Social and Technological Network Data Analytics

Lecture 5: Structure of the Web, Search and Power Laws

Prof Cecilia Mascolo
In This Lecture

- We describe power law networks and their properties and show examples of networks which are power law in nature, including the web.
- We present the preferential attachment model which allows the generation of power law networks.
- We study prediction of power laws
- We introduce search and PageRank
The Web is a Graph...

This course page.

Me

My web page.

My Profile

My profile page.

Link to NSPCC

NSPCC Page
Precursor of hypertexts

- Citation networks of books and articles.
- Difference: links point only backwards in time
Web is a **Directed** Graph

- **Path**: A path from A to B exists if there is a sequence of nodes beginning with A and ending with B such that each consecutive pair of nodes is connected by an edge pointing in the forward direction.
Strongly Connected Component

• A strongly connected component (SCC) in a directed graph is a subset of nodes such that:

i) Every pair in the subset has a path to each other
 ii) The subset is not part of some larger subset with property i)
• Weakly connected component (WCC) is the connected component in the undirected graph derived from the directed graph.
 – Two nodes can be in the same WCC even if there no directed path between them.
SCC example
The Web

- Broder’00
- Data from Altavista (200 million pages)
- 186M nodes in the WCC (90% of links)
Popularity of Web Pages

• How do we expect the popularity of web pages to be distributed?
 – What fraction of web pages have k in-links?
 – If each page decides independently at random whether to link to any given other page then the n of in-links of a page is the sum of independent random quantities $->$ normal distribution
 – In this case, the number pages with k in-links decreases exponentially in k
 – Is this true for the Web?
Finding: degree distr. proportional to $\sim 1/k^2$

$1/k^2$ decreases much more slowly than a normal distribution
Power Law vs Exponential

\[p(x) = x^{-\alpha} \]

\[p(x) = e^{-\lambda x} \]
Distribution of WCC and SCC
Reachability

- Followed links backwards and forward
Diameter of the Web

- 75% of the time there is no directed path between two random nodes
- Average distance of existing paths: 16
- Average distance of undirected paths: 6.83

- Diameter in the SCC is at least 28
Power Laws aka Scale Free Networks

• We have seen that the degree distribution followed a straight line in log-log

\[\ln p_k = -\alpha \ln k + c \]

\[p_k = Ck^{-\alpha} \]

• \(\alpha \) defines the slope of the curve
• \(\alpha \) is typically between 2 and 3.
Power Laws in various domains
What does it mean?

Random Distribution

Power Law Distribution

$p(k)$(number of nodes of size k)

k
Random vs Power Law Networks
Example

a. POISSON

Most nodes have the same number of links
No highly connected nodes

Number of nodes with k links
Number of links (k)

b. [Map of US with nodes and connections]

c. POWER LAW

Many nodes with only a few links
A few hubs with large number of links

Number of nodes with k links
Number of links (k)

d. [Map of US with nodes and connections]
What’s a good model for scale free networks

• Let’s use the web network as example:
• Pages are created in order (1,2,3..)
• Page j created and it links to an earlier page in the following way:
 – With prob. p, j chooses page i at random and links it;
 – With prob. 1-p, j chooses page i at random and links to the page i points to.
 – Repeat.
• The middle step is essentially a copy of the node i behaviour...
Preferential attachment

• Pages are created in order (1,2,3..)
• Page j created and it links to an earlier page in the following way:
 – With prob. p, j chooses page i at random and links it;
 – With prob. $1-p$, j chooses a page z with prob. proportional to z’s current number of in-links and links to z (ie proportional to degree).
 – Repeat.

Rich-get-richer model
If we run this for many pages the fraction of pages with k in-links will be distributed approximately according to a power law $1/k^c$

c depends on p
Intuition

• With probability $1-p$ page j chooses a page i with probability proportional to i’s number of in-links and creates a link to i.

• This mechanism predicts that the growth happens so that
 – A page’s popularity growth at a rate proportional to its current value.
 – The rich get richer effect amplifies the larger values
What have we shown?
There is a “copying” behaviour happening in these networks where node seem to emulate other nodes.
This is shown true for selection of books, songs, web pages, movies etc.
How predictable is the rich-get-richer process?

• Is the popularity of items in the power law predictable?
• Would a popular book still be popular if we go back in time and start the process again?
• Experiments show it would not...
Unpredictability [Salganik et al 06]

- 48 songs, 14,000 participants, 8 servers
View of the curve

• The way we have seen the curve so far...

There are j books that have sold at least k copies.

