L11: Algebraic Path Problems with applications to Internet Routing Lectures 8 and 9

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2016

◆□▶◆□▶◆■▶ ● り900

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

1 / 47

Lecture 8

k shortest paths

Recommended reading: <u>Semiring frameworks and algorithms for shortest-distance problems</u>, Mehryar Mohri, Journal of Automata, Languages and Combinatorics, v7, number 2, 2002

k shortest paths

The \mathcal{T}_k semiring

$$\mathcal{T}_k \equiv (\mathbb{T}_k, \, \oplus_k, \, \otimes_k, \, \overline{0}_k, \, \overline{1}_k)$$

where

$$(a_0, \ldots, a_k) \oplus_k (b_0, \ldots, b_k) \equiv \min_k (a_0, \ldots, a_k, b_0, \ldots, b_k)$$

$$\overline{0}_k \equiv (\infty, \infty, \cdots, \infty)$$

$$(a_0, \ldots, a_k) \otimes_k (b_0, \ldots, b_k) \equiv \min_k (a_0 + b_0, a_0 + b_1, \ldots, a_k + b_k)$$

$$\overline{1}_k \equiv (0, \infty, \cdots, \infty)$$

 \mathcal{T}_k is (k-1)-stable.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

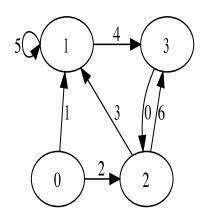
T.G.Griffin@2015

3 / 47

Examples (\oplus_2) . Note that T_k is not idempotent for k > 1.

$$(5, 8) \oplus_2 (3, 6) = min_2(5, 8, 3, 6)$$

= $(3, 5)$


$$(1, 20) \oplus_2 (1, 20) = \min_2 (1, 20, 1, 20)$$

= $(1, 1)$

Examples (\otimes_2)

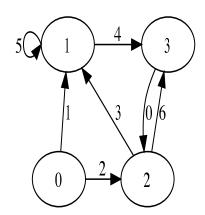
$$\begin{array}{lcl} (5,\ 8)\otimes_2(3,\ 6)&=&min_2(5+3,\ 5+6,\ 8+3,\ 8+6)\\ &=&min_2(8,\ 11,\ 11,\ 14)\\ &=&(8,\ 11) \end{array}$$

$$\begin{array}{rcl} (5,\ 8) \otimes_2 \overline{0}_2 & = & min_2(5+\infty,\ 5+\infty,\ 8+\infty,\ 8+\infty) \\ & = & min_2(\infty,\ \infty,\ \infty,\ \infty) \\ & = & (\infty,\ \infty) \\ & = & \overline{0}_2 \end{array}$$

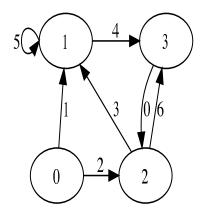
Mohri's example (here with k = 3)

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & [\infty, \infty, \infty] & [1, \infty, \infty] & [2, \infty, \infty] & [\infty, \infty, \infty] \\ 1 & [\infty, \infty, \infty] & [5, \infty, \infty] & [\infty, \infty, \infty] & [4, \infty, \infty] \\ 2 & [\infty, \infty, \infty] & [3, \infty, \infty] & [\infty, \infty, \infty] & [6, \infty, \infty] \\ 3 & [\infty, \infty, \infty] & [\infty, \infty, \infty] & [0, \infty, \infty] & [\infty, \infty, \infty] \end{bmatrix}$$

▼ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 9.0


tgg22 (cl.cam.ac.uk)

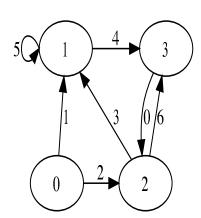
L11: Algebraic Path Problems with applica


