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Widest shortest-paths

Metric of the form pd , bq, where d is distance pmin, `q and b is

capacity pmax, minq.

Metrics are compared lexicographically, with distance considered

first.

Such things are found in the vast literature on Quality-of-Service

(QoS) metrics for Internet routing.

wsp “ sp ~̂ bw

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 11, 12T.G.Griffin c©2015 2 / 34



Widest shortest-paths
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Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford

R “

»

—

—

—

—

–

0 1 2 3 4

0 p0,Jq p1, 10q p3, 10q p2, 5q p2, 10q
1 p1, 10q p0,Jq p2, 100q p1, 5q p1, 100q
2 p3, 10q p2, 100q p0,Jq p1, 100q p1, 100q
3 p2, 5q p1, 5q p1, 100q p0,Jq p2, 100q
4 p2, 10q p1, 100q p1, 100q p2, 100q p0,Jq

fi

ffi

ffi

ffi

ffi

fl
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But what about the paths themselves?

Four optimal paths of weight p3, 10q.

Poptimalp0, 2q “ tp0, 1, 2q, p0, 1, 4, 2qu
Poptimalp2, 0q “ tp2, 1, 0q, p2, 4, 1, 0qu

There are standard ways to extend Bellman-Ford and Dijkstra to

compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths?
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Surprise!

Four optimal paths of weight p3, 10q

Poptimalp0, 2q “ tp0, 1, 2q, p0, 1, 4, 2qu
Poptimalp2, 0q “ tp2, 1, 0q, p2, 4, 1, 0qu

Paths computed by (extended) Dijkstra

PDijkstrap0, 2q “ tp0, 1, 2q, p0, 1, 4, 2qu
PDijkstrap2, 0q “ tp2, 4, 1, 0qu

Notice that 0’s paths cannot both be implemented with next-hop

forwarding since PDijkstrap1, 2q “ tp1, 4, 2qu.

Paths computed by (extended) distributed Bellman-Ford

PBellmanp0, 2q “ tp0, 1, 4, 2qu
PBellmanp2, 0q “ tp2, 1, 0q, p2, 4, 1, 0qu

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 11, 12T.G.Griffin c©2015 6 / 34



Optimal paths from 0 to 2. Computed by Dijkstra but

not by Bellman-Ford
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Optimal paths from 2 to 1. Computed by Bellman-Ford

but not by Dijkstra
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Observations

For distributed Bellman-Ford

next-hop-pathspAq “ computed-pathspAq
Ď optimal-pathspAq

For Dijkstra’s algorithm

next-hop-pathspAq Ď computed-pathspAq
Ď optimal-pathspAq
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How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

¨

˝

original metric

`
complex algorithm

˛

‚Ñ

¨

˝

modified metric

`
matrix equations (generic algorithm)

˛

‚

We can capture path computation with this algebra

sp ~̂ bw ~̂ seqpEq

But this algebra is not distributive!

 LCpsp ~̂ bwq

 LKpseqpEqq
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Towards a non-classical theory of algebraic path

finding

We need theory that can accept algebras that violate distributivity.

Global optimality

A˚pi , jq “
à

pPPpi, jq

wppq,

Left local optimality (distributed Bellman-Ford)

L “ pAb Lq ‘ I.

Right local optimality (Dijkstra’s Algorithm)

R “ pRb Aq ‘ I.

Embrace the fact that all three notions can be distinct.
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Left-Local Optimality

Say that L is a left locally-optimal solution when

L “ pAb Lq ‘ I.

That is, for i ­“ j we have

Lpi , jq “
à

qPV

Api , qq b Lpq, jq

Lpi , jq is the best possible value given the values Lpq, jq, for all

out-neighbors q of source i .

Rows Lpi , _q represents out-trees from i (think Bellman-Ford).

Columns Lp_, iq represents in-trees to i .

Works well with hop-by-hop forwarding from i .
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Right-Local Optimality

Say that R is a right locally-optimal solution when

R “ pRb Aq ‘ I.

