® |t does not prove the goal, but returns a call to
metis or smt.This command sometimes runs
slowly,and smt calls can be fragile.

® The minimise option removes redundant
theorems, increasing the likelihood of success.

® Calling metis or smt directly is difficult unless
you know exactly which lemmas are needed.

Metis is an automatic theorem prover for first order logic,
written by Joe Hurd. Sledgehammer calls high-performance
theorem provers, such as E and Vampire, using them as
relevance filters to select from the thousands of lemmas
available in Isabelle. Isabelle problems are translated for
these automatic theorem provers using lightweight
translations, which do not preserve soundness. For that
reason, proofs found by those theorem provers may be
incorrect. If that happens, the call to metis will generate an
error message or fail to terminate. It is possible to force the
use of sound translations, but sledgehammer seldom finds
proofs using those.

Interactive Formal Verification
9: Structured Induction Proofs

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Structured (Isar) Proofs

® As we've already seen: ® Existential reasoning: naming
entities that “exist”.

e Structured proofs are
clearer than a series of

commands, but verbose.

® Syntax for proof by induction.

¢ No need to write out
e The Isar language is rich induction hypotheses.
and complex, supporting
a great many proof styles. e Cases given by name;
bound variables named.
o But there’s more!
® And the same syntax works
for case analysis.

A Proof about Binary Trees

e00 BT.thy (modified)
£ 8T.thy (~/Dropbox/ACS/ 10 - Structured Induction)
datatype 'a bt =
Lf

| Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt => 'a bt" where
"reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect reflect ident: "reflect (reflect t) = t*
proof [(linduction t)|

sawoauL pppPIS uonmwAWN0d 4 O

o Avto update [Update | [Detach | [100%
proof (state): step 1

Must we copy each case

goal (2 subgoals): :
and such big contexts?

1. reflect (reflect Lf) = Lf
* 2. Aa t1 t2.
[reflect (reflect t1) = t1; reflect (reflect t2) = t2]
= reflect (reflect (Br a tl1 t2)) = Br a tl t2

8 v Find | Output | Sledgehammer Symbols
112,20 274/2608 (sabelle,sidekick, UTF-8-Isabelle) UGEEIIRREMS 1602

Inductive proofs frequently involve several subgoals, some of
them with multiple assumptions and bound variables.
Creating an Isar proof skeleton from scratch would be
tiresome, and the resulting proof would be quite lengthy.

Finding Predefined Cases

e00 * BT.thy (modified)

" . 1
Built-in
cases

2 BT.thy (~/Dropbox/ACS/ 10 - Structured Induction/)
fun reflect :: "'a bt => 'a bt" where
“reflect Lf = Lf"
| “reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lenma reflect_reflect _ident: "reflect (reflect t) = t"

proof (induction t) =
print_cases Type a print_cases
il command!

M Auto update | _Update Detach 100%
~ cases: abbreviation of conclusion
LT:

let "7case” = "reflect (reflect Lf) = Lf"
¥ Br:

fix a_ tl_ t2

let "7case” = "reflect (reflect (Bra tl t2)) =Bra tl t2"

assume "Br.IH" : "reflect (reflect t1) = t1 " "reflect (reflect t2) = t2 * and

“Br.prems")

© v Find | Output | Sledgehammer SyQ

14.1287/2608) sabelle,sidekick UTF-8-Isabelle) - UCIERIBEIIS 16,00

name of
induction hyps

souosyL PIRPIS vonmuIWN0Q ¢ @

Many induction rules have attached cases designed for use
with Isar. By referring to such a case, a proof script implicitly
introduces the contexts shown above. There are
placeholders for the bound variables (specific names must
be given). Identifiers are introduced to denote induction
hypotheses and other premises that accompany each case.
Also, the identifier ?case is introduced to abbreviate the
required instance of the induction formula.

It is possible to type the command print_cases right in your
document. However, with the latest version of Isabelle, the
proof keyword is highlighted: clicking on it inserts the proof
skeleton automatically!

case (Br a tl t2)
TS dl | thenllshoy 2case by sinp list of bound variables

the goal

Proof Using Named Cases

eo0o s BTthy

BT.thy (~/Dropbox/ACS/10 - Structured Induction/)

lemma reflect _reflect_ident: "reflect (reflect t) = t"
proof (induction t)
case Lf the two cases
show 7case by simp
nex of the induction

 Avto update [Update | | Detach | [100
proof (chain): step 7
~ picking this:

= reflect (reflect t1) = t1
» reflect (reflect t2) = t2

the induction
hypotheses

(isabelle,sidekick UTF -8-Isabelle)

© v Find | Output | Siedgehammer ~Symbols

17.7 337/2592) UGHERIEENS 16.05

Input/output complete

Suosus pPPEPIS uopmuWN0G 4 @

With all these abbreviations, the induction formula does not
have to be repeated in its various instances. The instances
that are to be proved are abbreviated as ?case; they (and
the induction hypotheses) are automatically generated from
the supplied list of bound variables.

Observe the use of “then” with “show” in the inductive case,
thereby providing the induction hypotheses to the method. In
a more complicated proof, these hypotheses can be denoted
by the identifier Br. hyps.

Induction with a Context

@00 - BT.thy (modified)

£ 8T.thy (~/Dropbox/ACS/ 10 - Structured Induction)

~ |inductive Finset :: "
emptyl: “Finset {}"

| insertI: "Finset A —> Finset (insert a A)"

declare Finset.intros [intro] anamedindictionirale
lenma "[Finset A; B C A] — Finset B"

proof (induction A arbitrary: B rule: Finset.induct)
print_cases]]

a set = bool" where

L

te [Update Detach | (100

an arbitrary variable

let "7case” = “Finset B"
assume "emptyI.prems” : "B C {}"
insertI:

let "7case” = "Finset B"
assume "insertI.hyps" : "Findet A * and "insertI.IH" : "AB. B C A = Finset B" and
“insertI.prems" : "B C insekt a A "

© v Find | Output | Siedgehammer ~Symbols

Gsabelle,sidekick UTF-8-Isabelle)” - UCHIBIBOOME 16:30

32,12 (638/2603)

non-empty premises

SauoauL ppppIS uonmwAWN0d 4 O

An inductive definition generates an induction rule with one
case (correspondingly named) for each introduction rule.
This particular proof requires the variable B to be taken as
arbitrary, which means, universally quantified: it becomes an
additional bound variable in each case. This proof also
carries along a further premise, BCA, instances of which are
attached to both subgoals.

The base case would normally be just emptyI. But here,
there is an additional bound variable. Note that we could

PrOVing the Base Case have written, for example, (emptyI C) and Isabelle would

have adjusted everything to use C instead of B.

800 s BT.thy
BT.thy (-/Dropbox/ACS/ 10 - Structured Induction/)

inductive Finset :: "'a set = bool" where
emptyl: “Finset {}"

| insertI: "Finset A —> Finset (insert a A)"

<

declare Finset.intros [intro]

“arbitrary” variables

Lenna *[Finset A; B C 4 must be given names!
proof (induction j-#fbitrary: B rule: Finset.induct)
case (emptyl B)
thenfjshow "Finset 8"
by Fotg

<

<
Sl pIRPIS vonmuRWMOd 4 O

date | Update Detach | (100%

“then” gives the premise

proof (chain): step 3

e oo to the next step

BC{}

B v Find | Output | Siedgehammer ~Symbols
33,7 (652/2664) sabelle,sidekick UTF-8-Isabelle) - UCHEEIEDTME 1636

Here we know B ¢ insert a A, as it is the inherited premise of
this case. But do we in fact know BCA?

A Nested Case Analysis

800 5 Bthy =
) BT.thy (~/Dropbox/ACS/ 10 - Structured Induction/) :

= [lemma "[Finset A; B C A] = Finset B"

~ |proof (induction A arbitrary: B rule: Finset.induct)

case (enptyl B)

then show "Finset B"
by auto “arbitrary” variables must

(again) be given names!

next
case (insertI A a B)
show "Finset B"

proof [fcases B ICAT] Boolean case analysis
case True
on a formula

swoaul ppREPIS uommwAWN0d 4 @

& Auto update [Update Detach | 100%
proof (state): step 9
goal (2 subgok(s):

1. B C A = Finset B
2. - B C A= Finset B

© v Find | Output | Siedgehammer ~Symbols
38,24 (751/2664) isabelle,sidekick UTF-8-Isabelle) - UCIEHIEHDE 1636

Here is an outline of the proof. If BCA, then it is trivial, as we
can immediately use the induction hypothesis. If not, then we

The Complete Pr'OOf apply the induction hypothesis to the set B-{a}. We deduce
that B-{a} € Fin, and therefore B = insert a (B-{a}) € Fin.

800 BT.thy o
 BT.thy (-/Dropbox/ACS/ 10 - Structured Induction/) :
~ [temma "[Finset A; B C A] = Finset B"
proof (induction A arbitrary: B rule: Finset.induct)
case (emptyI B)
then show "Finset B"
by auto reference to the induction

This proof script contains many references to facts. The facts
attached to the case of an inductive proof or case analysis
are denoted by the name of that case, for example, insertl,
case (insertI A a B) .
True or False. We can also refer to a theorem by enclosing

show "Finset B"
"B C A" f to thi . .
o el the actual theorem statement in backward quotation marks.
true and My et i dnsertt True : - We see this above in the proof of B-{a} c A.
RS s next direct quotation of a fact,

<

next

hypothesis and premise

sawoauL ppRpIS uonmwAWn0d 4 O

T case False using backquotes
have Ba: "B - {a} C A" using ‘B C insert a A"
by auto
then have "B = insert a (B - {a})" using False
- by auto
then show "Finset B" I-efe'-ence to the

by (metis Ba Finset.insertI insertI.IH)
qed false case: 7 BCA

© v Find Output Sledgehammer Symbols
38,24 751/2664) sabelle,sidekick UTF-8-Isabelle)” - UCHEBBIEDSME 1637

Additional Proof Structures

case (insertI A a B)
show "Finset B"
proof (cases "B C A")

case (insertI A a B)
show "Finset B"
proof (cases "B C A")

case True case True
show "Finset B" using insertI True ——> with insertI show "Finset B"
by auto by auto
next next
case False case False
have Ba: "B - {a} C A" using ‘B C insert a A ——3 from 'B C insert a A" have Ba: "B - {a} C A"
by auto by auto
then have "B = insert a (B - {a})" using False ——» with False have "B = insert a (8 - {a})"
by auto by auto
then show "Finset B" ——> with Ba insertI.IH show "Finset B"
by (metis Ba Finset.insertI insertI.IH) by (metis Finset.insertI)
qed qed

from (facts) using (facts)

with (facts) .. = then from ({facts) ..