T.G.Griffin©2015

5 / 47

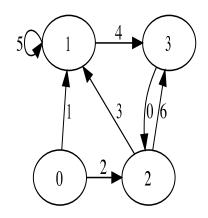
Red indicates change from previous iteration

$$\mathbf{A}^{\langle 1 \rangle} \ = \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & \begin{bmatrix} [0, \infty, \infty] & [1, \infty, \infty] & [2, \infty, \infty] & [\infty, \infty, \infty] \\ [\infty, \infty, \infty] & [0, 5, \infty] & [\infty, \infty, \infty] & [4, \infty, \infty] \\ [\infty, \infty, \infty] & [3, \infty, \infty] & [0, \infty, \infty] & [6, \infty, \infty] \\ [\infty, \infty, \infty] & [\infty, \infty, \infty] & [0, \infty, \infty] & [0, \infty, \infty] \end{array} \right]$$


$$\mathbf{A}^{\langle 2 \rangle} \ = \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & \left[0, \infty, \infty\right] & \left[1, 5, 6\right] & \left[2, \infty, \infty\right] & \left[5, 8, \infty\right] \\ \left[\infty, \infty, \infty\right] & \left[0, 5, 10\right] & \left[4, \infty, \infty\right] & \left[4, 9, \infty\right] \\ 2 & \left[\infty, \infty, \infty\right] & \left[3, 8, \infty\right] & \left[0, 6, \infty\right] & \left[6, 7, \infty\right] \\ 3 & \left[\infty, \infty, \infty\right] & \left[3, \infty, \infty\right] & \left[0, \infty, \infty\right] & \left[0, 6, \infty\right] \end{array} \right]$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

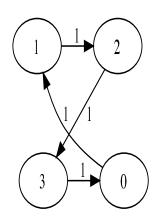

T.G.Griffin@2015

√) Q (~ 7 / 47

$$\mathbf{A}^{\langle 3 \rangle} \ = \ \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & \left[0, \infty, \infty\right] & \left[1, 5, 6\right] & \left[2, \frac{5}{8}, 8\right] & \left[5, 8, 9\right] \\ \left[\infty, \infty, \infty\right] & \left[0, 5, 7\right] & \left[4, 9, \infty\right] & \left[4, 9, 10\right] \\ \left[\infty, \infty, \infty\right] & \left[3, 8, 9\right] & \left[0, 6, 7\right] & \left[6, 7, 12\right] \\ 3 & \left[\infty, \infty, \infty\right] & \left[3, \frac{8}{8}, \infty\right] & \left[0, \frac{6}{8}, \infty\right] & \left[0, \frac{6}{8}, 7\right] \end{array} \right]$$

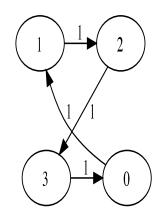
◆ロ → ◆昼 → ◆ き → ・ き ・ り へ ○

$$\mathbf{A}^{\langle 4 \rangle} \ = \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & \left[\begin{array}{c} [0, \infty, \infty] & [1, 5, 6] & [2, 5, 8] & [5, 8, 9] \\ [\infty, \infty, \infty] & [0, 5, 7] & [4, 9, 10] & [4, 9, 10] \\ [\infty, \infty, \infty] & [3, 8, 9] & [0, 6, 7] & [6, 7, 12] \\ [\infty, \infty, \infty] & [3, 8, 9] & [0, 6, 7] & [0, 6, 7] \end{array} \right]$$


tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applic

T.G.Griffin@2015


9/47

Another example: a simple cycle.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ \begin{bmatrix} [\infty, \infty, \infty] & [1, \infty, \infty] & [\infty, \infty, \infty] & [\infty, \infty, \infty] \\ \\ [\infty, \infty, \infty] & [\infty, \infty, \infty] & [1, \infty, \infty] & [\infty, \infty, \infty] \\ \\ [\infty, \infty, \infty] & [\infty, \infty, \infty] & [\infty, \infty, \infty] & [1, \infty, \infty] \\ \\ [3] & [1, \infty, \infty] & [\infty, \infty, \infty] & [\infty, \infty, \infty] & [\infty, \infty, \infty] \end{bmatrix}$$

Solution A* reached at 11-th iteration

$$\mathbf{A}^{\langle 11 \rangle} \ = \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & \begin{bmatrix} [0,4,8] & [1,5,9] & [2,6,10] & [3,7,11] \\ [3,7,11] & [0,4,8] & [1,5,9] & [2,6,10] \\ [2,6,10] & [3,7,11] & [0,4,8] & [1,5,9] \\ [1,5,9] & [2,6,10] & [3,7,11] & [0,4,8] \\ \end{array}$$

◆□▶ ◆□▶ ◆■▶ ◆■ りへ○

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

11 / 47

Lecture 9

Marrtelli's semiring

Recommended reading: <u>A Gaussian Elimination Algorithm for the Enumeration of Cut Sets in a Graph.</u> Alberto Martelli. Journal of the ACM (JACM). v23, number 1, 1976.