We concentrated on this.
Let’s transform the function

• If the initial function is a power law, this one is too (we do not prove this)
— Information retrieval problem: synonyms (jump/leap), polysemy (Leopard), etc
— Now with the web: diversity in authoring introduces issues of common criteria for ranking documents
— The web offers abundance of information: whom do we trust as source?
• Still one issue: static content versus real time
 — World trade center query on 11/9/01
 — Twitter helps solving these issues these days
Automate the Search

• When searching “Computer Laboratory” on Google the first link is for the department’s page.

• How does Google know this is the best answer?
• We could collect a large sample of pages relevant to “computer laboratory” and collect their votes through their links.
• The pages receiving more in-links are ranked first.
• But if we use the network structure more deeply we can improve results.
Example: Query “newspaper”

- **Authorities** are established: the highly endorsed pages

 - Links are seen as votes.
 - **Authorities** are seen as votes.
A Refinement: Hubs

- Numbers are reported back on the source page and aggregate.
- Hubs are high value lists
Principle of Repeated Improvement

- And we are now reweighting the authorities
- When do we stop?
Repeating and Normalizing

• The process can be repeated
• Normalization:
 – Each authority score is divided by the sum of all authority scores
 – Each hub score is divided by the sum of all hub scores
More Formally: does the process converge?

- Each page has an authority a_i and a hub h_i score.
- Initially $a_i = h_i = 1$.
- At each step
 \[
 a_i = \sum_{j \rightarrow i} h_j
 \]
 \[
 h_j = \sum_{j \rightarrow i} a_i
 \]
- Normalize
 \[
 \sum a_i = 1
 \]
 \[
 \sum h_j = 1
 \]
The process converges
PageRank

• We have seen hubs and authorities
 – Hubs can “collect” links to important authorities who do not point to each others
 – There are other models: better for the web, where one prominent can endorse another.

• The **PageRank** model is based on transferrable importance.
PageRank Concepts

- Pages pass endorsements on outgoing links as fractions which depend on out-degree.
- Initial PageRank value of each node in a network of n nodes: 1/n.
- Choose a number of steps k.
- **[Basic] Update rule:** each page divides its pagerank equally over the outgoing links and passes an equal share to the pointed pages. Each page’s new rank is the sum of received pageranks.
Example

- All pages start with PageRank = $1/8$

<table>
<thead>
<tr>
<th>Step</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/2$</td>
<td>$1/16$</td>
<td>$1/16$</td>
<td>$1/16$</td>
<td>$1/16$</td>
<td>$1/16$</td>
<td>$1/16$</td>
<td>$1/8$</td>
</tr>
<tr>
<td>2</td>
<td>$3/16$</td>
<td>$1/4$</td>
<td>$1/4$</td>
<td>$1/32$</td>
<td>$1/32$</td>
<td>$1/32$</td>
<td>$1/32$</td>
<td>$1/16$</td>
</tr>
</tbody>
</table>

A becomes important and B, C benefit too at step 2
• Except for some special cases, PageRank values of all nodes converge to limiting values when the number of steps goes to infinity.
• The convergence case is one where the PageRank of each page does not change anymore, i.e., they regenerate themselves.
Example of Equilibrium
Problems with the basic PageRank

Dead ends

- F, G converge to $\frac{1}{2}$ and all the other nodes to 0
Solution: The REAL PageRank

• **[Scaled] Update Rule:**
 – Apply basic update rule. Then, scale down all values by scaling factor s [chosen between 0 and 1].
 – **[Total network PageRank value changes from 1 to s]**
 – Divide 1-s residual units of PageRank equally over all nodes: (1-s)/n each.

• It can be proven that values converge again.
• Scaling factor usually chosen between 0.8 and 0.9
Search Ranking is very important to business

- A change in results in the search pages might mean loss of business
 - i.e., not appearing on first page.
- Ranking algorithms are kept very secret and changed continuously.
Examples of Google Bombs

President of the United States - George W. Bush
Article from Encarta Encyclopedia provides an overview of Bush's life
www.whitehouse.gov/president/- 21k - Cached - Similar pages

Historians vs. George W. Bush
Of 415 historians who expressed a view of President Bush's administration to this point
success or failure, 338 classified it as a failure and 77 as a...
hnn.us/articles/5019.html - 36k - Cached - Similar pages

Heart failure - Wikipedia, the free encyclopedia
Congestive heart failure (CHF), congestive cardiac failure (CCF) or just heart failure, is a condition that can result from any structural or functional ...
www.wikipedia.org/wiki/Heart_failure - 146k - Cached - Similar pages
Random Walks

- Starting from a node, follow one outgoing link with an equal probability
PageRank as Random Walk

• The probability of being at a page X after k steps of a random walk is precisely the PageRank of X after k applications of the Basic PageRank Update Rule

• Scaled Update Rule equivalent: follow a random outgoing link with probability s while with probability 1-s jump to a random node in the network.
References

• Chapter 13, 14 and 18

Barabasi’s book has a good chapter on scale free networks too!