Full details, probably much more than you want at this stage,
can be found in The Isabelle/Isar Reference Manual, by
Makarius Wenzel.

Viewing Available Facts

e00 . BT.thy (modified

BT Type a print_facts
v | next et

case False
have Ba: "B -
by aut¥
print_facts

command!
£} C A" using B C insert a A

a recently proved fact

™ Auto update | Update Detach | [100% ~
« 7B C_s~~> Finset 7B
“{a} C A
Ba: B - {a} C A

Ealse:RSIBIGIA e false case: 7 BCA

assms:
insertI: ist of facts for the
* Pdnset 4 insertI case (and again,
= 7B C A = Finset 28
= B C insgrt— with distinct names)

insertI.IH: 7B C A = Finset 7B
insertI.hyps: Finset A
insertI.prems: & C insert a A
this: B - {a} C A

© v Find | Output | Siedgehammer ~Symbols
47.1917/2676) sabelle,sidekick UTF-8-Isabelle)” - UCIBRIBE4MB 1658

Swoaul ppREPIS uommwAWN0a 4 @

It is unfortunately necessary to type the command
print_facts right in your document.

Popups

e00 BT.thy (modified)

| BT.thy (-/Dropbox/ACS/ 10 - Structured Induction/)
then show "Finset B"
by auto
next
case (insertI A a B)
show "Finset B"
proof (cases "B C A") [5 5

case True v facts:
show "Finset B" usin <unnamed>:
by auto * Finset A

next
case False
have Ba: "B - {a} C
by auto
then have "B = inser]
auto print_fact]

wavy underlining
means output is

A = Finset 78
: + 5 C dnsert a A
available insertI.IH: 78 C A = Finset 78
— insertI.hyps: Finset A
insertI.prems: 6 C insert a A
this: B = insert a (B - {a})
4625 (1006/2676) ik UTF-8-sabelle

© v Find Output Sledgehammer Syn

UCEETIEBVS 17.06

sawoauL ppRPIS uommwAWN0G 4 O

Simply hover with the mouse over any text where you
see wavy underlining.

moreover / ultimately

notepad
begin

have 11: "factl" sorry
have 12: "fact2" sorry
have 13: "fact3" sorry
from 11 12 13

[

oops

proof (chain): step 7

picking this:
= factl
» fact2
« fact3

notepad
begin

have "factl" sorry
moreover

have "fact2" sorry
moreover

have "fact3" sorry
ultimately

[

oops

calculation:
= factl
* fact2
= fact3
proof (chain): step 9

These two keywords are useful when the conclusion is
derived from a series of facts. The need for labels is
eliminated (assuming that there are no other references
to those facts) and the overall structure becomes much
clearer. Here we also see the notepad construct, which

is handy for typing in experimental proofs.

Existential Claims:“obtain”

®00

2 BT.thy (~/Dropbox/ACS/ 10 - Structured Induction/)

O|temma dvd_trans:
fixes a::nat

shows "a dvd c%
- |proof -

assumes ab: "a dvd b : "b dvd c"

by (metis ab dvdef)
by (metis bc dvd_def)

by (simp add: mult_assoc)

moreover obtain w where "c = b * w"

ultimately have "c = a * (v * w)"

Updae | [Detach | [100%
proof (prove): step 2 ... Isabelle needs to
prove an elimination rule
goal (1 subgoal):

1. (Av. b=a*v = thesis) = thesis

to obtain variables

satisfying given properties,

Souosus pPpEPIS uopmuWN0G 4 @

bdvda « (3k.a=b x k)

Frequently, our reasoning involves quantities (such as j
above) that are known to satisfy certain properties. Here, the
“divides” premise implies the existence of a divisor, j. Proof
attempts involving “obtain” can be difficult to understand,
especially when they fail. Isabelle proves a theorem having
the general form of an elimination rule, which in the premise
introduces one or more bound variables: the variables that
we “obtain”.

Chaining Facts:“moreover”

e00

- BT.thy (modified)

2 BT.thy (~/Dropbox/ACS/ 10 - Structured Induction/)
O|lemma dvd_trans:
fixes a::nat

shows *a dvd c*

- |proof -

obtain v where
by (met

by (metis bc dvd_def)

ultinately have "c = a
by (simp add: mult_gssoc)

calculation: b = a *
proof (state): step 4

© v Find | Output | Siedgehammer ~Symbols

116,11 2681/3891)

assumes ab: "a dvd b" and bc;,

moreover retains the
result as a calculation

sauoauL ppRPIS uommwAWN0d 4 O

™ Auto update |_Update Detach | [100%

v this:
b=a*v we now have the
o1l i1 cunpalh key property of j

Gsabelle,sidekick UTF-8-Isabelle)” - UGHD6/357M8_15:50

Delivering Facts:“ultimately”

800 & BT.thy o
O BT.thy (~/Dropbox/ACS/ 10 - Structured Induction/) 3
©|tenma dvd_trans:
fixes a::nat
assumes ab: "a dvd b* and bc: b dvd c*
shows "a dvd c"
proof -
obtain v where "b = a * v*
by (metis ab dvd_def)
moreover obtain w where "c = b * "
by (metis bc dvd_def)
ultimatelyfjhave "c = a * (v * w)"
by (simp a¥o~aylt_assoc)

<

sl pIRPIS vonmueWMOd 4 O

& Auto update | Update Detach | [100% ~

calculation:
sb=a*v
sc=b*w
proof (chain): step 7

calculation holds
previous results

ultimately gives them to
the next step

~ picking this:
sb=a*
sc=b*w

G v Find | Output | Sledgehammer Symbols

118,13 (2748/3899) sabellesidekick UTF-8-isabelle) - UGEERNEDSMS 1603

The Finished Proof

e00 © BT.thy (modified) o
2 8T.thy (~/Dropbox/ACS/ 10 - Structured Induction)) :
~O[lemma dvd_trans:
fixes a::nat
assumes ab: "a dvd b" and bc: "b dvd c"
shows "a dvd c"
proof -
obtain v where "b = a * v"
by (metis ab dvd_def)
moreover obtain w where "c = b * w"
by (metis bc dvd_def) [|
ultimately have "c = a * (v * w)"
by (simp add: mult_assoc)
then show ?thesis
by (rule dvdI)
qed

Suoaul ppREPIS uommwAWN0a 4 @

© v Find Output Sledgehammer Symbols
117,27 2735/4179) sabelle,sidekick UTF-8-Isabelle) - UCHBIBIIMG 1636

Any proof can be written in a variety of different ways.
. The concluding step is surprising. The mysterious ..
A Slmpler PrOOf symbol denotes the default proof step, which in this
— R . case happens to be a rule called dvdI. This rule exactly
s . matches the given premise and conclusion. In practice,
however, default proof steps are seldom used.

fixes a::nat

“assms” is the list of

assumes “a dvd b* "b dvd c*
i~ | shows "a dvd c* assumptions
proof -
from assms obtain v w'uhere "b=a*v" "c=b*w
- by (metis dvd_def)

then have "c = a * (v * w)*

by (simp add: mult_assoc)

then show ?thesis ..
qed

sawoauL ppRPIS uonmwAWN0d 4 O

“.."is the default
proof step (here, dvdI)

™ Auto update | Update Detach | [100% ~

|~ using this:
sadvdb
* bdvd c

can obtain multiple
vars, facts in one step

goal (1 subgoal):
1. (Avw. [b=2a*v; c=b*w] = thesis) = thesis

© v Find | Output | Siedgehammer ~Symbols
136,24 (2967/4180) (sabelle.sidekick UTF-8-Isabelle) - UCHEII349MB 1640

Here we see a three-way case distinction. Local blocks
have many other uses.

Advanced Proof Structures

800 © BT.thy o
| O BT.thy (~/Dropbox/ACS/10 - Structured Induction/) :
notepad

begin

have "P v Q v R" sorry

moreover {assume "P" have "S" sorry}
~ | moreover {assume "Q" have "S" sorry}
moreover {assume "R" have "S" sorry}

w03yl DRI uommwAWN0a 4 @

ultimatelyfjhave “S" by blast local proof blocks

end
o Ao update | Update | | Detach | 1008~

calculation: these facts are

*EvEVE available to blast

cP—s

Q=S

"R=S

proof (chain): step 21

B~ Find | Output | Siedgehammer ~Symbols
175,13 (3521/4611) Input/output complete (isabelle,sidekick UTF-8-Isabelle) - UCHEBIEDOMS 17.20

Interactive Formal Verification
| 0: Operational Semantics

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Overview

® The operational semantics of programming
languages can be given inductively.

* Type checking
* Expression evaluation
¢ Command execution, including concurrency

® Properties of the semantics are frequently proved
by induction.