Reductions

If (S, \oplus, \otimes) is a semiring and r is a function from S to S, then r is a reduction if for all a and b in S

- $r(a \oplus b) = r(r(a) \oplus b) = r(a \oplus r(b))$

Note that if either operation has an identity, then the first axioms is not needed. For example,

$$r(a) = r(a \oplus \overline{0}) = r(r(a) \oplus \overline{0}) = r(r(a))$$

4□ > 4 @ > 4 \(\bar{a}\) > \(\bar{a}\) = \(\O \) \(\O \) \(\D \) = \(\O \) \(\O \

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

3 / 47

Reduce operation

If (S, \oplus, \otimes) is semiring and r is a reduction, then let $red_r(S) = (S_r, \oplus_r, \otimes_r)$ where

- $x \oplus_r y = r(x \oplus y)$

Is the result always semiring?

Application of reduction

Let's try to build a semiring that uses **paths** to avoid counting to infinity! First, a very useful construction:

union lift(S, \bullet)

Assume (S, \bullet) is a semigroup. Let

union_lift(
$$S$$
, \bullet) $\equiv (\mathcal{P}_{fin}(S), \cup, \hat{\bullet})$

where

$$X \hat{\bullet} Y = \{ x \bullet y \mid x \in X, y \in Y \},$$

and $X, Y \in \mathcal{P}_{fin}(S)$, the set of finite subsets of S.

◆ロト ◆昼 ト ◆ 壹 ト → 壹 ・ り へ ②

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

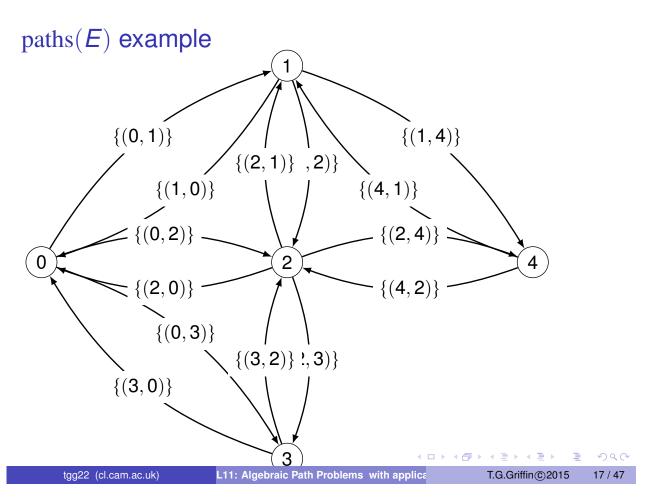
T.G.Griffin@2015

15 / 47

A semiring of elementary paths

Recall paths(*E*)

$$paths(E) \equiv union_lift(E^*, \cdot, \epsilon)$$


where \cdot is sequence concatenation.

A path p is elementary if no node is repeated. Define the reduction

$$r(X) = \{ p \in X \mid p \text{ is an elementary path} \}$$

Semiring of Elementary Paths

$$\operatorname{epaths}(E) = \operatorname{red}_r(\operatorname{paths}(E))$$

paths(E) example, adjacency matrix

Here I write a non-empty path p as [p].

paths(*E*) example, solution

$$A^*(0,0) = \{\epsilon\}$$

$${\textbf A}^*(0,4) \ = \ \left\{ \begin{array}{ll} & [(0,1),(1,4)], \\ & [(0,1),(1,2),(2,4)], \\ & [(0,2),(2,4)], \\ & [(0,2),(2,1),(1,4)], \\ & [(0,3),(3,2),(2,4)], \\ & [(0,3),(3,2),(2,1),(1,4)] \end{array} \right\}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applic

T.G.Griffin@2015

10 / 47

Now add some link weights ...

