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Communities

• Weak	ties	(Lecture	2)	seemed	to	bridge	groups	
of	tightly	coupled	nodes	(communities)

• How	do	we	find	these	communities?



In	This	Lecture

• We	will	describe	a	Community	Detection	
method	based	on	betweenness centrality.

• We	will	describe	the	concept	of	Modularity	
and	Modularity	Optimization.

• We	will	describe	methods	for	overlapping	
community	detection.



What	is	a	Community?

� How to automatically find� How�to�automatically�find�
such�densely�connected�
groups of nodes?groups�of�nodes?

� Ideally�such�automatically�
detected�clusters�would�
then�correspond�to�real�
groups

� For example: Communities,�clusters,�� For�example:
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Why	do	we	want	to	find	
partitions/communities?

• Clustering	online	customers	with	similar	interests	
or	geographically	near	can	improve	performance
– Customers	with	similar	interests	could	be	clustered	to	
help	recommendation	 systems

• Clusters	in	large	graphs	can	be	used	to	create	
data	structures	for	efficient	storage	of	graph	data	
to	handle	queries	or	path	searches

• Study	the	relationship/mediation	among	nodes
– Hierarchical	 organization	study



Example	
Zachary’s	Karate	club:	34	members	of	a	club		
over	3	years.	Edges:	interaction	outside	the	club

WWW:	pages	and	hyperlinks
Identification	of	clusters	can	improve	
page	ranking



Remove	weak	ties

• Local	bridges	connect	weakly	interacting	parts	
of	the	network.

• What	if	we	have	many	bridges:	which	do	we	
remove	first?	Or	there	might	be	no	bridges.

• Note:	Without	those	bridges	paths	between	
nodes	would	be	longer.



Edge	Betweenness

• Edge	Betweenness:	the	number	of	shortest	
paths	between	pairs	of	nodes	that	run	along	
the	edge.
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Algorithm	of	Girvan-Newmann
(PNAS	2002)

• Calculate	the	betweenness of	all	edges
• Cut	the	edge	with	highest	betweenness
• Recalculate	edge	betweenness



Edge:	deletion
When	do	we	stop?

• How	do	we	know	when	to	stop?

• When	X	communities	have	been	detected?
• When	the	level	of	cohesion	inside	a	
community	has	reached	Y?

• There	is	no	prescriptive	way	for	every	case
• There	are	also	many	other	ways	of	detecting	
communities.



Modularity

• Perhaps	a	good	measure	of	when	to	stop	is	
when	for	each	community	the	“cohesion”	
within	the	community	is	higher	than	what	
would	be	at	random…

• Q=	(edges	inside	the	community)- (expected		
number	of	edges	inside	the	community	for	a	
random	graph	with	same	node	degree	
distribution	as	the	given	network)



Modularity	(2)

• Number	of	edges	inside a	community:

• Where:
• Aa,b is	1	if	there	is	an	edge	a->b,	
• δ(ca , cb)	is	the	Kronecker Delta	(1	if	ca is	equal	
to	cb)

1
2

Aa,b
a,b
∑ δ(ca,cb )



Modularity	on	a	
randomized	graph	calculation

a Ka

kakb
2m

m	is	the	number	of	edges	
of	the	graph	=	½	sum(ki)

The	expected	number	of	
edges	 in	the	randomized	
version	of	the	graph	
where	nodes	are	
rewired:



Modularity	(3)

Q1= 1
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Modularity	(4)

• Modularity	ranges	from	-1	to	1.
– It	is	positive	if	the	number	of	edges	inside	the	group	
are	more	than	the	expected	number.

– Variation	from	0	indicate	difference	with	random	
case.

• Modularity	can	be	used	at	each	round	of	the	
Girvan-Newmann algorithm	to	check	if	it	is	time	
to	stop.	However	the	complexity	of	this	is	
O(m2n).	



Example	of	Dendrogram
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FIG. 2: Dendrogram of the communities found by our algo-
rithm in the “karate club” network of Zachary [5, 17]. The
shapes of the vertices represent the two groups into which the
club split as the result of an internal dispute.

not to continue using it—it appears to give the best
results. For systems too large to make use of this ap-
proach, however, our new algorithm gives useful com-
munity structure information with comparatively little
effort.

We have applied our algorithm to a variety of real-
world networks also. We have looked, for example, at
the “karate club” network studied in [5], which represents
friendships between 34 members of a club at a US univer-
sity, as recorded over a two-year period by Zachary [17].
During the course of the study, the club split into two
groups as a result of a dispute within the organization,
and the members of one group left to start their own
club. In Fig. 2 we show the dendrogram derived by feed-
ing the friendship network into our algorithm. The peak
modularity is Q = 0.381 and corresponds to a split into
two groups of 17, as shown in the figure. The shapes of
the vertices represent the alignments of the club mem-
bers following the split and, as we can see, the division
found by the algorithm corresponds almost perfectly to
these alignments; only one vertex, number 10, is classified
wrongly. The GN algorithm performs similarly on this
task, but not better—it also finds the split but classifies
one vertex wrongly (although a different one, vertex 3).
In other tests, we find that our algorithm also success-
fully detects the main two-way division of the dolphin
social network of Lusseau [6, 18], and the division be-
tween black and white musicians in the jazz network of
Gleiser and Danon [11].