® Running example: an abstract WHILE-language

Language Syntax

typedecl loc -- "an unspecified type of locations"

type_synonym val nat -- "values"
type_synonym state "loc => val"

type_synonym aexp = "state => val"

type_synonym bexp

-- "functions on states"

= "staté~s> bool"

Arithmetic & boolean expressions

datatype
com = SKIP are functions over the state

| Assign loc aexp ("_ == _ " 60)

| semi com com ("_; _" [60, 60] 10)

| cond bexp com com ("IF _ THEN _ ELSE _" 60)
| while bexp com ("WHILE _ DO _" 60)

For simplicity, this example does not specify arithmetic or
boolean expressions in any detail. Although this approach is
unrealistic, it allows us to illustrate key aspects of formalised
proofs about programming language semantics.

A “Big-Step” Semantics

(skip, s) — s (r:=a,s) = s[lz:=as]

(co,s) — §" (c1,8") — &

(co;c1,8) — 8

bs (co,s) — & —bs (c1,8) — &
(if b then ¢ else ¢1,s) — ¢ (if b then ¢ else ¢q,s) —

—bs bs (c,s) —s" (whilebdocs")—s
(while b do ¢,s) — s (while b do ¢, s) — s’

In a big step semantics, the transition {(c,s) — s’means,
executing the command c starting in the state s can
terminate in state s’. Nothing is said about intermediate
stages of the computation. Additionally

Formalised Language Semantics

800 a predicate with special syntax

Com.thy (~/Dropbox/ACS/9 |

evalc :: "[com,state,state] = bool” ("(_,)/ ~ _" [0,0,60] 60)
where

Skip: "(SKIP,s) ~» s"
| Assign: "(x :== a,s) ~ s(x :=a s)"
| semi: "(cO,s) ~ s'' = (c1,5'') ~ s' = (cO; 1, S) ~ s'"
| IfTrue: "b s = (cO,s) ~ s' = (IF b THEN cO ELSE c1, s) ~ s'"
| IffFalse: "-b s = (cl,s) ~» s' = (IF b THEN c0 ELSE c1, s) ~ s'"

| WhileFalse: "~b s —> (WHILE b DO c,s) ~ s"
| WhileTrue: "b's = (c,s) ~ s'* = (WHILE b DO ¢, 5'') ~ s
— (WHILE b DO c,) ~ s'*

lemmas evalc.intros [intro] -- "use those rules in automatic proofs”

BRIl declare as introduction rules
for auto and blast

le,sidekick UTF-8-Isabelle) - UCHIEIL 276MB 1646

In the previous lecture, we used a related declaration,
inductive_set. There is no intrinsic difference between a
set and a one-argument predicate. However, formal
semantics generally requires a predicate three or four
arguments, and the corresponding set of triples is a little
more difficult to work with. Attaching special syntax, as
shown above, also requires the use of a predicate.
Therefore, formalised semantic definitions will generally use
inductive.

A Non-Termination Proof

(while true do ¢,s) /4 s’

This formula is not provable by induction!

Vc'. ¢ # (while true do ¢)

The inductive version considers
all possible commands

Non-Termination in Isabelle

— — 7 subgoals, one for each
oy i A1~ Oprtnt e e i iion

lenma while_nevel) §) ~» U => C # WHILE (Xs. True) DO c1"

apply [finduct rule: evalc.induct)[]
2p0ly 2uto Most are trivial,
by distinctness ZEEEETTNET

As. SKIP # WHILE As. True DO cl
. X t==a # WHILE As. True DO cl
clas'.
[(cO,5) ~ s'*; €O # WHILE As. True DO cl; (cla,s'') ~ s'; cla # WHILE As. True DO c1]
= <0 ; cla # WHILE As. True DO cl
- 4. Abs co s cla.
[b s; (c0,s) ~ s'; cO # WHILE As. True DO c1]
= IF b THEN cO ELSE cla # WHILE As. True DO cl
Abs clas' co.
[~ b s; (cla,s) ~ s'; cla # WHILE Xs. True DO c1]
= IF b THEN cO ELSE cla # WHILE As. True DO cl i St
Ab's c. = bs = WHILE b DO ¢ # WHILE As. True DO c1 trivial for another reason
CAbscs't st
[b s; (c,S) ~ s'*; ¢ # WHILE As. True DO CLZfWHILE b DO c,s'') ~+ s';
WHILE b DO ¢ # WHILE As. True DO c1]
= WHILE b DO c # WHILE As. True DO cl

‘
e
>>
a0

SIu0L PIIPIS UonTIUAWN0G 4

<
«

o

<
~

© v Find | Output | Siedgehammer ~Symbols
5834 (1831/3537) sabelle,sidekick UTF-8-Isabelle) - UCHEIIBS6MB 1654

Done!

e00 - Com.thy (modified) o

 Com.thy (-/Dropbox/ACS/9 - Operationl Semantics)

Lenna while never: "(c, s) ~ u = c # WHILE (As. True) DO c1” o

apply (induct rule: evalc.induct) >

apply auto] H

H

& Avto upeate (Updarn) (Derach) [1o0x T3 &

proof (prove): step 2 3

goal: £

No subgoals! }
B v Find | Output | Sledgehammer Symbols

59,11 (1842/3537) (isabelle,sidekick,UTF-8-Isabelle) UGCHEERISME 16:56

This really is a trivial proof. | timed this call to auto and it

needed only 6 ms.

A New Principle:
Rule Inversion

® When (skip, s)— s’ we know s =5’

® When (if b then co else ci, s)— s° we know
e band {co,s)—> s, 0"
e =aband {ci,s)—>s’

® This sort of case analysis is easy in Isabelle.

Rule inversion refers to case analysis on the form of the
induction, matching the conclusions of the introduction rules
(those making up the inductive definition) with a particular
pattern. It is useful when only a small percentage of the
introduction rules can match the pattern. This type of
reasoning is common in informal proofs about operational
semantics. It would not be useful in the inductive definitions
covered in the previous lecture, where the conclusions of the
rules had little structure.

Rule Inversion in Isabelle

P declared as an elimination
rule to auto and blast

(skip, s)— s’ implies s = s’

-u-:--- Com.thy 53% 448 (Isar Utoks Abbrev; Scripting)=-=-=-===-=c--co-ue
[(SKIP,7s) ~ 7s'; 7s' = ?s = 7P] = 7P

the typical format of an

elimination rule

-u-:%%- *response* All L1 (Isar Messages Utoks Abbrev;)----=---==c=eceecmaux

The pattern for each rule inversion lemma appears in
quotation marks. Isabelle generates a theorem and gives it
the name shown. Each theorem is also made available to
Isabelle’s automatic tools.

It is possible to write elim! rather than just elim; the
exclamation mark tells Isabelle to apply the lemma
aggressively. However, this must not be done with the
theorem whilekE: it expands an occurrence of

{while bdo ¢, s) — s’ and generates another formula of
essentially the same form, thereby running for ever.

Rule Inversion Again

4 Com.thy

QCCOX 4> XGOS oP

inductive_cases skipE [elim]:

inductive_cases semiE [elim]:

assignE [elim]:

e cases ifE [elim]: D
inductive cases whileE [elim]:

thy 53% 149 (Isar Utoks Abbrev; Scripting)=-------=----zo-ue
[(?7c0.0; ?7c1.0,7s) ~ ?s'; As''. [(?2¢0.0,?s) ~ s''; (2c1.0,s"") ~ ?s'] = ?7P]
= 7

—U=:--- L

expresses the existence of

the intermediate state, s’

-u-:%%- *response* All L2 (Isar Messages Utoks Abbrev;)

Determinacy

If a command is executed in a given state, and it
terminates, then this final state is unique.

Determinacy in Isabelle...

— PP allow the other state to vary

 Com.thy (-/Dropbox/ACS/9 - Operationl Semantics)
theorem com_det: *(c,s) ~ t,—rAC18) ~ U —> u = t* o
apply [finduct arbitrary: uFule: evalc.induct)] T z 2 >
- Jopoly blasts trivial by rule inversion 5
5
@ Awoupdne [Upe | [wach | [1o0x +]
1. —u=s g
28 1S) ~ U => u=s(x i=as) £
- 3. i
[(cO,s) ~ s'*; Au. (cB,8) ~ u => u = s'"; (c1,5"') ~ s'; -
Au. (€1,5") ~ u => u =s'; (<0 ; cl,5) ~ u] e
—u=s a
~ 4. Abs cos' clu.
[bs; (cO,s) ~ s'; Au. (c0,8) ~ u => u = s'; (IF b THEN c0 ELSE cl,s) ~ u] => u = s'
* 5. Abscls' cou.
[~ bs; (cl,s) ~ s'; Au. (c1,5) ~ u = u = s'; (IF b THEN c@ ELSE cl,s) ~ u]
= u=s"
6. Abs cu. [~bs; (WHILE b DO c,s) ~ u] = u = s
- 7. Abscsstu
Ib s (cs) ~ s''s Au. (c,S) ~ u = u=5""; (WHILE b DO c,5'') ~ s';
Au. (WHILE b DO c,s'') ~ u => u = s'; (WHILE b DO c,s) ~ u]
= u=s"
© v Find | Output | Stedgehammer Symbols
65,47 (1946/3537) Text font size: 16 (isabelle,sidekick,UTF-8-Isabelle) UGHEIIEE OME 16:59

The proof method blast uses introduction and elimination

rules, combined with powerful search heuristics. It will not
terminate until it has solved the goal. Unlike auto and force,
it does not perform simplification (rewriting) or arithmetic
reasoning. These subgoals are mostly trivial: rule inversion,
which we set up previously, expresses precisely what we
need: that if the given commands have executed, then
corresponding intermediate states have been reached. The
induction hypothesis allow us to assume the determinacy of
the sub-commands.

Proved by Rule Inversion

e00 + Com.thy (modified) o
 Com.thy (~/Dropbox/ACS/9 - Operational Semantics /) :

theorem com_det: "(c,s) ~ t = (C,5) ~ U = u = t"
. |apply (induct arbitrary: u rule: evalc.induct)
apply blast+]]

call blast multiple times

Detach | (100

proof (prove): step 2 (here auto is very slow)

goal:
No subgoals!