Let's use

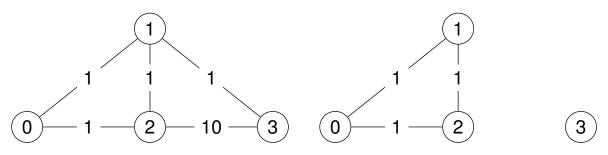
AddZero(
$$\infty$$
, (\mathbb{N} , min, +) \times paths(E))

$$\mathbf{I} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & (0,\{\epsilon\}) & \infty & \infty & \infty & \infty \\ 1 & \infty & (0,\{\epsilon\}) & \infty & \infty & \infty \\ \infty & \infty & (0,\{\epsilon\}) & \infty & \infty \\ \infty & \infty & \infty & (0,\{\epsilon\}) & \infty \\ 3 & \infty & \infty & \infty & (0,\{\epsilon\}) & \infty \\ 4 & \infty & \infty & \infty & \infty & (0,\{\epsilon\}) \end{bmatrix}$$

Solution

$$\mathbf{A}^* = \begin{array}{c} 0 \\ 1 \\ 2 \\ (0,\{\epsilon\}) \\ (2,\{[(0,1)]\}) \\ (2,\{[(0,1)]\}) \\ (1,\{[(0,2)]\}) \\ (1,\{[(0,2)]\}) \\ (1,\{[(0,2)]\}) \\ (1,\{[(0,2)]\}) \\ (1,\{[(0,2)]\}) \\ (1,\{[(0,2)]\}) \\ (1,\{[(0,2)]\}) \\ (1,\{[(0,2)]\}) \\ (2,\{[(0,1)]\}) \\ (3,\{[(1,0),(0,2)]\}) \\ (3,\{[(1,0),(0,2)]\}) \\ (4,\{[(1,2),(2,0)]\}) \\ (4,\{[$$

◆□▶ ◆□▶ ◆■▶ ◆■ りへ○


tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

21 / 47

Starting in an arbitrary state? No!

Let us try this again ...

Starting in an arbitrary state? No!

using

AddZero(
$$\infty$$
, (\mathbb{N} , min, +) $\vec{\times}$ paths(\vec{E}))

$$\mathbf{B}_{998} \ = \ \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & (0,\{\epsilon\}) & (1,\{[(0,1)]\}) & (1,\{[(0,2)]\}) & (999,\{\}) \\ (1,\{[(1,0)]\}) & (0,\{\epsilon\}) & (1,\{[(1,2)]\}) & (999,\{\}) \\ (1,\{[(2,0)]\}) & (1,\{[(2,1)]\}) & (0,\{\epsilon\}) & (999,\{\}) \\ \infty & \infty & \infty & \infty & (0,\{\epsilon\}) \\ \end{array}$$

◆□▶◆□▶◆■▶◆■▼ かへで

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

23 / 47

Starting in an arbitrary state?

Solution: use another reduction!

$$r(\operatorname{inr}(\infty)) = \operatorname{inr}(\infty)$$

 $r(\operatorname{inl})(s, W) = \begin{cases} \operatorname{inr}(\infty) & \text{if } W = \{\} \\ \operatorname{inl}(s, W) & \text{otherwise} \end{cases}$

Now use this instead

$$red_r(AddZero(\infty,\ (\mathbb{N},\ min,\ +)\ \vec{\times}\ paths(\textit{E})))$$

Starting in an arbitrary state?

B₀ and **B**₁

$$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 0 \\ 0, \{\epsilon\}) \\ 1, \{[(0,1)]\}) \\ 1, \{[(0,1)]\}) \\ 2, \{[(1,0)]\}) \\ 2, \{[(1,0)]\}) \\ 3, \{[(1,0)]\}) \\ 3, \{[(2,0)]\}) \\ 3, \{[(2,0)]\}) \\ 3, \{[(2,0)]\}) \\ 3, \{[(2,1)]\}) \\ 3, \{[(2,1)]\}) \\ 3, \{[(2,1)]\}) \\ 3, \{[(2,1)]\}) \\ 3, \{[(2,1)]\}) \\ 3, \{[(2,1)]\}) \\ 4, \{[(2,1)]\}) \\ 5, \{[(3,1),(1,2)]\}) \\ 5, \{[(3,1),(1,2)]\}) \\ 5, \{[(3,1),(1,2)]\}) \\ 6, \{[(3,1),(1,2)]\}) \\ 7, \{[(3,1),(1,2)]\}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with application

T.G.Griffin@2015

25 / 47

Starting in an arbitrary state?