That is, for i ­“ j we have

Rpi , jq “
à

qPV

Rpi , qq b Apq, jq

Rpi , jq is the best possible value given the values Rpq, jq, for all

in-neighbors q of destination j .

Rows Lpi , _q represents out-trees from i (think Dijkstra).

Columns Lp_, iq represents in-trees to i .
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With and Without Distributivity

With distributivity

For (bounded) semirings, the three optimality problems are essentially

the same — locally optimal solutions are globally optimal solutions.

A˚ “ L “ R

Without distributivity

It may be that A˚, L, and R exists but are all distinct.

Back and Forth

L “ pAb Lq ‘ I ðñ LT “ pLTbT AT q ‘ I

where bT is matrix multiplication defined with abT b “ b b a
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Dijkstra’s Algorithm

Classical Dijkstra

Given adjacency matrix A over a selective semiring and source vertex

i P V , Dijkstra’s algorithm will compute A˚pi , _q such that

A˚pi , jq “
à

pPPpi,jq

wAppq.

Non-Classical Dijkstra

If we drop assumptions of distributivity, then given adjacency matrix A

and source vertex i P V , Dijkstra’s algorithm will compute Rpi , _q such

that

@j P V : Rpi , jq “ Ipi , jq ‘
à

qPV

Rpi , qq b Apq, jq.

Routing in Equilibrium, João Luís Sobrinho and Timothy G. Griffin,

MTNS 2010.
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Dijkstra’s algorithm

Input : adjacency matrix A and source vertex i P V ,

Output : the i-th row of R, Rpi , _q.

begin

S Ð tiu

Rpi , iq Ð 1

for each q P V ´ tiu : Rpi , qq Ð Api , qq
while S ­“ V

begin

find q P V ´ S such that Rpi , qq is ďL
‘ -minimal

S Ð S Y tqu
for each j P V ´ S

Rpi , jq Ð Rpi , jq ‘ pRpi , qq b Apq, jqq
end

end
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Classical proofs of Dijkstra’s algorithm (for global

optimality) assume

Semiring Axioms

ASp‘q : a‘ pb ‘ cq “ pa‘ bq ‘ c

CMp‘q : a‘ b “ b ‘ a

IDp‘q : 0‘ a “ a

ASpbq : ab pb b cq “ pab bq b c

IDLpbq : 1b a “ a

IDRpbq : ab 1 “ a

ANLpbq : 0b a “ 0

ANRpbq : ab 0 “ 0

LD : ab pb ‘ cq “ pab bq ‘ pab cq
RD : pa‘ bq b c “ pab cq ‘ pb b cq
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Classical proofs of Dijkstra’s algorithm assume

Additional axioms

SLp‘q : a‘ b P ta, bu

ANp‘q : 1‘ a “ 1

Note that we can derive right absorption,

RA : a‘ pab bq “ a

and this gives (right) inflationarity, @a, b : a ď ab b.

a‘ pab bq “ pab 1q ‘ pab bq

“ ab p1‘ bq

“ ab 1

“ a
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What will we assume? Very little!

///////////Semiring Axioms

ASp‘q : a‘ pb ‘ cq “ pa‘ bq ‘ c

CMp‘q : a‘ b “ b ‘ a

IDp‘q : 0‘ a “ a

ASpbq//////// : ab pb b cq////////////// “// pab bq b c//////////////

IDLpbq : 1b a “ a

IDRpbq///////// : ab 1////// “// a/

ANLpbq////////// : 0b a////// “// 0/

ANRpbq////////// : ab 0////// “// 0/

LD/// : ab pb ‘ cq////////////// “// pab bq ‘ pab cq/////////////////////

RD//// : pa‘ bq b c////////////// “// pab cq ‘ pb b cq/////////////////////
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What will we assume?

Additional axioms

SLp‘q : a‘ b P ta, bu

ANLp‘q : 1‘ a “ 1

RA : a‘ pab bq “ a

Note that we can no longer derive RA, so we must assume it.

Again, RA says that a ď ab b.