Suoaul ppREPIS uommwAWN0G 4 T

B~ Find | Output | Siedgehammer ~Symbols
66,13 (1959/3537) sabelle,sidekick UTF-8-Isabelle) - UCERIBEDME 1659

The proof involves a long, tedious and detailed series of rule
inversions. Apart from its length, the proof is trivial. This proof
needed only 32 ms.

Semantic Equivale

e00 © Com.thy (modified)
5 Com.thy (-/Dropbox/ACS/9 - Operational Semantics/)
text{*Two commands are equivalent if they allow the s; transitions.*}

We can even define
the infix syntax

definition
equiv_c :: "com = com = bool" (infixl "~" 50)
where
- | "(c~c') = (¥ss'. ((c, s) ~ s') = ({c',) ~ s)"

lenma equiv_refl:

Fe~c

by (auto simp add: equiv_c_def) to be an

Lenma equiv_syn: equivalence relation
“cl ~ €2 = €2 ~ cl"

by (auto simp add: equiv_c_def)

It is trivially shown

<
SwoRL PPRPIS uomENAWN0G ¢

.

lenma equiv_trans:
"€l ~ €2 = 2~ 3= cl~c3"
by (auto simp add: equiv_c_def)

© v Find | Output | Siedgehammer ~Symbols
0.2 2206/3522) (sabelle.sidekick UTF-8-Isabelle) - UCHETIEDSMB 1642

More Semantic Equivalence!

800 s Com.thy
Com.thy (~/Dropbox/ACS/9 - Operational Semantics/)

congruence laws:

lemma equiv_semi: constructors preserve

"l ~ el = €2~ €2 = (cl; €2) ~ (cl'; c2')" equivalence
by (force simp add: equiv_c_def)

lemna equiv_if:
"cl ~ cl' = €2 ~ c2' = (IF b THEN cl ELSE c2) ~ (IF b THEN cl' ELSE c2')"
by (force simp add: equiv_c_def)

by: gives a one-line proof

& Auto update [Update | | Detach | [100%

sauoauL worwpis uol

proof (prove): step

goal (1 subgoal):
1. WHILE b DO ¢ ~ IF b THEN (c ; WHILE b DO c) ELSE SKIP

© v Find | Output | Siedgehammer ~Symbols

sabelle,sidekick UTF-8-Isabelle) - UCHED/359M8 1619

103.1 2633/3515) Input/output complete

The properties shown here establish that semantic
equivalence is a congruence relation with respect to the
command constructors Semi and Cond. The proofs are again
trivial, providing we remember to unfold the definition of
semantic equivalence, equiv_c. Proving the analogous
congruence property for While is harder, requiring rule
induction with an induction formula similar to that used for
another proof about While earlier in this lecture.

Method force is similar to auto, but it is more aggressive

and it will not terminate until it has proved the subgoal it was
applied to. In these examples, auto will give up too easily.

And More!!

e00 - Com.thy (modified)
5 Com.thy (~/Dropbox/ACS/9 - Operational Semantics/)

P

Somehow, force will not solve the second theorem.
Sometimes you just have to try different approaches.

Note that a proof consisting of a single proof method can be
written using the command “by”, which is more concise than

by blast|

used implicitly in

@ Ao update [Update | [Detach | [100%

blast/auto

s
Lenna unfold while: : writing “apply” followed by “done”. It is a small matter here,
"(WHILE b DO c) ~ (IF b THEN (c; WHILE b DO c) ELSE SKIP)" g . .
by (force simp add: equiv_c def) but structured proofs (which we are about to discuss)
- [tema triv_i: : typically consist of numerous one line proofs expressed
“(IF b THEN c ELSE c¢) ~ c" g H « ”
by (auto simp add: equiv_c_def) S using by”.
@ Auto update | Update Detach 100%
112,1(2828/3517) (isabelle,sidekick,UTF-8-Isabelle) UGHIEHIE 59M8 16:20
Giving the attribute intro! to a theorem informs Isabelle’s
| R I f E . | automatic proof methods, including auto, force and blast,
ntro-Rule tor CIU Ivalénce that this theorem should be used as an introduction rule. In
other words, it should be used in backward-chaining mode:
(e, s) , (. s) , the conclusion of the rule is unified with the subgoal,
c,8) — 8§ & (c,s) —s P , i i
) ;) s and s’ not free. .. continuing the search from_that rule’s premises. It is now
cn~C unnecessary to mention this theorem when calling those
; ; . proof methods. The theorem shown can now be proved
declared like this S Com by rotted) < . .
{22 Opsnions semenies) S : using blast alone. We do not need to refer to equivI orto
formalised like this o .
e cauivt Lol) - the definition of equiv_c. The approach used to prove other
"(As s'. (c, s) »s' =(c', s)~»s') = c~c'" g) —_)))
by (auto simp add: equiv c def) examples of semantic equivalence in this lecture do not
Lenna comute if: J terminate on this problem in a reasonable time. The proof
"(IF bl THEN (IF b2 THEN c1l1 ELSE c12) ELSE c2) g -
- : shown only requires 12 ms.
(IF b2 THEN (IF bl THEN cll ELSE c2) ELSE (IF bl THEN cl2 ELSE c2))" g

The exclamation mark (!) tells Isabelle to apply the rule
aggressively. It is appropriate when the premise of the rule is
equivalent to the conclusion; equivalently, it is appropriate
when applying the rule can never be a mistake. The weaker
attribute intro should be used for a theorem that is one of
many different ways of proving its conclusion.

Final Remarks on Semantics

® Small-step semantics can be treated similarly.

® Variable binding is crucial in larger examples, and
should be formalised using the nominal package.

* choosing a fresh variable
* renaming bound variables consistently

® Serious proofs will be complex and difficult!

Documentation on the nominal package can be downloaded
from http://isabelle.in.tum.de/nominal/

Many examples are distributed with Isabelle. See the
directory HOL/Nominal/Examples.

Other relevant publications are available from Christian
Urban’s website: http://www4.in.tum.de/~urbanc/

publications.html

Interactive Formal Verification
I I:Modelling Hardware

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Outline

® General modelling techniques
® Hardware verification in higher-order logic

® Additional elements of the Isar language, for
instantiating theorems

Basic Principles of Modelling

® Define mathematical abstractions of the objects
of interest (systems, hardware, protocols,...).

® Whenever possible, use definitions — not
axioms!

® Ensure that the abstractions capture enough
detail.

® Unrealistic models have unrealistic properties.

¢ Inconsistent models will satisfy all properties.

All models involving the real world are approximate!

Constructing models using definitions exclusively is called
the definitional approach. A purely definitional theory is
guaranteed to be consistent. Axioms are occasionally
necessary in abstract models, where the behaviour is too
complex to be captured by definitions. However, a system of
axioms can easily be inconsistent, which means that they
imply every theorem. The most famous example of an
inconsistent theory is Frege’s, which was refuted by Russell’s
paradox. A surprising number of Frege’s constructions
survived this catastrophe. Nevertheless, an inconsistent
theory is almost worthless.

Useful models are abstract, eliminating unnecessary details
in order to focus on the crucial points. The frictionless
surfaces and pulleys found in elementary physics problems
are a well-known example of abstraction. Needless to say,
the real world is not frictionless and this particular model is
useless for understanding everyday physics such as walking.
But even models that introduce friction use abstractions,
such as the assumption that the force of friction is linear,
which cannot account for such phenomena as slipping on
ice. Abstraction is always necessary in models of the real
world, with its unimaginable complexity; it is often necessary
even in a purely mathematical context if the subject material
is complicated.

Hardware Verification

o Pioneered by Prof. M.]. o Works hierarchically from
C. Gordon and his arithmetic units and
students, using memories right down to
successive versions of flip-flops and transistors.
the HOL system.

® Crucially uses higher-
® Used to model complete order logic, modelling
hardware designs: signals as boolean-valued
functions over time.
¢ VIPER verification, by
Avra Cohn (1988)

* ARMS6 processor, by
Anthony Fox (2003)

The material in this lecture is based on Prof Gordon’s lecture
notes for Specification and Verification Il, which are still
available on the Internet at http://www.cl.cam.ac.uk/
~mjcg/Lectures/SpecVer2/

Devices as Relations

S N A relation in a, b, ¢, d
h— 4 relation In a, o, ¢,
g
1 g—=>s=d
s—I 1L _4d

The relation describes the possible
combinations of values on the ports.

Values could be bits, words, signals
(functions from time to bits), etc

The second device on the slide above is an N-type field
effect transistor, which can be conceived as a switch: when
the gate goes high, the source and drain are connected. The
logical implication shown next to the transistor formalises this
behaviour. Note that the connection between the source and
drain is bidirectional, with no suggestion that information
flows from one port to the other.

Relational Composition

UT Tb two devices modelled
by two formulas
Si[a, z] Sy[x, b]
ab the connected ports
have the same value
Si[a, x| A Sslx, b]
. z . the connected ports
1 — — 0
have some value

Jx.Sqla, z] A Sofz, b]

The diagrams are taken from Prof Gordon’s lecture notes.

Because we model devices by relations, connecting devices
together must be modelled by relational composition.
Syntactically, we specify circuits by logical terms that denote
relations and we express relational composition using the
existential quantifier. The quantifier creates a local scope,
thereby hiding the internal wire.

Specifications and Correctness

® The implementation of a device in terms of other
devices can be expressed by composition.

o The specification of the device’s intended behaviour
can be given by an abstract formula.

® Sometimes the implementation and specification
can be proved equivalent: Imp< Spec.

® The property Imp=>Spec ensures that every
behaviour of the Imp is permitted by Spec.