\mathbf{B}_2 and \mathbf{B}_3

$$\begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & \{(0,\{\epsilon\})\} & \{(1,\{[(0,1)]\})\} & \{(1,\{[(0,2)]\})\} & \{(3,\{[(0,2),(2,1),(1,3)]\})\} \\ 1 & \{(1,\{[(1,0)]\})\} & \{(0,\{\epsilon\})\}\} & \{(1,\{[(1,2)]\})\} & \infty \\ 2 & \{(1,\{[(2,0)]\})\} & \{(1,\{[(2,1)]\})\} & \{(0,\{\epsilon\})\} & (3,\{[(2,0),(0,1),(1,3)]\}) \\ 3 & \infty & \infty & \infty & \infty & (0,\{\epsilon\}) \\ \end{array} \right]$$

Min-set operations

Suppose \leq is a partial order on S, (S, \otimes) is a semigroup, and $X, Y \subseteq S$.

$$\min_{\leqslant}(X) \equiv \{x \in X \mid \forall y \in X, \neg (y < x)\}$$
 $\mathcal{P}_{\text{fin}}(S, \leqslant) \equiv \{X \subseteq S \mid X \text{ finite and } \min_{\leqslant}(X) = X\}$
 $X \oplus_{\min}^{\leqslant} Y \equiv \min_{\leqslant}(X \cup Y)$
 $X \otimes_{\min}^{\leqslant} Y \equiv \min_{\leqslant}(X \hat{\otimes} Y)$

Note that over $\mathcal{P}_{fin}(S, \leq)$ the operation \bigoplus_{min}^{\leq} is always idempotent. However, \bigotimes_{min}^{\leq} may not be. Question: is min_{\leq} always a reduction?

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

27 / 47

Example over $\mathbb{N} \times \mathbb{N}$

$$(a, b) \leq (c, d) \equiv (a \leq c) \land (b \leq d)$$

$$\min_{\leq} (\{(10, 100), (9, 99), (99, 9), (99, 10)\})$$

$$= \{(9, 99), (99, 9)\}$$

$$\{(1, 0), (0, 1)\} (+ \times +) \underset{\min}{\leq} \{(1, 0), (0, 1)\}$$

$$= \min_{\leq} (\{(1, 0), (0, 1)\} (\widehat{+ \times +}) \{(1, 0), (0, 1)\})$$

$$= \min_{\leq} (\{(2, 0), (1, 1), (0, 2)\})$$

$$= \{(2, 0), (1, 1), (0, 2)\}$$

◆ロ → ◆ 個 → ◆ 国 → ● ● り へ ○

Observation

Incomparable relation

$$a \#_{\leqslant} b \equiv \neg (a \leqslant b) \land \neg (b \leqslant a)$$

Claim 12.1

If $x, y \in \min_{\leq} (X)$ and $x \neq y$, then x # y.

Set like $\min_{\leq}(X)$ are often called (finite) antichains over (S, \leq) .

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

G.Griffin©2015

00 / 47

Suppose $D \in \{L, R\}$. Let $\leq \equiv \leq_{\oplus}^{D}$ and define

$$\mathcal{M}(\textit{D},\;(\textit{S},\;\oplus,\;\otimes))\;\;\equiv\;\;(\mathcal{P}_{fin}(\textit{S},\;\leqslant),\;\otimes_{min}^{\leqslant},\;\oplus_{min}^{\leqslant})$$

$$\mathcal{N}(\textit{D},\;(\textit{S},\;\oplus,\;\otimes))\;\;\equiv\;\;(\mathcal{P}_{fin}(\textit{S},\;\leqslant),\;\oplus_{min}^{\leqslant},\;\otimes_{min}^{\leqslant})$$

Recall: $a \leq_{\oplus}^{L} b \equiv a = a \oplus b$ and $a \leq_{\oplus}^{R} b \equiv b = a \oplus b$.

I suspect that 16 lectures could easily be dedicated to only ${\cal M}$ and ${\cal N}$...

IMPORTANT NOTE: So as not to reveal too much wrt Homework 2, I will assume for the rest of this lecture that (S, \oplus, \otimes) has any conditions needed to guarantee that both $\mathcal{M}(D, (S, \oplus, \otimes))$ and $\mathcal{N}(D, (S, \oplus, \otimes))$ are semirings and that \min_{\leqslant} acts as a reduction over $(\mathcal{P}(S), \cup, \hat{\otimes})$.

