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Lecture 8

k shortest paths

@ Recommended reading: Semiring frameworks and algorithms for
shortest-distance problems, Mehryar Mohri, Journal of Automata,
Languages and Combinatorics, v7, number 2, 2002
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k shortest paths

The T, semiring

Tk = (Tk, @k, Rk, Ok, 1x)

where
(307 sy ak) Dk (b07 sy bk) = mink(307 , Ak, b07 ) bk)
6/( = (007 0, ) OO)
(ag, .., ak) ®x (bg, ..., by) = ming(ap + by, a + by, ..., ax + by
Tk = (07 0, ) OO)
Tk is (k — 1)-stable.
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Examples (®,). Note that T is not idempotent for k > 1.
(57 8) D2 (37 6) = min2(57 87 37 6)
= (37 5)
(1, 20) @2 (1, 20) = miny(1, 20, 1, 20)
= (17 1)
Examples (®»)
(5, 8)®2 (3, 6) — miny(5+3, 5+6, 8+3, 8+6)
= miny(8, 11, 11, 14)
= (85 11)
(5, 8)®20, = miny(5+ 0, 5+, 8+, 8+ )
= ming(oo, o0, 00, )
= (007 OO)
= 0o
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Mohri’s example (here with k = 3)

pa

0 1 2 3
0| [00,00,00] [1,00,00] [2,00,00] [o0,00,00]
A — 1 [00,00,00] [5,00,00] [00,00,00] [4,00,00]
2| [oo,00,00] [3,00,00] [00,00,00] [6,00,0]
3 | [00,00,00] [00,00,00] [0,00,00] [o0,00,00]
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Red indicates change from previous iteration
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0 1 2 3
0 [0,00,0] [1,5,6] [2,00,00] [5,8, ]
A _ [00,00,0] [0,5,10] [4,00,0] [4,9,x0]
2 | [o0,00,0] [3,8,00] [0,6,00] [6,7,00]
3 | [00,00,00] [3,00,00] [0,00,00] [O,6,00]
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0 1 2 3
o [0,00,00] [1,5,6] [2,5,8] [5,8,9]
AD — [0,00,00] [0,5,7] [4,9,0] [4,9,10]
2| [oo,00,0] [3,8,9] [0,6,7] [6,7,12]
3| [o0,00,00] [3,8,00] [0,6,00] [0,6,7]
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9,10]
7,12]
,6,7]
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Another example : a simple cycle.
00
|
0 1 2 3
0 [00,00,00] [1,00,00] [00,00,00] [00,00,0]
1 [00,00,00] [00,00,00] [1,00,00] [o0,00,0]
A =
2 | [00,00,00] [00,00,00] [00,00,00] [1,00,00]
3 [1,00,00] [00,00,0] [o0,00,00] [o0,00,00]
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Solution A* reached at 11-th iteration

I
0 1 2 3
o [ [0,4,8] [1,5,9] [2,6,10] [3,7,11]
Aty _ 1| B7.11] [0,4.8] [1,59] [2,610]
2| [2,6,10] [3,7,11] [0,4,8] [1,5,9]
3 [1,5,9] [2,6,10] [3,7,11] [0,4,8]
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Lecture 9

Marrtelli's semiring

@ Recommended reading: A Gaussian Elimination Algorithm for the
Enumeration of Cut Sets in a Graph. Alberto Martelli. Journal of
the ACM (JACM). v23, number 1, 1976.
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Reductions

If (S,®,®) is a semiring and r is a function from Sto S, then ris a
reduction if for allaand bin S

Q r(a) =r(r(a))
Q r(a@b)=r(r(@a@®b)=r(a®rb))
Q r(a®b)=r(r(a®b) =r(ax r(b))

Note that if either operation has an identity, then the first axioms is not
needed. For example,

v
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Reduce operation

If (S, ®, ®) is semiring and r is a reduction, then let
redr(S) = (Sr, @r, ®r) where

Q@ S ={seS|r(s) =s}
Q X@ry:r(x@}/)
Q XQry=rxey)

Is the result always semiring?
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Application of reduction

Let’s try to build a semiring that uses paths to avoid counting to infinity!
First, a very useful construction:

union_lift(S, e)
Assume (S, o) is a semigroup. Let

union_lift(S, e) = (Pun(S), v, @)

where
XeY ={xey|xeX, ye Y},

and X, Y € Psn(S), the set of finite subsets of S.
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A semiring of elementary paths

Recall paths(E)
paths(E) = union_lift(E*, -, €)

where - is sequence concatenation.