Impossible implementations satisfy all specifications!

The implementation describes a circuit, while the
specification should be based on mathematical definitions
that were established prior to the implementation. A limitation
of this approach is that impossible implementations can be
expressed: in the most extreme case, implementations that
identify the values true and false. In hardware, this
represents a short circuit connecting power to ground,
possibly a short circuit that only occurs when a particular
combination of values appears on other wires, activating an
unfortunate series of transistors. In the real world, short
circuits have catastrophic effects, while in logic, identifying
true with false allows anything to be proved. Therefore,
absence of short circuits needs to be established somehow if
this relational approach is to be used safely.

For combinational circuits (those without time), both the
implementation and the specification express truth tables
with no concept of a “don’t care” entry, so logical equivalence
should be provable. Sequential circuits involve time, and
frequently the specification samples the clock only a specific
intervals, ignoring the situation otherwise. Specifications can
involve many other forms of abstraction. In general, we
cannot expect to prove logical equivalence.

Proving the logical equivalence of the implementation with

The Switch Model of CMOS

g

s b d Ptran(g, s,d) = (-g = (d = s))
g
s L 4 Ntran(g,s,d) = (9 = (d = s))

g
L Gndg=(9=F)

Pwrp=(p=T
E wrp=(p=T)

subsection{* Specification of CMOS primitives *}

text{* P and N transistors *}
definition
definition

text{* Power and Ground*}
definition
definition

CMOS (complementary metal oxide semiconductor)
technology combines P- and N-type transistors on a chip to
make gates and other devices. The slide shows primitive
concepts: the two types of transistors, ground (modelled by
the value False) and power (model by the value True). The
corresponding Isabelle definitions are easily expressed.
Lambda-notation is a convenient way to express a function is
argument is a triple.

Full Adder: Specification

a b
| |

cout —Add1— cin

sum

2 x cout + sum = a+b + cin
text{* 1-bit full adder specification *}
text{* Convert boolean to number (@ or 1) *}

definition bit_val :: where

definition

A full adder forms the sum of three one-bit inputs, yielding a
two-bit result. The higher-order output bit is called “carry out”,
and it will typically be connected to the “carry in” of the next
stage. Because we typically use True and False to designate
hardware bit values, the obvious conversion to 1 and 0 is
necessary in order to express arithmetic properties. Even
with this small step, expressing the specification in higher-
order logic is trivial. The identifier denotes the abstract
relation satisfied by a full adder, namely the legal
combinations of values on the various ports.

Full Adder: Implementation

A full adder is easily expressed at the gate level in terms of
exclusive-OR (to compute the sum) and other simple gating
to compute the carry. The diagram above, again from Prof
Gordon’s notes, expresses a full adder as would be
implemented directly in terms of transistors.

Full Adder in Isabelle

—— Adder.thy (modified)

2 Adder.thy (~/Dropbox/ACS/ 11 - Hardware Verification/)
~ |text{* 1-bit CMOS full adder implementation *}

definition "AddlImp = (A(a,b,cin,s,cout).
3p0 p1 p2 p3 p4 pS pé p7 ps p9 plo pll

Ptran(pl,p@,p2) A Ptran(cin,pf,p3) A
Ptran(b,p2,p3) A Ptran(a,p2,pd)
Ptran(pl,p3,pd) A Ntran(a,p4,p5)
Ntran(pl,pd,p6) A Ntran(b,p5,p6)
Ntran(pl,p5,pll) A Ntran(cin,p6,pll) A
Ptran(a,p0,p7) A Ptran(b,p0,p7) A
Ptran(a, p8) A Ptran(cin,p7,pl) A
Ptran(b,p8,pl) A Ntran(cin,pl,p9) A
Ntran(b,pl,pl0) a,p9,pll)
Ntran(b,p9,p11) A Ntran(a,ple,pll) A
Pur (p0) A Ptran(pd,po,s)
Ntran(pd,s,pll) A Gnd(p11) A
Ptran(pl,p@,cout) A Ntran(pl,cout,pll))"

text{* Verification of CMOS full adder *}

lemma Add1Correct: "AddlImp(a,b,cin,s,cout) = AddlSpec(a,b,cin,s,cout)"

by (simp add: Pwr_def Gnd_def Ntran_def Ptran_def Add1Spec_def
Add1Imp_def bit_val_def ex_bool eq)

© v Find Output Sledgehammer Symbols

(3b.P b) = (P True v P False)

SIUOML PIRPIS UonBIWN0 ¢ @

e sidekick UTF-8-Isabelle)” - UCHIRHIERIG 1624
P

The logical formula above is a direct translation of the
diagram on the previous slide. Needless to say, the
translation from diagram to formula should ideally be
automatic, and better still, driven by the same tools that
fabricate the actual chip.

The theorem expresses the logical equivalence between the
implementation (in terms of transistors) and the specification
(in terms of arithmetic). This type of proof is trivial for
reasoning tools based on BDDs or SAT solvers. Isabelle is
not ideal for such proofs, and this one requires over four
seconds of CPU time. In the simplifier call, the last theorem
named is crucial, because it forces a case split on every
existentially quantified wire.

An n-bit Ripple-Carry Adder

an-1 by az bz a1 b1 ap by

cout —Add1 S

Sn-1

(2" X cout) + s =a+b+ cin

® Cascading several full adders yields an n-bit
adder.

® The implementation is expressed recursively.

® The specification is obvious mathematics.

Adder Specification

(2" X cout) +s=a+b+cin

text{* Unsigned number denoted by bitstring f(n-1)...f(@) *}
fun bits_val where

|

text{* Specification of an n-bit adder *}

definition

The function bits_val converts a binary numeral (supplied
in the form of a boolean valued function, £) to a non-negative
integer.The specification of the adder then follows the
obvious arithmetic specification closely. When n=0, the
specification merely requires cin=cout.

Adder Implementation

ai by ag bo

internal wire, to be hidden
text{* Implementation gF#Gn n-bit ripple-carry adder*}

fun AdderImp whe,

a zero-bit adder simply

connects the carry lines!

An (n+1)-bit adder consists of a full adder connected to an n-
bit adder. Note that AdderImp n specifies an n-bit adder,
and in particular, a 0-bit adder is nothing but a wire
connecting carry in to carry out.

Partial Correctness Proof

e00 Adder.thy (modified)
 Adderthy (-/Dropbox/ACS/11 - Hardware Verifcation))
Lenma AdderCorrect:
*AdderImp n (a, b, cin, s, cout) = AdderSpec n (a, b, cin, s, cout)"
proof (induction n arbitrary: cout)
case 0 thus ?case
by (simp add: AdderSpec_def)
next
case [(uc n)[]
'~ | then obtain ¢
where AddS: "AdderSpec n (a, b, cin, s, c)"
and Addl: "AddlImp (a n, bn, c, sn,)"
by (auto intro: Suc)

sauoaul pppPIS uonmwAWN0d 4 @

@ Auto update | _Update | | Detach | [100%
= AdderImp n (a, b, cin, s, ?cout) = AdderSpec n (a, b, cin, s, ?cout)
* AdderImp (Suc n) (a, b, cin, s, cout)

goal (1 subgoal):
* 1. An cout.
[Acout. AdderImp n (a, b, cin, s, cout) = AdderSpec n (a, b, cin, s, cout);

AdderImp (Suc n) (a, b, cin, s, cout)]
= AdderSpec (Suc n) (a, b, cin, s, cout) \m
O~ Find |Output| Sedgehammer Symbols

84,15 2948/5714) sabelle,sidekick UTF-8-Isabelle)” - UGB 26MB 1627

We are proving partial correctness only: that the
implementation implies the specification. The term “partial
correctness” here refers to a limitation of the approach,
namely that an inconsistent implementation (one with short
circuits) can imply any specification. Termination, obviously,
plays no role in this circuit.

The base case is trivial. Our task in the induction step Is
shown on the slide. It is expressed in terms of predicates for
the implementation and specification. The induction
hypothesis asserts that the implementation implies the
specification for n. We now assume the implementation for n
+1 and must prove the corresponding specification.

Using the Induction Hypothesis

eo0o - Adder.thy (modified)
2 Adder.thy (-/Dropbox/ACS/ 11 - Hardware Verification/)
Lenna AdderCorrect:
"AdderImp n (a, b, cin, s, cout) = AdderSpec n (a, b, cin, s, cout)"
proof (induction n arbitrary: cout)
case 0 thus ?case

souosyL PIRPIS vonmuRWN0Q ¢ @

by (simp add: AdderSpec_def)
next i
) internal
case [fsuc n)[]
- | then obtain c holds by the
where AddS: “AdderSpec (a, b, cin, s indunction hyp
and Add1: "AddlImp (a n, b n, ¢, s n
by (auto intro: Suc)
name of the
indunction hyp [Tl
* AdderImp n (a, b, cin, s, ?cout) = AdderSpec n (a, b, cin, s, ?cout)
* AdderImp (Suc n) (a, b, cin, s, cout)
goal (1 subgoal):
* 1. An cout.
[Acout. AdderImp n (a, b, cin, s, cout) => AdderSpec n (a, b, cin, s, cout);
AdderImp (Suc n) (a, b, cin, s, cout)]
== AdderSpec (Suc n) (a, b, cin, s, cout)

B v Find | Output | Siedgehammer ~Symbols
84,15 2948/5714)

(Gsabelle,sidekick UTF-8-Isabelle)

UGHIRNR 26M8 1627

By assumption, we have AdderImp(Suc n) and therefore
both AdderImp n and Add1Imp. The simplest use of
“obtain” would derive those assumptions, but we can skip a
step and go directly to AdderSpec n by referring to the
induction hypothesis.