Looking at solutions over ${\mathcal N}$

$$(N, \boxplus, \boxtimes) \equiv \mathcal{N}(D, (S, \oplus, \otimes))$$

$$\mathbf{A}^{*}(i, j) = \bigoplus_{p \in P(i, j)} \bigotimes_{e \in p} \mathbf{A}(e)$$

$$= \min_{\leqslant} (\bigcup_{p \in P(i, j)} \bigotimes_{e \in p} \mathbf{A}(e))$$

$$= \min_{\leqslant} (\bigcup_{p \in P(i, j)} \min_{\leqslant} (\bigotimes_{e \in p} \mathbf{A}(e)))$$

$$= \min_{\leqslant} (\bigcup_{p \in P(i, j)} \bigotimes_{e \in p} \mathbf{A}(e))$$

This assumes that min_{\leq} acts as a reduction.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

31 / 47

What if \oplus is selective?

Then

$$\min_{\leqslant}(X) \equiv \left\{ \begin{array}{ll} \{\} & (\text{if } X = \{\}) \\ \{x\} & (\text{if } X \neq \{\} \text{ and } x \text{ is } \leqslant \text{-least value in } X) \end{array} \right.$$

and for non-empty X and Y we have

$$X \boxtimes Y = \{x\} \boxtimes \{y\} = \min_{\leq} \{x \otimes y\} = \{x \otimes y\}.$$

So $\mathcal N$ is more interesting when \oplus is not selective!

Let's compare

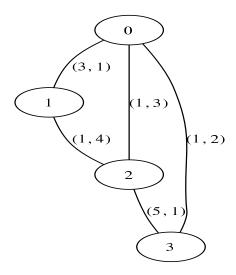
$$N_1 \equiv AddZero(\infty, \ (\mathbb{N}, \ min, \ +) \times (\mathbb{N}, \ min, \ +))$$

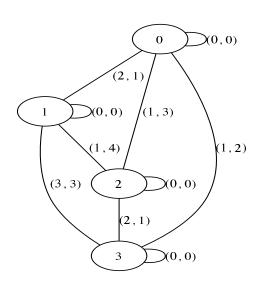
with

$$N_2 \equiv \mathcal{N}(L, \ (\mathbb{N}, \ \text{min}, \ +) \times (\mathbb{N}, \ \text{min}, \ +))$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica


T.G.Griffin@2015

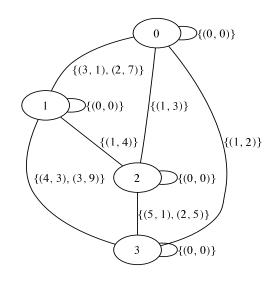

33 / 47

Example with N₁

 \mathbf{A}_1

Each component is associated with a shortest path.


TO 0 'W' 0 0045


34 / 47

Example with N₂

 \mathbf{A}_2

 \mathbf{A}_2^*

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

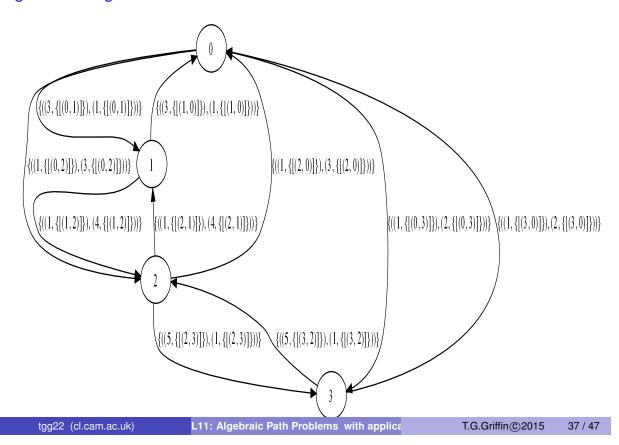
T.G.Griffin@2015

85 / 47

Now add paths to N₂

Note that

$$((\mathbb{N}, \min, +) \times (\mathbb{N}, \min, +)) \times \operatorname{paths}(E)$$


is not well-formed since $(\mathbb{N}, \text{ min}, +) \times (\mathbb{N}, \text{ min}, +)$ is not selective.

$$N_3 \equiv \mathcal{N}(\textit{L}, \; ((\mathbb{N}, \; \mathsf{min}, \; +) \; \vec{\times} \; \mathsf{paths}(\textit{E})) \times ((\mathbb{N}, \; \mathsf{min}, \; +) \; \vec{\times} \; \mathsf{paths}(\textit{E})))$$

N₃ has values of the form

$$\{((m_1, Q_1), (n_1, P_1)), ((m_2, Q_2), (n_2, P_2)), \cdots, ((m_k, Q_k), (n_k, P_k))\}$$

A₃ over N₃

Compare!

