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Widest shortest-paths

@ Metric of the form (d, b), where d is distance (min, +) and b is
capacity (max, min).

@ Metrics are compared lexicographically, with distance considered
first.

@ Such things are found in the vast literature on Quality-of-Service
(QoS) metrics for Internet routing.

WSp = sp X bw
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Widest shortest-paths
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Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford
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But what about the paths themselves?

Four optimal paths of weight (3,10

).
Poptimal(oaz) = {(07 1,
{21,

), (0,1,4,2)}
Poptimal(zao) = 170

2), (0,1
0), (2,4,1,0)}

Y

There are standard ways to extend Bellman-Ford and Dijkstra to
compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths? |
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Surprise!

Four optimal paths of weight (3,10)

Poptimal(oa 2) = {(07 1 ) 2)7 (07 1 )
Poptimal(za 0) = {(27 1 ) 0)7 (27 47

Y
I

Paths computed by (extended) Dijkstra

PDijkstra(Oaz) = {(07172)7 (0717472)}
PDijkstra(27 0) = {(27 47 1 ) O)}

Notice that 0’s paths cannot both be implemented with next-hop
forwarding since Ppijsia(1,2) = {(1,4,2)}.

Paths computed by (extended) distributed Bellman-Ford

PBellman(Ov 2) = {(07 1,4, 2)}
PBellman(27 0) - {(27 1 ’ O), (27 47 1 ) O)}
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Optimal paths from 0 to 2. Computed by Dijkstra but

not by Bellman-Ford /@\
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Optimal paths from 2 to 1. Computed by Bellman-Ford

but not by Dijkstra /@)\
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Observations

For distributed Bellman-Ford

next-hop-paths(A) computed-paths(A)

N 1

optimal-paths(A)
For Dijkstra’s algorithm
next-hop-paths(A) < computed-paths(A)
c optimal-paths(A)
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How can we understand this (algebaically)?
The Algorithm to Algebra (A2A) method

original metric modified metric
+ — +

complex algorithm matrix equations (generic algorithm)

9/34

|

v

We can capture path computation with this algebra

sp X bw X seq(E)

But this algebra is not distributive!

—LC(sp X bw)

—ILK(seq(E))
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Towards a non-classical theory of algebraic path
finding
We need theory that can accept algebras that violate distributivity.

Global optimality
A*(i. )= @D w(p),

peP(i, j)

Left local optimality (distributed Bellman-Ford)
L=(AQL)®l

Right local optimality (Dijkstra’s Algorithm)
R=(ReA L

Embrace the fact that all three notions can be distinct.
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Left-Local Optimality

Say that L is a left locally-optimal solution when

L= (AQL) @l

That is, for i = j we have

L(i, j) = D AU, 9 ®L(q, ))
qeV

@ L(J, j) is the best possible value given the values L(q, j), for all
out-neighbors q of source |.

@ Rows L(i, _) represents out-trees from / (think Bellman-Ford).
@ Columns L(_, /i) represents in-trees to /.
@ Works well with hop-by-hop forwarding from i.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 12/34



Right-Local Optimality
Say that R is a right locally-optimal solution when

R=(RQA oI

That is, for i = j we have

qeV

@ R(/, j) is the best possible value given the values R(q, j), for all
in-neighbors g of destination j.

@ Rows L(/, _) represents out-trees from / (think Dijkstra).
@ Columns L(_, i) represents in-trees to /.
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With and Without Distributivity

With distributivity

For (bounded) semirings, the three optimality problems are essentially
the same — locally optimal solutions are globally optimal solutions.

A*=L=R

Without distributivity
It may be that A*, L, and R exists but are all distinct.

Back and Forth
L=(AQL) @l — L'=(L"@’'AT)al

where ® is matrix multiplication defined with a®” b= b® a
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Dijkstra’s Algorithm

Classical Dijkstra

Given adjacency matrix A over a selective semiring and source vertex
i € V, Dijkstra’s algorithm will compute A*(i, _) such that

A )= @D walp).

peP(i.))