A Tiresome Calculation

e00 - Adder.thy (modified) e
 Adder.thy (~/Dropbox/ACS/ 11 - Hardvware Verification)

= | then obtain ¢ B
where AddS: "AdderSpec n (a, b, cin, s, c)" rearranging the terms
and Addl: "AddlImp (a n, b n, ¢, s n, cout)" %
by (auto intro: Suc) H

= | have "bit val (s n) * (2 % n) + bit val cout * (2 *2 4 n) = H
(bit_val (s n) + (bit_val cout * 2)) * (2 ~ n)" H
by (simp add:) .
- | also have "... = (bit val c + (bit_val (a n) + bit_val (b n))) * g
@~n" H
using Addl by (simp add: AddlCorrect Add1Spec_def)
finallyflshow "Adderspec (Suc n) (a, b, cin, 5, cout)” using AddS JRRSEYSTIE RSN SVATISTES
 Auto update [Update | [Detach | [100% v
calcutation:

bit_val (s n) * 2~ n + bit_val cout * (2%¥2 " n) =
(bit_val c + (bit_val (a n) + bit_val (b n))) *2 "~ n
proof (chain): step 16

~ picking this:
bit val (s n) * 2~ n + bit val cout * (2% 2~ n) =
(bit_val c + (bit_val (a n) + bitval (bn))) * 2~ n

© v Find | Output | Siedgehammer ~Symbols

95.10 3404/5714) sabelle,sidekick UTF-8-Isabelle) - UCHBEIERGME 1629

This equation is suggested by earlier attempts to prove the
induction step directly. The proof involves using the
correctness of a full adder to replace Add1Imp by
Add1Spec, then unfolding the latter to get the sumc +an +
b n. The precise form of the left-hand side has been chosen
to match a term that will appear in the main proof. This kind
of reasoning is tedious even with the help of Isar. Better
support for arithmetic could make this proof almost
automatic.

Partial Correctness is Proved!

800 - Adder.thy (modified) |
 Adderthy (-/Dropbox/ACS/ 11 - Hardware Verifcation))
text{* Partial correctness of ripple-carry adder for all n by induction *}
Lemma AdderCorrect:

“AdderImp n (a, b, cin, s, cout) == AdderSpec n (a, b, cin, s, cout)"

proof (induction n arbitrary: cout)
case 0 thus ?case . .
by (simp add: AdderSpec_def) implementation =
next specification

case (Suc n)

sawoaul pppPIS uonmwAWN0d 4 @

~ | then obtain ¢
where AddS: "AdderSpec n (a, b, cin, s, c)"
and Addl: "AddlImp (a n, bn, ¢, s n, cout)"
by (auto intro: Suc)
~ | have "bit_val (s n) * (2 % n) + bit val cout * (2*2"n) =
(bit_val (s n) + (bit_val cout * 2)) * (2 ~ n)"
by (simp add:)
~ | also have "... = (bit_val c + (bit_val (a n) + bit val (b n))) *

@~m"
using Add1 by (simp add: Add1Correct Add1Spec_def)
finallyfJshow "AdderSpec (Suc n) (a, b, cin, s, cout)" using AddS
by (simp add: AdderSpec_def gebr ps)
qed

© v Find Output Sledgehammer Symbols

95.10 3404/5714) sabelle,sidekick UTF-8-Isabelle)” - UCHIBIEHIENG 16:30

We end up with a fairly simple structure. Note that we
could have used it Add1Correct earlier in the proof,
obtaining Add1: "add1Spec ...” directly.

To repeat: we have proved that every possible
configuration involving the connectors to our circuit
satisfies the specification of an n-bit adder. Tools based
on BDDs or SAT solvers can prove instances of this result for
fixed values of n, but not in the general case.

Proving Equivalence

Lenna Adderspec_Suc:
"AdderSpec (Suc n) (a, b, cin, s, cout) =
- (3c. AdderSpec n (a, b, cin, s, c) & Add1Spec (a n, b n, c, s n, cout))"
apply (auto fimp add: AdderSpec_def Add1Spec_def ex bool eq bit val def)

™ Auto update | Update Detach | [100%
goal (16 subgoals):

'~ 1. [an; bn; sn; - cout; cin; bits val s n = Suc (2 ~ n + (bits_val a n + bits_val b n))]
— False

* 2. [an;bn;sn; - cout; - cin; bitsval s n=2"n+ (bits_val a n + bits val b n)]
— False

~ 3.[anibn; ~sn; - cout; cin;
bits val s n = Suc (2 % n + bits val a n + (2 % n + bits_val b n))]

souosyL PIRPIS vonmuRWN0Q ¢ @

— False
* 4.[an; bn; ~sn; - cout; - cin;
bits.val s n =2 " n+bitsval an+ (2~ n + bits_val b n)]
== False
* 5. [an; -~ bn; sn; cout; cin;
2*2 " n+bits val s n = Suc (bits_val a n + bits_val b n)]
— False
~ 6. an; ~bn;sn; cout; - cin; 2% 2~ n + bits val s n = bits_val a n + bits_val b n]

B v Find | Output | Siedgehammer ~Symbols

144,13 (5042/5799) sabelle,sidekick UTF-8-Isabelle) - UCHERHIEBSMB 1635

To prove that the specification implies the implementation
would yield their exact equivalence. It would also guarantee
the lack of short circuits in the implementation, as the
specification is obviously correct.

The verification requires the lemma shown above, which
resembles the recursive case of AdderImp. We might
expect its proof to be straightforward. Unfortunately, the
obvious proof attempt leaves us with 16 subgoals. A bit of
thought informs us that these cases represent impossible
combinations of bits. These arithmetic equations cannot hold.
But how can we prove this theorem with reasonable effort?

A Crucial Lemma

e00 - Adder.thy (modified)
2 Adder.thy (~/Dropbox/ACS/ 11 - Hardvware Verification/)

v [temma bits_val less: "bits val f n < 2°n"
by (induction n, auto simp add: bit_val_def) a trivial upper bound on
the value of a bit string
Lemma AdderSpec_Suc:
"AdderSpec (Suc n) (a, b, cin, s, cout) =
- (3c. AdderSpec n (a, b, cin, s, ¢) & Add1Spec (a n, b n, ¢, s n, cout))"

using bits_val less [of a n] bits_val less [of b n] bits_val_less [of s n] [|
by (simpwdd; AdderSpec_def AddlSpec_def ex_bool_eq bit_val def)

Lenna AdderCo inserting three

instances of that fact

SwoauL ppREPIS uommwAWN0G 4 O

Al update | Update Detach | (100

now the proof is trivial

I+ using this:
« bitsvalan<2"n
= bitsvalbn<2"n
* bitsval sn<2"n

goal (1 subgoal):
~ 1. AdderSpec (Suc n) (a, b, cin, s, cout) =
(3c. AdderSpec n (a, b, cin, s, c) A AddlSpec (a n, bn, c, s n, cout))

© v Find | Output | Siedgehammer ~Symbols

UCRIIERE VS 1631

14476 (5105/5714) (isabelle.sidekick UTF-8-Isabelle)

The crucial insight is that all of the impossible cases involve
bit strings that have impossibly high values. It is trivial to
prove the obvious upper bound on an n-bit string. Less
obvious is that Isabelle’s arithmetic decision procedures can
dispose of the impossible cases with the help of that upper
bound. We use a couple of tricks. One is that “using” can be
inserted before the “apply” command, where it makes the
given theorems available. The other trick is the keyword “of”,
which is described below.

The Opposite Implication

eo0o - Adder.thy (modified) vl
2 Adder.thy (~/Dropbox/ACS/ 11 - Hardware Verification/)

Lemma AdderCorrect2: o

- "AdderSpec n (a, b, cin, s, cout) > AdderImp n (a, b, cin, s, cout)" ~
proof (induction n arbitrary: cout) H
case 0 thus ?case H

by (simp add: AdderSpec_def) H

next H
case (suc n) .

thus "AdderImp (Suc n) (a, b, cin, 5, cout)* using Suc]] H

- by (auto simp add: AdderSpec_Suc Add1Correct) z

qed
The implementation and
specification are equivalent!
Al

I+ using this:
* AdderSpec n (a, b, cin, s, ?cout) = AdderImp n (a, b, cin, s, ?cout)

= AdderSpec (Suc n) (a, b, cin, s, cout)
= AdderSpec n (a, b, cin, s, ?cout) = AdderImp n (a, b, cin, s, ?cout)
= AdderSpec (Suc n) (a, b, cin, s, cout)

goal (1 subgoal):
1. AdderImp (Suc n) (a, b, cin, s, cout)

© v Find | Output | Siedgehammer ~Symbols

Gsabelle,sidekick UTF-8-Isabelle)” - UCHEEEIEANG 1654

155,57 (5433/5493)

With the help of AdderSpec_Suc, the opposite direction of
the logical equivalence is a trivial induction.

Making Instances of Theorems

® thm [of a b c]
replaces variables by terms from left to right

® thm [where x=a]
replaces the variable x by the term a

® thm [OF thm; thm, thms]
discharges premises from left to right

® thm [simplified]
applies the simplifier to thm

® thm [attr, attry, attrs]
applying multiple attributes

We proved AdderSpec_Suc with the help of “using”, which
inserted a crucial lemma into the proof. We needed specific
instances of the lemma because Isabelle’s arithmetic
decision procedures cannot make use of the general formula.
Fortunately, we needed only three instances and could
express them using the keyword “o£”. This type of keyword
is called an attribute. Attributes modify theorems and
sometimes declare them: we have already seen attributes
like [simp] and [intro] many times.