$$\begin{array}{lll} \textbf{A}_1^*(1,\,3) &=& (3,\,3) \\ \textbf{A}_2^*(1,\,3) &=& \{(4,\,3),\,(3,\,9)\} \\ \textbf{A}_3^*(1,\,3) &=& \{((4,\{[(1,0),(0,3)]\}),(3,\{[(1,0),(0,3)]\})),\\ && ((3,\{[(1,2),(2,0),(0,3)]\}),(9,\{[(1,2),(2,0),(0,3)]\}))\} \\ \textbf{A}_1^*(0,\,1) &=& (2,\,1) \\ \textbf{A}_2^*(0,\,1) &=& \{(3,\,1),(2,\,7)\} \\ \textbf{A}_3^*(0,\,1) &=& \{((3,\{[(0,1)]\}),(1,\{[(0,1)]\})),\\ && ((2,\{[(0,2),(2,1)]\}),(7,\{[(0,2),(2,1)]\}))\} \end{array}$$

Are we happy?

Hmmm, wait a minute!

$$\begin{array}{lll} \textbf{A}_1^*(1,\,2) &=& (1,\,4) \\ \\ \textbf{A}_2^*(1,\,2) &=& \{(1,\,4)\} \\ \\ \textbf{A}_3^*(1,\,2) &=& \{((1,\{[(1,2)]\}),(4,\{[(1,2)]\})),\\ &&& ((9,\{[(1,0),(0,3),(3,2)]\}),(4,\{[(1,0),(0,3),(3,2)]\})),\\ &&&& ((4,\{[(1,0),(0,2)]\}),(4,\{[(1,0),(0,2)]\}))) \end{array}$$

What is going on? The order and the related notion of incomparability are both rather complicated ...

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

Now, turning to solutions over \mathcal{M}

$$(M, \boxplus, \boxtimes) \equiv \mathcal{M}(D, (S, \oplus, \otimes))$$

$$\mathbf{A}^*(i, j) = \bigoplus_{p \in P(i, j)} \bigotimes_{e \in p} \mathbf{A}(e)$$

$$= \bigoplus_{p \in P(i, j)} \min_{e \in p} \left(\bigcup_{e \in p} \mathbf{A}(e) \right)$$

$$= \min_{e} \left(\bigotimes_{p \in P(i, j)} \min_{e \in p} \left(\bigcup_{e \in p} \mathbf{A}(e) \right) \right)$$

$$= \min_{e} \left(\bigotimes_{p \in P(i, j)} \bigcup_{e \in p} \mathbf{A}(e) \right)$$

This assumes that min_≤ acts as a reduction (hands waving ...)

T.G.Griffin@2015

Martelli's Semiring

Let G = (V, E) be a directed graph.

$$M_1(\textit{G}) \equiv \mathcal{M}(\textit{R}, \; (2^{\textit{E}}, \; \cup, \; \cup))$$

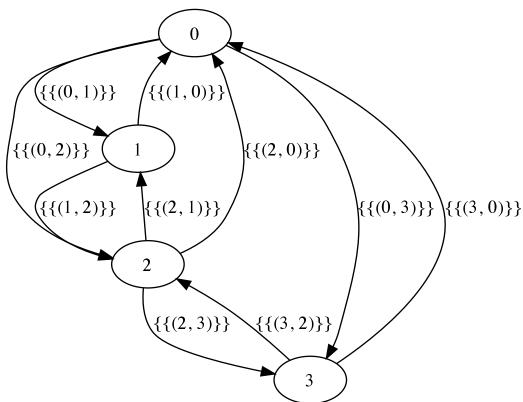
What does it do?

• If every arc (i, j) is has weight $\mathbf{A}(i, j) = \{\{(i, j)\}\}\$, then $\mathbf{A}^*(i, j)$ is the set of all minimal arc cut sets for i and j.