Non-Classical Dijkstra
If we drop assumptions of distributivity, then given adjacency matrix A

and source vertex i € V, Dijkstra’s algorithm will compute R(/, _) such
that

vje V:R(i, j) = 1(i,j)) ® D R(, ) ®A(q, j)-
qeV

Routing in Equilibrium, Jodo Luis Sobrinho and Timothy G. Griffin,
MTNS 2010.
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v

Dijkstra’s algorithm

Input : adjacency matrix A and source vertex i € V,
Output : the j-throw of R, R(/, _).

begin
S — {i}
R(i, i) «—1
foreach ge V — {i} : R(i, q) — A(/, q)
while S =V
begin
find g € V — Ssuch that R(i, g) is <% -minimal
S — Su{q}
foreachje V- S
R(i, j) < R(i, j)® (R(i, q) ®A(q, J))
end

end
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Classical proofs of Dijkstra’s algorithm (for global
optimality) assume

Semiring Axioms

AS(®) ad®bec) (a®b)@c

CM(®) a®b = boda

ID(®D) 0pa = a

AS(®) aR(b®c) = (a®@b)®c

IDL(®) 1®a = a

IDR(®) a®1 = a

ANL(®) 0O®a = 0

ANR(®) a0 = 0
LD aRp(bdc) = (a®b)®(a®c)
RD (adb)®c (a®c)@ (b®c)
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Classical proofs of Dijkstra’s algorithm assume

Additional axioms

SL(®) : a®b € {a, b}
AN@) : 1®a = 1

17 /34

Note that we can derive right absorption,
RA : a®(a®b) = a

and this gives (right) inflationarity, Va,b: a < a® b.

a®(a®b) = (a®1)®(a®b)
a® (1®b)
a1

a

Il

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applice T.G.Griffin@©2015

18/34



What will we assume? Very little!

Bémiring Axioms

AS(@®) : a®(bdc) = (a®@b)@c

CM(®) a®eb = beda

ID(®) 0@a = a

AB(®R) - AR 2 (ARD)BE

IDL(®) : 1®a = a

TDR(®) - 4aM H 4

AMNIN®) Ogia H 0

ANR(E) - 480 H 0
b . amibEe) 2 ARk e e)
RIY - (ambI®e H (8&6) 3 BIBG)
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What will we assume?

Additional axioms
SL(®) : a@db e {a, b}
ANL(®) : 1@a = 1
RA : a®(a®b) = a

@ Note that we can no longer derive RA, so we must assume it.
@ Again, RA saysthata< a® b.

@ We don'’t use SLL explicitly in the proofs, but it is implicit in the
algorithm’s definition of q.

@ We do not use AS(®) and CM(®) explicitly, but these
assumptions are implicit in the use of the “big-®” notation.
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Under these weaker assumptions ...

Theorem (Sobrinho/Griffin)

Given adjacency matrix A and source vertex i € V, Dijkstra’s algorithm
will compute R(i, _) such that

vje V:R(i, j) = 1(i,j) ® D R(, 9) ®A(q, j)-
qeV

That is, it computes one row of the solution for the right equation

R=RA®I

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 21/34

Dijkstra’s algorithm, annotated version

Subscripts make proofs by induction easier ....

begin
St <—{i}
Ri(i, i) < 1
foreachqge V- S; : R{(i, q) — A(i, q9)
foreach k=2 3, ..., | V|
begin

find gx € V — Sk_1 such that Rx_1(i, g) is <k -minimal
Sk — Sk—1 U {gk}
foreachje V — Sy

Ri(/, j) < Rk—1(i, J) ® (Rk—1(/, qk) ® A(Qk, /))

end
end
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Main Claim, annotated

Vk:1<k<|V|= VjeSk:Rk(i, ) =1(1,))® P Rk(i, 9 ®A(q, )
qe Sk

v

We will use
Observation 1 (no backtracking) :

Vk:1<k<|V]|= Vje Ski1:Rks1(i, j) = Rk(i, j)
Observation 2 (Dijkstra is “greedy”):
Vk:1<k<|V|— VqeSk:Vwe V—S:Rk(i, q) <Rk(i, w)
Observation 3 (Accurate estimates):

Vk:1<k<|V|= Ywe V-Sk:R(i, w) = @ Rk(i, 9)®A(g, w)
Qe Sk

v
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Observation 1
vk:1<k<‘V|=> VjESk+11Rk+1(iaj)=Rk(i7j) J

Proof: This is easy to see by inspection of the algorithm. Once a node
is put into S its weight never changes again.
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The algorithm is “greedy”

Observation 2

Vk:1<k<|V|: VC]ESKZVWE V—Sk:Rk(i, Q)éRk(I’, W)

By induction. B
Base : Since S; = {i} and R4 (i, /) = 1, we need to show that

T<A(l, w)=T=TaA}, w).

This follows from ANL(®).

Induction: Assume Vg e Sy : Ywe V — Sk : Ri(i, ) < Rk(/, w) and
show Vg e Sk 1:Vwe V — Ski1: Ri1(f, ) < Ripq(i, w).