A path p is elementary if no node is repeated. Define the reduction

r(X) = {pe X | pis an elementary path}

Semiring of Elementary Paths

epaths(E) = red,(paths(E))
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paths(E) example
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paths(E) example, adjacency matrix

0 1 2 3 4
o[ {4 O O { ]
U R (3 BN F R
L= 21 0 U g U0 U
s O U g §
a0 0 0 6 {9
0 1 2 3 4
0 U AloO]} {2 {0,3)]}  {
o {2 3 {4
A = 2 {leop el 4 @3l HE4)
s IGO0 G2l { {
4 O {leon {42 § U

Here | write a non-empty path p as [p].
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paths(E) example, solution

A*(0,0) = {¢}

C0.1),(1.4)], *
Ei e

AQH = 1 jo2.@1n 4] |
[(0,3), (3.2), (2. 4)],

| 1(0.3),3.2).(2.1).(1,4)] |
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Now add some link weights ...

Let’s use
AddZero(o0, (N, min, +) x paths(E))
0 1 2 3 4
o [ (0,{e}) o0 o0 o0 o0
1 0 (0, {e}) o0 o0 o0
I = =2 o0 0 (0, {€}) 0 0
3 00 00 o0 (0, {€}) o0
4 o0 o0 o0 o0 (0, {e})
0 1 2 3
0 o0 (2,{[(0, )]} (1,{[(0,2)]}) (&,{[(0,3)]})
| (2A1(1,0)]3) o0 {1(1,2)1}) o0 (4, {[(
A = 2| (1L{E0) G{[2N]}) o0 (4,{[(2,3)]}) 3.l
3 | (6,{[(3,0)]}) o0 (4,{[(3,2)]}) o0
4 o0 4 {[(4, 1]} G.{l(4.2)]}) o0
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Solution

0 1 2
0 (0, {e}) (2,{[(0,1)]}) (1,{[(0,2)]})
1 (2,{[(1,0)]}) (0, {e}) (3,{[(1,0),(0,2)]})
A* = 2 (1,{[(2,0)]}) (3,{[(2,0),(0,1)]}) (0, {e})
3 | (5,{[(3,2),(2,0)]}) (7,{[(3,2),(2,0),(0,1)]})  (4.{[(3,2)]})
a | (4{[(4,2),(2,0]}) (4,{[(4,1)]}) (3,{[(4,2)]})
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Starting in an arbitrary state? No!

AN A
T @ @

Let us try this again ... ]
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Starting in an arbitrary state? No!

using
AddZero(co, (N, min, 4) X paths(E)) }
0 1 2
0 O0,{e}) ({0, D]}) (1,{[(0,2)]}) (999,{})
Boe = | (BULOIY) — (0.4ep) — (1,4[(1,2)1}) (999, 4})
2 | (L{[2,00) ({1}  (0,{e)  (999,{})
3 o0 o0 o0 (0, {€})
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Starting in an arbitrary state?

Solution: use another reduction!

r(inr(c0)) = inr(c0)

. inr(o0) if W= {}
r(inl)(s, W) = { inl(s, W) otherwise

Now use this instead

red,(AddZero(oo, (N, min, +) x paths(E)))

23 /47
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Starting in an arbitrary state?

By and B;

25/47
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Starting in an arbitrary state?

Bg and B3
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Min-set operations

Suppose < is a partial order on S, (S, ®) is a semigroup, and
X,YcS.

ming(X) = {xeX|VyeX, —(y <x)}

Pﬁn(S, <)

{X < §| Xfinite and min<(X) = X}

XOS. Y = ming(XuY)

min

X @S, Y = ming (XQY)

< -
~in 1S always idempotent.

may not be. Question: is ming always a reduction?

Note that over Pg, (S, <) the operation @
<
min

However, ®
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Example over N x N

(a, b)<(c,d)=(a<c)A(b<d)

mﬁin ({(10,100), (9,99), (99,9),(99, 10)})

= {(9,99), (99,9)}

{(170)3 (07 1)} (+ X +)§in {(170)7 (07 1)}
= min ({(1,0), (0, 1)} (+ x +) {(1,0), (0,1)})

= min({(2,0), (1,1), (0, 2)})

- {(270)7 (171)a (07 2)}
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Observation

Incomparable relation

a##<b=—-(a<b)r—-(b<a)

Claim 12.1
If x,y € ming(X) and x # y, then x # .

Set like ming(X) are often called (finite) antichains over (S, <).
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Suppose D € {L, R}. Let < = <2 and define

M(D7 (87 @, ®)) = (Pﬁn(s? <>7 ®r§1in’ @rfﬂn)

N(D, (S, ® ®) = (Pu(S, <), By Onin)

Recal a<t b=a=ad®banda<fb=b=adb.

| suspect that 16 lectures could easily be dedicated to only M and J

IMPORTANT NOTE: So as not to reveal too much wrt Homework 2, |
will assume for the rest of this lecture that (S, ®, ®) has any
conditions needed to guarantee that both M(D, (S, @, ®)) and

N(D, (S, ®, ®)) are semirings and that min¢ acts as a reduction over

(P(S), U, &).
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Looking at solutions over

(N, 8, ®) =N(D, (S, ®, ®)) J

A*(i, ) = X]A(e)

peP(i, j) €P

- min( | [X]A(e)

peP(i, j) <P

= min( | m<in(<>A§A(e)))

< <
peP (i, j) eep

= min( U @A(e))

pePi, j) P

This assumes that ming acts as a reduction.
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What if @ is selective?