We don’t use SL explicitly in the proofs, but it is implicit in the

algorithm’s definition of qk .

We do not use ASp‘q and CMp‘q explicitly, but these

assumptions are implicit in the use of the “big-‘” notation.
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Under these weaker assumptions ...

Theorem (Sobrinho/Griffin)

Given adjacency matrix A and source vertex i P V , Dijkstra’s algorithm

will compute Rpi , _q such that

@j P V : Rpi , jq “ Ipi , jq ‘
à

qPV

Rpi , qq b Apq, jq.

That is, it computes one row of the solution for the right equation

R “ RA‘ I.
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Dijkstra’s algorithm, annotated version

Subscripts make proofs by induction easier ....

begin

S1 Ð tiu

R1pi , iq Ð 1

for each q P V ´ S1 : R1pi , qq Ð Api , qq
for each k “ 2, 3, . . . , | V |

begin

find qk P V ´ Sk´1 such that Rk´1pi , qk q is ďL
‘ -minimal

Sk Ð Sk´1 Y tqku
for each j P V ´ Sk

Rk pi , jq Ð Rk´1pi , jq ‘ pRk´1pi , qk q b Apqk , jqq
end

end
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Main Claim, annotated

@k : 1 ď k ď| V | ùñ @j P Sk : Rk pi , jq “ Ipi , jq‘
à

qPSk

Rk pi , qqbApq, jq

We will use

Observation 1 (no backtracking) :

@k : 1 ď k ă| V | ùñ @j P Sk`1 : Rk`1pi , jq “ Rk pi , jq

Observation 2 (Dijkstra is “greedy”):

@k : 1 ď k ď| V | ùñ @q P Sk : @w P V ´ Sk : Rk pi , qq ď Rk pi , wq

Observation 3 (Accurate estimates):

@k : 1 ď k ď| V | ùñ @w P V´Sk : Rk pi , wq “
à

qPSk

Rk pi , qqbApq, wq
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Observation 1

@k : 1 ď k ă| V | ùñ @j P Sk`1 : Rk`1pi , jq “ Rk pi , jq

Proof: This is easy to see by inspection of the algorithm. Once a node

is put into S its weight never changes again.
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The algorithm is “greedy”

Observation 2

@k : 1 ď k ď| V | ùñ @q P Sk : @w P V ´ Sk : Rk pi , qq ď Rk pi , wq

By induction.

Base : Since S1 “ tiu and R1pi , iq “ 1, we need to show that

1 ď Api , wq ” 1 “ 1‘ Api , wq.

This follows from ANLp‘q.
Induction: Assume @q P Sk : @w P V ´ Sk : Rk pi , qq ď Rk pi , wq and

show @q P Sk`1 : @w P V ´ Sk`1 : Rk`1pi , qq ď Rk`1pi , wq.
Since Sk`1 “ Sk Y tqk`1u, this means showing

p1q @q P Sk : @w P V ´ Sk`1 : Rk`1pi , qq ď Rk`1pi , wq
p2q @w P V ´ Sk`1 : Rk`1pi , qk`1q ď Rk`1pi , wq
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By Observation 1, showing p1q is the same as

@q P Sk : @w P V ´ Sk`1 : Rk pi , qq ď Rk`1pi , wq

which expands to (by definition of Rk`1pi , wq)

@q P Sk : @w P V´Sk`1 : Rk pi , qq ď Rk pi , wq‘pRk pi , qk`1qbApqk`1, wqq

But Rk pi , qq ď Rk pi , wq by the induction hypothesis, and

Rk pi , qq ď pRk pi , qk`1q bApqk`1, wqq by the induction hypothesis and

RA.

Since a ďL
‘ b ^ a ďL

‘ c ùñ a ďL
‘ pb ‘ cq, we are done.
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By Observation 1, showing p2q is the same as showing

@w P V ´ Sk`1 : Rk pi , qk`1q ď Rk`1pi , wq

which expands to

@w P V ´ Sk`1 : Rk pi , qk`1q ď Rk pi , wq ‘ pRk pi , qk`1q b Apqk`1, wqq

But Rk pi , qk`1q ď Rk pi , wq since qk`1 was chosen to be minimal, and

Rk pi , qk`1q ď pRk pi , qk`1q b Apqk`1, wqq by RA.