Since Sk 1 = Sk U {Qk41}, this means showing

(1) vge Sk:Vwe V — 51 :Rep1(i, Q) < Reyq (i, w)
(2) Vwe V —Skiq: Rep1(/, Qky1) < Rgpa (7, w)
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By Observation 1, showing (1) is the same as

Vge Sk :Vwe V — Sk :Re(i, q) < Rgyq (i, w)
which expands to (by definition of Rx 1 (i, w))
Vqe Sk:Vwe V—Sky1: Ri(i, @) < Ri(i, W)O(Rk (i, Qkr1)®A(Qk+1, W))

But R« (/, q) < Rk(i, w) by the induction hypothesis, and

Rc(i, 9) < (Rk(/, gk+1) ® A(gk+1, W)) by the induction hypothesis and
RA.

Since a<g bra<hc = a<§ (b@c), we are done.
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By Observation 1, showing (2) is the same as showing
Ywe V — Skiq i Re(i, Gkr1) < Rkgq (i, w)
which expands to

Vwe V — Siit 1 Re(i, Grrt) < Bk, w) @ (R, k1) @ A(Gk1, W))

But R« (/, gk+1) < Rk(i, w) since gx,1 was chosen to be minimal, and

Ri(i; Qk1) < (Rk(/, Qk+1) ® A(Qk11, W)) by RA.
Sincea<g bra<ic = a<g (b@c), we are done.
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Observation 3
Observation 3

Vk:1<k<|V|= Vwe V-5 :Rk(i, w) = P Rk(i, 9)®A(q, w)
qe Sk

Proof: By induction:
Base : easy, since

P Ri(i, q) ®A(q, w) =1QA(i, w) = A(i, w) =Ry (i, w)
qeS;

Induction step. Assume
Vwe V — S: Rk(ia W) - C—D Rk(i7 q)®A(q7 W)

Qe Sk
and show
Ywe V-8t :Repi(i, w)= &P Riri1(i, 9) @A(q, w)
Q€ Sk 11
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By Observation 1, and a bit of rewriting, this means we must show

Yw e V—Ski1 : Rky1(i, w) = Re(i; Gky1)®A(Gk11, w)® D R (1,
Qe Sk

Using the induction hypothesis, this becomes

Vwe V — Skiq: Rep1 (7, w) = Re(/, Qkv1) ® A(Qk+1, W) @ Rk(i, w)

But this is exactly how Ry 1 (i, w) is computed in the algorithm.
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Proof of Main Claim

Main Claim

Vk:1<k<|V|— VjeSc: Ryl ) =10, ))& @ Reli, ) A, ))
Qe Sk

Proof : By induction on k.
Base case: S; = {i} and the claim is easy.
Induction: Assume that

vj e Sk : Ri(i, ) = 1(7,j) ® @ Rk(i, 9) ® A(q, J)
Qe Sk

We must show that

Vje SK—H : RK—H (Ia ./) = I(/a/)@ @ Rk+1 (Ia q)®A(q7 l)
Q€ Sk 41
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Since Sk11 = Sk U {Qk41}, this means we must show

(1) VJE Sk : Rk—l—1 (I7 .I) = I(’a/) C—B@qesk_H RK—H (Iv q) ®A(q7 ./)
(2) Rik1(ly Q1) =107, Qi11) ®@qesk+1 Ri+1(7, ) ® A(Q, Q1)

By use Observation 1, showing (1) is the same as showing

Vje Sk:R(i, ) =10,)® @ Rk(i, q)®A(q, j),
Q€ Sk+1

which is equivalent to

Vj e Sk : Ri(i, j) = 1(i,))@(Rk(i, Gk+1)QA(Gk+1, /))® P Rk(i, Q)RA(q, )
Qe Sk

By the induction hypothesis, this is equivalent to

Vje Sk : Rk(i7 ./) = Rk(i7 ./) @(Rk(la qk+1) ®A(qk+17 ./))7
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Put another way,

Vje Sk : Rk(i, j) < Rk(i, Qk+1) ® A(Qk+1, J)

By observation 2 we know R (/, j) < Rk(i, gx.1), and so

Rk (7, j) < Rk(i, Qk+1) < Rk(, Qk+1) ® A(Qk+1, J)

by RA.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 32/34



To show (2), we use Observation 1 and I(/, gx.1) = 0 to obtain

Rk(i7 qk+1) = @ Rk(i7 q)®A(q7 qk+1)
Qe Sk 41

which, since A(gk,1, gk+1) = 0, is the same as

Ri(i; gk+1) = @ Rk(i, 9) @ A(G, k1)
Qe Sk

This then follows directly from Observation 3.
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Finding Left Local Solutions?

L= (ALl — LT=@LTe"ANHal

RT-(AT®@"RT)@l «<— R=(R®AaI

where

aR’' b=b®a

Replace RA with LA,

LA:Va,b:a<b®a
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