Then
min(X) = { {{x}} (if X' =1})

< (if X # {} and x is <-least value in X)

and for non-empty X and Y we have

XHY = {x}R{y} =minix®@y} = {x®y}.

sp~ N(L, (N, min, +))
| sp = AddZero(oo, (N, min, +)) |N(L, (N, min, +)) |

‘ inl(0) ‘ {0} ‘
inl(17) {17}
inr(o0) {3
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So N is more interesting when @ is not selective!

Let’'s compare

Ny = AddZero(oo, (N, min, +) x (N, min, +))

with

No = N(L, (N, min, +) x (N, min, +))
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Example with Nj
A, A:

Each component is associated with a shortest path.
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Example with Ny

A, A
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Now add paths to N»

Note that
(N, min, +) x (N, min, +)) x paths(E)

is not well-formed since (N, min, +) x (N, min, +) is not selective.

N3 = N(L, (N, min, +) x paths(E)) x ((N, min, +) x paths(E)))

N3 has values of the form

{((m1, Qy), (N1, P1)), (M2, Qa), (N2, P2)), ---, ((Mk, Qk), (Nk, Px))}
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A3 over N3
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Compare!

AT“? 3) = (3,3
A;“? 3) - {(47 3)7 (37 9)}

A3(1,3) = {((?,

ATO, 1) = (2,1)
A;<O’1> = {(371)7(277)}

Are we happy?
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Hmmm, wait a minute!

AT“’ 2) = (17 4)

A3(1,2) = {(1, 4)}

A3(1,2) = {((1,{[(1,2)]}), (4, {[(1,2)]})),
((9,{[(1,0),(0,3), (3,2)]}), (4,{[(1,0), (0,3), (3,2)]})),
((4,{[(1,0),(0,2)]}), (4,{[(1,0),(0,2)]}))}

v

What is going on? The order and the related notion of incomparability
are both rather complicated ...
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Now, turning to solutions over M

(M, BB, §) = M(D, (S, &, ®)) ]

A*(i. j) = [x]A(e)

peP(i, j) eep

- min (UA(a))

peP(i, j) ~ \eep

- m<in< é;) min (UA(e)))
= \peP(i,j) ~ \eep

— mgin( ) UA(e))
peP(i, j) esp

This assumes that min¢ acts as a reduction (hands waving ...)
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Martelli’'s Semiring

Let G = (V, E) be a directed graph.
M1(G) = M(R7 (2E7 Y, U))
What does it do?

@ If every arc (i, j) is has weight A(/, j) = {{(i, j)}}, then A*(i, j) is
the set of all minimal arc cut sets for / and J.

Definition
@ Aarccutset C < E for nodes / and j is a set of arcs such there is
no path from j to j in the graph (V, E — C).
@ Cis minimal if no proper subset of C is an arc cut set.
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13, 0)}}
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Part of A}

AT(Oa 1) = {{(07 )7(271)}7
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Homework 2
union_lift(S, )
Assume (S, o) is a semigroup. Let

union_lift(S, o) = (Pun(S), U, $)

where
XeY ={xey|xeX, yeVY},

and X, Y € Psn(S), the set of finite subsets of S.
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Let
SEMIRING(S, &, ®) = (S, @, ®) is a semiring

Problem 1 (35 marks)
Find a Q4 such that

SEMIRING (P5a(S), U, 8) < Q1(S, ).
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Homework 2

Let < be a partial order on S. For X < S, define

m<in(X) ={xeX|VyeX, —-(y<x)}.

Define

Pin(S, <) = {X = §| Xfinite and min(X) = X}.

Problem 2 (15 marks)
Prove that (Psn(S, <), @5;,) where

A €5, B=min(Au B)

is a semigroup. It is clear that {} is the identity. Is there always an
annihilator?

v
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Homework 2
Problem 3 (15 marks)
Let (S, ®) be a semigroup over the ordered set (S, <). Let
A®S. B= mgin({a@b |lac A, be B))
Find a Q3 such that
Q3(Sv <, ®) <:>AS(Pﬁn(Sa <>7 ®§]in)'
It is clear that {} is the annihilator. Is there always an identity?
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Homework 2

Suppose S = (S, @, ®, 0, 1) is a semiring.

T= (Pﬁn(s7 <)7 ®§]in7 C—Bﬁin)
where a < b= a® b = a (the left natural order).

Problem 4 (35 marks)
Find a Q4 such that

SEMIRING(S) = (SEMIRING(T) < Q4(S)).
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