The most useful attributes are shown on the slide. Replacing
variables in a theorem by terms (which must be enclosed in
quotation marks unless they are atomic) can also be done
using “where”, which replaces a named variable. in the left
to right list of terms or theorems, use an underscore (_) to
leave the corresponding item unspecified. An example is
bits val less [of _ n], whichdenotesbits val ?f
n<2"n

Joining theorems conclusion to premise can be done in two
different ways. An alternative to OF is THEN: thm, [THEN thm,]
joins the conclusion of thm1 to the premise of thm2. Thus it is
equivalent to thm, [THEN thm,]. The result of such
combinations can often be simplified. Finally, we often

Interactive Formal Verification
| 2: The Mutilated Chess Board

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Overview

e The mutilated chessboard: a classic example in
modelling a problem intuitively.

® More techniques involving Isar.

® To conclude, brief references to other Isabelle
tools and capabilities.

The Mutilated Chess Board

Can this damaged board be tiled with 31 dominoes?

A clear proof requires an abstract model.

An earlier version of this formalisation is described in the
paper referenced below. Comparing that version of the proof
with the present one gives an indication of the progress
made by Isabelle developers, especially as regards
structured proof.

L. C. Paulson.

A simple formalization and proof for the mutilated chess
board.

Logic J. of the IGPL 9 3 (2001), 499-509.

http://jigpal.oxfordjournals.org/cgi/reprint
9/3/475

Proof Outline

® Every row of length 2n can be tiled with
dominoes.

® Every board of size m % 2n can be tiled.

e Every tiled area has the same number of black
and white squares.

® Removing some white squares from a tiled area
leaves an area that cannot be tiled.

® No mutilated 2m x 2n board can be tiled.

The diagram is compelling with no reasoning at all. By
comparison, even the five steps shown above are more
complicated than we would like. However, the Isabelle
formalisation is simpler and shorter than the others that | am
aware of.

An Abstract Notion of Tiling

o Atile is a set of points (such as squares).
e Given a set of tiles (such as dominoes),
¢ the empty set can be tiled,
® and so can aut provided
* tcan be tiled,and

* ais a tile disjoint from ¢ (no overlaps!)

Instead of formalising chess boards concretely, we look more
abstractly at the question of covering a set by non-
overlapping tiles.

Tilings Defined Inductively

e0o © Tiings.thy.

Tilings.thy (-/Dropbox/ACS) 12 - Mutiated chessboard/)
- |text {* Originated by Max Black. Popularized by J McCarthy. *}

section (¥ Tnductive Tiling|*} given a set of tiles...

inductive_set tiling :: "'a set set = 'a set set" for A

here the empty set and
empty : "{} € tiling A aut can be tiled

Jun: “[achA;tetilingA; ant={]= auUte tilingA

declare tiling.intros [intro]

sawoaul pppPIS uonmwAWN0d 4 @

we give the introduction JEECEENEITE

rules to auto and blast

© v Find | Output | Siedgehammer ~Symbols
5.61(163/4287) Gsabelle,sidekick UTF-8-Isabelle)” - UCHERIEM 17.05

Simple Proofs about Tilings

800
© Tilings.thy (-/Dropbox/ACS/12 - Mutlated ches NI LIT AU S SR T=ToTR=Ty ¥

a
lemma tiling UnI [intro]: autoand blast.. -
“[t1 € tiling A; t2 € tiling A; t1 N t2 = {} | = t1 U t2 € tiling A" H
~ |by (induction rule: tiling.induct, auto simp add: Un assoc) H
Lemma tiling_finite: 3 z
assumes "Aa. a € A = finite a" referring to the :
shows "t € tiling A = finite t" theorem’s assumptions §
by (induction set: tiling, auto simp add: assms)’ |3
 Avto pdate [Update | | Detach | [100%
set:another way to
specify the induction icomimaicaniion
two methods
O~ Find |Output| Siedgehammer Symbols
24.1 (684/3956) (isabelle,sidekick,UTF-8-Isabelle) UGHEERNE 2 1M8 17-06

Two disjoint tilings can be combined by taking their union,
yielding another tiling. The induction is trivial, using the
associativity of union. Section 4 of the paper “A simple
formalization and proof for the mutilated chess board”
explains the proof in more detail.

If each of our tiles is a finite set, then all the tilings we can
create are also finite. The induction is again trivial. Even if we
have infinitely many tiles, a tiling can only use finitely many of
them.

We see something new here: the identifier assms. It provides
a uniform way of referring to the assumptions of the theorem
we are trying to prove, if we have neglected to equip those
assumptions with names.

Another novelty is the method induct set: tiling, which

specifies induction over the named set without requiring us to
name the actual induction rule.

Yet another novelty: we can join a series of methods using
commas, creating a compound method that executes its
constituent methods from left to right. Lengthy chains of
methods would be difficult to maintain, but joining two or

Dominoes for Chess Boards

@00 Tiings thy (modified) 2

© Tilings.thy (~/Dropbox/ACS/12 - Mutiated chessboard/) _[SNS IR SR IRt :
section{* Dominos and Colours *} by a pair of coordinates

inductive_set domino :: "(nat x nat) set set" where
horiz: "{(i, j), (i, Suc j)} € domino”
fl vertl: "{(i, j), (Suc i, j)} € domino”

a domino is
horizontal or
vertical

enma domifio_finite: "d € domino = finite d*
by (casds set: domino, auto)

gclare tiling_finite [OF domino_finite, simp]

sauosyL PIRPIS vonmweWN0Q ¢ @

...and consists
of two squares

etach | [100%

Tell the simplifier:

combining two every tiling using

dominoes is finite

theorems

© v Find | Output | Siedgehammer ~Symbols

UGHENER 1M8 17.06

24.1 (684/3956) Input/ output complete (Gsabelle,sidekick UTF -8-Isabelle)

The formalisation of dominoes is extremely simple:
each domino is a two element set of the form {(,)), (i,j
+1)} or {(i,j), (i+1,/)}, expressing a horizontal or vertical
orientation. The set of dominoes is not actually
inductive and we could have defined it by a formula,
but the inductive set mechanism is still convenient.

Because each domino contains two elements, dominoes
are trivially finite. The declaration shown above
combines two finiteness properties, asserting that
tilings that consist of dominoes are finite, and it gives
this fact to the simplifier. Concluding a series of
attributes by simp or intro is common.

White and Black Squares

@00 Tilings.thy (modified) "]
5 Tilings.thy (~/Dropbox/ACS/ 12 - Mutiated chessboard))

o

text {*fJsets of white or black squares *} A

definition §

coloured :: "nat = (nat x nat) set" where colours defined using g

- "coloured b = {(i, j). (i + j) mod 2 = b}" % 4 3

modular arithmetic J

abbreviation £

whites :: "(nat x nat) set" where z

“whites = coloured 0"
abbreviations
abbreviation . :
blacks :: "(nat x nat) set" where DFOVIde l1otation
"blacks = coloured (Suc 0)"

text {*Every domino has a white square and a black square. *}

Lenma domino_singletons:
"d € domino —>
(31 j. whites N d = {(i,5)}) A (3m n. blacks n d = {(m,n)})"
by (cases set: domino, auto simp add: coloured def Int_insert_ right mod_Suc)

B Ouput Siedgehammer Symbols
case analysis on £
the named set

Input/output complete sabelle,sidekick UTF-8-Isabelle)” - UCHIEEE22MB 17.09

The distinction between white and black is made using
modulo-2 arithmetic. The constants “whites” and “blacks” do
not have definitions in the normal sense; they are declared
as abbreviations, which means that these constants never
occur in terms. They provide a shorthand for expressing the
terms “coloured 0” and “coloured (Suc 0)”. Recall that to
define a constant in Isabelle introduces an equation that can
be used to replace the constant by the defining term. And this
equation is not even available to the simplifier by default.
With abbreviations, no such equations exist.

See the Tutorial, section 4.1.4 Abbreviations, for more
information. More generally, section 4.1 describes concrete
syntax and infix annotations for Isabelle constants.

It is now trivial to prove that every domino has a white square
and a black square, by case analysis on the two kinds of
domino. The proof requires giving the simplifier some facts
about intersection and the modulus function.

Rows and Columns

®00 - Tilings thy (modified o
5 Tilings.thy (~/Dropbox/ACS 12 - Mutilated chessboard)) &
section{* Chess Boards *}

a
lemma dominoes_tile row: "{i} x {0..< 2*n} € tiling domino" g
proof (induction n) H

case 0 show ?case by auto H

next even-length rows can be tiled :
case (Suc n) £

have "{i} x {0..<2 * Suc n} = {(1, 2*n), (i, Suc(2*n))} U ({i} x {@..<2*n})" E

by auto =

also have "... € tiling domino" i

W by (rule tiling.intros, auto intro: domino.intros Suc) 8

finally show ?case .
aed(] even-lensth blocks can be tiled
. [temma Suc_by board:

| "{0..< Suc n} x B = ({6..<n} x B) U ({n} x B)"
by auto

Lenma dominoes_tile matrix: "{6..<m} x {0..< 2*n} € tiling domino®
~ by (induction m, auto simp add: Suc_by board dominoes_tile_row)

© v Find Output Sledgehammer Symbols

UGB O3M8 17:15

72,4 (1905/3947) Input/ output complete (Gsabelle,sidekick UTF-8-Isabelle)

The first theorem states that any row of even length
can be tiled by dominoes. In the inductive step, observe
how the expression {@..<2 * Suc n} is rewritten to
involve an explicit domino, {(i, 2*n), (i,
Suc(2*n))}. Structured proofs make this sort of
transformation easy, provided we are willing to write
the desired term explicitly.

The alternative approach, of choosing rewrite rules that
transform a term precisely as we wish, eliminates the
need to write the intermediate stages of the
transformation, but it can be more time-consuming
overall. You know this other approach has been
adopted if you see this sort of command:

apply (simp add: mult_assoc [symmetric] del:
fact_Suc)

The theorem mult_assoc is given a reverse orientation
using the attribute [symmetric], while the theorem
fact_Suc is removed from this simplifier call.