Since a ďL
‘ b ^ a ďL

‘ c ùñ a ďL
‘ pb ‘ cq, we are done.
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Observation 3

Observation 3

@k : 1 ď k ď| V | ùñ @w P V´Sk : Rk pi , wq “
à

qPSk

Rk pi , qqbApq, wq

Proof: By induction:

Base : easy, since
à

qPS1

R1pi , qq b Apq, wq “ 1b Api , wq “ Api , wq “ R1pi , wq

Induction step. Assume

@w P V ´ Sk : Rk pi , wq “
à

qPSk

Rk pi , qq b Apq, wq

and show

@w P V ´ Sk`1 : Rk`1pi , wq “
à

qPSk`1

Rk`1pi , qq b Apq, wq
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By Observation 1, and a bit of rewriting, this means we must show

@w P V´Sk`1 : Rk`1pi , wq “ Rk pi , qk`1qbApqk`1, wq‘
à

qPSk

Rk pi , qqbApq

Using the induction hypothesis, this becomes

@w P V ´ Sk`1 : Rk`1pi , wq “ Rk pi , qk`1q b Apqk`1, wq ‘ Rk pi , wq

But this is exactly how Rk`1pi , wq is computed in the algorithm.
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Proof of Main Claim

Main Claim

@k : 1 ď k ď| V | ùñ @j P Sk : Rk pi , jq “ Ipi , jq‘
à

qPSk

Rk pi , qqbApq, jq

Proof : By induction on k .

Base case: S1 “ tiu and the claim is easy.

Induction: Assume that

@j P Sk : Rk pi , jq “ Ipi , jq ‘
à

qPSk

Rk pi , qq b Apq, jq

We must show that

@j P Sk`1 : Rk`1pi , jq “ Ipi , jq ‘
à

qPSk`1

Rk`1pi , qq b Apq, jq
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Since Sk`1 “ Sk Y tqk`1u, this means we must show

p1q @j P Sk : Rk`1pi , jq “ Ipi , jq ‘
À

qPSk`1
Rk`1pi , qq b Apq, jq

p2q Rk`1pi , qk`1q “ Ipi , qk`1q ‘
À

qPSk`1
Rk`1pi , qq b Apq, qk`1q

By use Observation 1, showing p1q is the same as showing

@j P Sk : Rk pi , jq “ Ipi , jq ‘
à

qPSk`1

Rk pi , qq b Apq, jq,

which is equivalent to

@j P Sk : Rk pi , jq “ Ipi , jq‘pRk pi , qk`1qbApqk`1, jqq‘
à

qPSk

Rk pi , qqbApq, jq

By the induction hypothesis, this is equivalent to

@j P Sk : Rk pi , jq “ Rk pi , jq ‘ pRk pi , qk`1q b Apqk`1, jqq,
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Put another way,

@j P Sk : Rk pi , jq ď Rk pi , qk`1q b Apqk`1, jq

By observation 2 we know Rk pi , jq ď Rk pi , qk`1q, and so

Rk pi , jq ď Rk pi , qk`1q ď Rk pi , qk`1q b Apqk`1, jq

by RA.
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To show p2q, we use Observation 1 and Ipi , qk`1q “ 0 to obtain

Rk pi , qk`1q “
à

qPSk`1

Rk pi , qq b Apq, qk`1q

which, since Apqk`1, qk`1q “ 0, is the same as

Rk pi , qk`1q “
à

qPSk

Rk pi , qq b Apq, qk`1q

This then follows directly from Observation 3.
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Finding Left Local Solutions?

L “ pAb Lq ‘ I ðñ LT “ pLT bT AT q ‘ I

RT “ pAT bT RT q ‘ I ðñ R “ pRb Aq ‘ I

where

abT b “ b b a

Replace RA with LA,

LA : @a, b : a ď b b a
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