Definition

- A arc cut set $C \subseteq E$ for nodes i and j is a set of arcs such there is no path from i to j in the graph (V, E C).
- C is minimal if no proper subset of C is an arc cut set.

tgg22 (cl.cam.ac.uk)


tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

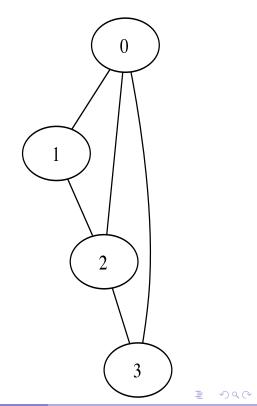
T.G.Griffin©2015

41 / 47

 \mathbf{A}_1

L11: Algebraic Path Problems with applica

T.G.Griffin@2015


42 / 47

Part of A₁*

$$\begin{array}{lll} \textbf{A}_1^*(0,\ 1) &=& \{\{(0,1),(2,1)\},\\ && \{(0,1),(0,2),(0,3)\},\\ && \{(0,1),(0,2),(3,2)\}\} \end{array}$$

$$\begin{array}{lll} \textbf{A}_1^*(0,\,2) &=& \{\{(0,2),(1,2),(3,2)\},\\ && \{(0,1),(0,2),(3,2)\},\\ && \{(0,1),(0,2),(0,3)\},\\ && \{(0,2),(0,3),(1,2)\}\} \\ \textbf{A}_1^*(2,\,0) &=& \{\{(2,0),(2,1),(3,0)\},\\ && \{(1,0),(2,0),(2,3)\}, \end{array}$$

$$\begin{array}{lll} \boldsymbol{A}_{1}^{*}(2,\,3) & = & \{(2,0),(2,1),(2,3)\}\} \\ & \quad \{\{(2,0),(2,1),(2,3)\},\\ & \quad \{(0,3),(2,3)\},\\ & \quad \{(1,0),(2,0),(2,3)\}\} \end{array}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

43 / 47

Homework 2

union_lift(S, •)

Assume (S, \bullet) is a semigroup. Let

union_lift(
$$S$$
, \bullet) $\equiv (\mathcal{P}_{fin}(S), \ \cup, \ \hat{\bullet})$

where

$$X \hat{\bullet} Y = \{ x \bullet y \mid x \in X, y \in Y \},$$

and $X, Y \in \mathcal{P}_{fin}(S)$, the set of finite subsets of S.

Let

SEMIRING $(S, \oplus, \otimes) \equiv (S, \oplus, \otimes)$ is a semiring

Problem 1 (35 marks)

Find a \mathbb{Q}_1 such that

SEMIRING($\mathcal{P}_{fin}(S)$, \cup , $\hat{\bullet}$) $\Leftrightarrow \mathbb{Q}_1(S, \bullet)$.

Homework 2

Let \leq be a partial order on S. For $X \subseteq S$, define

$$\min_{\leqslant}(X) \equiv \{x \in X \mid \forall y \in X, \ \neg(y < x)\}.$$

Define

$$\mathcal{P}_{\text{fin}}(\mathcal{S}, \, \lesssim) \equiv \{ X \subseteq \mathcal{S} \mid X \text{ finite and } \min_{\leqslant} (X) = X \}.$$

Problem 2 (15 marks)

Prove that $(\mathcal{P}_{fin}(S, \leq), \oplus_{min}^{\leq})$ where

$$A \, \oplus_{\min}^{\leqslant} B \equiv \min_{\leqslant} (A \cup B)$$

is a semigroup. It is clear that {} is the identity. Is there always an annihilator?

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

45 / 47

Homework 2

Problem 3 (15 marks)

Let (S, \otimes) be a semigroup over the ordered set (S, \leqslant) . Let

$$A \otimes_{\min}^{\leqslant} B \equiv \min_{\leqslant} (\{a \otimes b \mid a \in A, b \in B\})$$

Find a \mathbb{Q}_3 such that

$$\mathbb{Q}_3(\textbf{\textit{S}},\,\leqslant,\,\otimes) \Leftrightarrow \mathbb{AS}(\mathcal{P}_{\text{fin}}(\textbf{\textit{S}},\,\leqslant),\,\otimes_{\text{min}}^{\leqslant}).$$

It is clear that {} is the annihilator. Is there always an identity?

Homework 2

Suppose $S \equiv (S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring.

$$\mathcal{T} \equiv (\mathcal{P}_{fin}(\boldsymbol{\mathcal{S}},\,\leqslant),\,\otimes_{min}^{\leqslant},\,\oplus_{min}^{\leqslant})$$

where $a \le b \equiv a \oplus b = a$ (the left natural order).

Problem 4 (35 marks)

Find a \mathbb{Q}_4 such that

$$\mathbb{SEMIRING}(S) \Rightarrow (\mathbb{SEMIRING}(T) \Leftrightarrow \mathbb{Q}_4(S)).$$