The induction at the bottom of this slide is an example of the
alternative approach done correctly. We first prove a lemma

For Tilings, #Whites = #Blacks

@00 . Tilings.thy (modified)
5 Tilings.thy (~/Dropbox/ACS/ 12 - Mutiated chessboard))
Lenma tiling_domino_0_1:
“t € tiling domino ==> card(whites N t) = card(blacks N t)"
proof (induction set: tiling)
case empty
show ?case by simp
next
case (Un d t)
then obtain i j m n where "whites N d = {(i, j)}" "blacks N d = {(m, n)}"
- by (metis domino_singletons)

Sauosus pppEPIS uopmueWN0G 4 @

by (auto distrib card_insert_if)

@ Ao update [_Update | [Detach] [100%

use the result of
“obtain”

i using this:

- whites N d = {(i, j)}
= blacks N d = {(m, n)}
d € domino
€ tiling domino - as wgll as the
mEod induction hyps

= card (whites N t) = card (blacks N t)

© v Find | Output | Siedgehammer ~Symbols
92,27 2457/3957) sabelle,sidekick UTF-8-Isabelle) - UCHERBIEEEM 17.29

The crux of the argument is that any area tiled by dominoes
must contain the same number of white and black squares.
This statement is easily expressed using set theoretic
primitives such as cardinality and intersection. The proof is
by induction on tilings. It is trivial for the empty tiling. For a
non-empty one, we note that the last domino consists of a
white square and a black square, added to another tiling that
(by induction) has the same number of white and black
squares.

No Tilings for Mutilated Boards

@00 - Tilings.thy (modified) .
1 Tilings.thy (~/Dropbox/ACS/ 12 - Mutiated chessboard))

theorem gen_mutil_not_tiling:
assumes "t € tiling domino” "sgs C whites N t* "sgs # {}*
shows "(t - sqs) ¢ tiling domino”

default proof
of a negation

R assume tm: "t - sqs € tiling domino”
| have fsqs: "finite sqs” using assms
by (metis Int subset iff finite subset tiling finite [OF domino_finitel)
SN hence c: "0 < card sas” "0 < card (whites N t)* using assms

by (auto simp add: card gt 0 _iff)
have "card (whites N (t-sqs)) = card ((whites N t) - sqs)”

by (metis Int Diff)

accumulating
some facts

Sawoaul pppPIS uonmwAWN0d 4 @

- | also have "... < card (whites N t)" usingYsas_c_assms
by (auto simp add: card Diff subset)
also have *... = card (blacks N t)* card (whites n (t - sgs)) <
by (blast intro: tiling_domino_0_1 assms)
~ | also have *... = card (blacks N (t - sqs))" card (blacks n (t - sgs))
proof -

have “"blacks N (t - sqs) = blacks N t* using assms
by (force simp add: coloured_def)
then show ?thesis by simp
qed
finally show False using tiling_domino_6_1 [OF tm] by auto

© v Find Output Sledgehammer Symbols
92.27 2457/3957) Gsabelle,sidekick UTF-8-Isabelle)” - UCHEEIG S6MB 17.30

The other crucial point is that if some white squares are
removed, then there will be fewer white squares than black
ones; although obvious to us, this proof requires the series of
calculations shown on the slide. Once we have established
this inequality, then it is trivial to show that the remaining
squares cannot be tiled.

The Final Proof...

@00 Tilings.thy (modified)

5 Tilings.thy (~/Dropbox/ACS 12 - Mutilated chessboard))

~ |theorem mutil_not_tiling:

fixes m n
defines "t = {0..< 2 * Suc m} x {0..< 2 * Suc n}"
- shows "t TN@,0), (Suc(2*m), Suc(2*n))} ¢ tiling domino"
apply [[rule gen_mitdl not_tiling)[]
apply (metis dominoes tile matrix t_def)
apply (auto simp add: colourdtndef t_def)
done

souosyL pIRPIS vonmuRWN0Q ¢ @

a local constant, t

o Auto update |_Update Detach | [100%

proof (prove): step 1

goal (3 subgoals):
1. t € tiling domino

2. {(6, 0), (Suc (2 * m), Suc (2 * n))} C whites n t
3. {(6, 0), (Suc (2 * m), Suc (2 * n))} # {}

B v Find | Output | Siedgehammer ~Symbols

sabelle,sidekick UTF-8-Isabelle) - UCHEERIEEAMG 17.37

133,34 (3860/3957)

An 8 x 8 chess board can be generalised slightly, but the
dimensions must be even (otherwise, the removed squares
will not be white) and positive (otherwise, nothing can be
removed).

Here we display yet another novelty: a “defines” element.
Within the proof, t is a constant whose definition is available
as the theorem t_def. But once the proof is finished, Isabelle
stores a theorem that does not mention t at all.

The “fixes” element is necessary because otherwise the
“defines” element will be rejected on the grounds that it has
“hanging” variables (m and n) on the right-hand side.

The Result for Chess Boards

e00 Tilings.thy (modified)

P

5 Tilings.thy (~/Dropbox/ACS/ 12 - Mutilated chessboard))

~ |theorem mutil_not_tiling:
fixes m n
defines "t = {0..< 2 * Suc m} x {0..< 2 * Suc n}"
= | shows "t - {(8,0), (Suc(2*m), Suc(2*n))} ¢ tiling domino"
apply (rule gen_mutil_not_tiling)
apply (metis dominoes_tile matrix t_def)
apply (auto simp add: coloured def t_def)
done

souosyL PIRPIS vonmweWN0Q ¢ @

thm mutil_not_tiling[]

 Auto update [Update | [Detach | [100%
{0..<2 * Suc 7m} x {0..<2 * Suc ?n} - {(0,), (Suc (2 * ?m), Suc (2 * ?n))} £ tiling domino

the theorem as

it is stored

ind | Output | Sledgehammer ~ Symbols

sabelle,sidekick UTF-8-Isabelle) - UCHINIERANIS 17.39

138.213972/3977)

Note that the final theorem does not mention defines
or t. All such definitions are expanded.

We can display the theorem explicitly using thm.

Finding Structured Proofs

5 Tilings.thy (~/Dropbox/ACS/12 - Mutllated chessboard))
shows "t € tiling A = finite t"

proof (induction set: tiling) 200, <
© Tiigsty ./ Draphos ACS/ 12 -

case empty case empty @
show ?case by simp show ?case by simp '
next next g
case (Un d t) case (Un d t) 3
thus ?case thus ?case é

o| apply (rule finite UnI) anply] .

sawons oD

o Auto update

Failed to apply proof method: you need o updaee (_Upde | Detach | [ioon
using this: apply - step 8

cdeA pply

= t € tiling A goal (1 subgoal):

cdnt={ - 1. [d €A tetilingA; d Nt = () finite 1]

- finite t — finite (d U 1)

1 :
o (@ CLET It's okay to fool around
PRCRTTVIL TOPUPMARN i, 2101y, but what if
[B chis keeps happening?

Siedgehammer Syt

145,28 (4174/418)

A common way to arrive at structured proofs is to look for a
short sequence of apply-steps that solve the goal at hand. If

successful, you can even leave this sequence (terminated by
“done”) as part of the proof, though it is better style to
shorten it to a use of “by”. Sometimes however almost
everything you try produces an error message. The problem
may be that you are piping facts into your proof using then/
hence/thus/using. Some proof methods (in particular,
“rule” and its variants) expect these facts to match a
premise of the theorem you give to “rule”. The simplest way
to deal with this situation is to type apply -, which simply
inserts those facts as new assumptions. It would be very ugly
to leave - as a step in your final proof, but it is useful when
exploring.

Other Facets of Isabelle

® Document preparation: you can generate LATeX
documents from your theories.

e Axiomatic type classes: a general approach to
polymorphism and overloading when there are
shared laws.

® Code generation: you can generate executable
code from the formal functional programs you
have verified.

® [ocales: encapsulated contexts, ideal for
formalising abstract mathematics.

See the Tutorial, section 4.2, for an introduction to document
preparation.

Locales are documented in the “Tutorial to Locales and
Locale Interpretation” by Clemens Ballarin, which can be
downloaded from Isabelle’s documentation page.

Axiomatic Type Classes

® Controlled overloading of operators, including +
— % /N < and even gcd

® Can define concept hierarchies abstractly:

¢ Prove theorems about an operator from its
axioms

¢ Prove that a type belongs to a class, making
those theorems available

® Crucial to Isabelle’s formalisation of arithmetic

Axiomatic type classes are inspired by the type class concept
in the programming language Haskell, which is based on the
following seminal paper:

Philip Wadler and Stephen Blott. How to make ad-hoc
polymorphism less ad hoc. In 16th Annual Symposium on
Principles of Programming Languages, pages 60—-76. ACM
Press, 1989.

A very early version was available in Isabelle by 1993:

Tobias Nipkow. Order-sorted polymorphism in Isabelle. In
Gérard Huet and Gordon Plotkin, editors, Logical
Environments, pages 164—188. Cambridge University Press,
1993.

More recent papers include the following:

Markus Wenzel. Type Classes and Overloading in Higher-
Order Logic. In: Elsa L. Gunter and Amy P. Felty, Theorem
Proving in Higher Order Logics. Springer Lecture Notes In
Computer Science 1275 (1997), 307 - 322.

Lawrence C. Paulson. Organizing Numerical Theories Using
Axiomatic Tvpe Classes. J. Automated Reasonina 33 1

Code Generation

® |[sabelle definitions can be translated to
equivalent ML and Haskell code.

o [nefficient and non-executable parts of
definitions can be replaced by equivalent,
efficient terms.

® Algorithms can be verified and then executed.

® The method eval provides reflection: it proves
equations by execution.

See “Code generation from Isabelle/HOL theories”, by
Florian Haftmann; it can be downloaded from Isabelle’s
documentation page.

The End

You know my methods. Apply them!

Sherlock Holmes