As a demonstration of how our algorithm can some-
times miss some of the structure in a network, we take
another example from Ref. 5, a network representing
the schedule of games between American college foot-
ball teams in a single season. Because the teams are di-
vided into groups or “conferences,” with intra-conference
games being more frequent than inter-conference games,
we have a reasonable idea ahead of time about what com-
munities our algorithm should find. The dendrogram
generated by the algorithm is shown in Fig. 3, and has
an optimal modularity of Q = 0.546, which is a little shy

of the value 0.601 for the best split reported in [5]. As
the dendrogram reveals, the algorithm finds six commu-
nities. Some of them correspond to single conferences,
but most correspond to two or more. The GN algorithm,
by contrast, finds all eleven conferences, as well as accu-
rately identifying independent teams that belong to no
conference. Nonetheless, it is clear that the new algo-
rithm is quite capable of picking out useful community
structure from the network, and of course it is much the
faster algorithm. On the author’s personal computer the
algorithm ran to completion in an unmeasureably small
time—less than a hundredth of a second. The algorithm
of Girvan and Newman took a little over a second.

A time difference of this magnitude will not present
a big problem in most practical situations, but perfor-
mance rapidly becomes an issue when we look at larger
networks; we expect the ratio of running times to in-
crease with the number of vertices. Thus, for example,
in applying our algorithm to the 1275-node network of
jazz musician collaborations mentioned above, we found
that it runs to completion in about one second of CPU
time. The GN algorithm by contrast takes more than
three hours to reach very similar results.

As an example of an analysis made possible by the
speed of the new algorithm, we have looked at a network
of collaborations between physicists as documented by
papers posted on the widely-used Physics E-print Archive
at arxiv.org. The network is an updated version of the
one described in Ref. 13, in which scientists are consid-
ered connected if they have coauthored one or more pa-
pers posted on the archive. We analyze only the largest
component of the network, which contains n = 56 276 sci-
entists in all branches of physics covered by the archive.
Since two vertices that are unconnected by any path are
never put in the same community by our algorithm, the
small fraction of vertices that are not part of the largest
component can safely be assumed to be in separate com-
munities in the sense of our algorithm. Our algorithm
takes 42 minutes to find the full community structure.
Our best estimates indicate that the GN algorithm would
take somewhere between three and five years to complete
its version of the same calculation.

The analysis reveals that the network in question con-
sists of about 600 communities, with a high peak modu-
larity of Q = 0.713, indicating strong community struc-
ture in the physics world. Four of the communities found
are large, containing between them 77% of all the ver-
tices, while the others are small—see Fig. 4, left panel.
The four large communities correspond closely to subject
subareas: one to astrophysics, one to high-energy physics,
and two to condensed matter physics. Thus there ap-
pears to be a strong correlation between the structure
found by our algorithm and the community divisions per-
ceived by human observers. It is precisely correlation
of this kind that makes community structure analysis a
useful tool in understanding the behavior of networked
systems.

We can repeat the analysis with any of the subcom-



Modularity	Optimization

• Why	not	optimize	modularity	directly?

• Finding	the	configuration	with	maximum	
modularity	in	a	graph	is	an	NP	complete	
problem.

• However	there	are	good	approximation	
algorithms.



(Greedy)	Fast	Modularity
• Start	with	a	network	of	n	communities	of	1	node
• Merge	the	communities	that	lead	to	largest	
increase	in	Q	(calculated	over	the	whole	graph)

• Repeat	previous	step	until	one	community	
remains

• Cross	cut	the	dendrogram where	Q	is	maximum.
• This	runs	in	O((m	+	n)n).

• A	further	optimization	runs	in	O(m	d	log	n)	[d	
depth	of	dendrogram].

• Most	networks	are	sparse	so	m~n and	d~log n



Application	to	Amazon	
Recommedations

• Network	of	products.
• A	link	between	product	a	and	product	b	if	b	
was	frequently	purchased	by	buyers	of	a.

• 200000	nodes	and	2M	edges.
• Max	when	1684	communities
• Mean	size	of	243	products
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FIG. 1: The modularity Q over the course of the algorithm
(the x axis shows the number of joins). Its maximum value is
Q = 0.745, where the partition consists of 1684 communities.

in practical situations it is usually unnecessary to main-
tain the separate max-heaps for each row. These heaps
are used to find the largest element in a row quickly, but
their maintenance takes a moderate amount of effort and
this effort is wasted if the largest element in a row does
not change when two rows are amalgamated, which turns
out often to be the case. Thus we find that the following
simpler implementation works quite well in realistic sit-
uations: if the largest element of the kth row was ∆Qki

or ∆Qkj and is now reduced by Eq. (10b) or (10c), we
simply scan the kth row to find the new largest element.
Although the worst-case running time of this approach
has an additional factor of n, the average-case running
time is often better than that of the more sophisticated
algorithm. It should be noted that the hierarchies gen-
erated by these two versions of our algorithm will differ
slightly as a result of the differences in how ties are bro-
ken for the maximum element in a row. However, we find
that in practice these differences do not cause significant
deviations in the modularity, the community size distri-
bution, or the composition of the largest communities.

III. AMAZON.COM PURCHASING NETWORK

The output of the algorithm described above is pre-
cisely the same as that of the slower hierarchical algo-
rithm of [32]. The much improved speed of our algorithm
however makes possible studies of very large networks for
which previous methods were too slow to produce useful
results. Here we give one example, the analysis of a co-
purchasing or “recommender” network from the online
vendor Amazon.com. Amazon sells a variety of products,
particularly books and music, and as part of their web
sales operation they list for each item A the ten other
items most frequently purchased by buyers of A. This

FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only
to them (top, lower left, lower right). Also, some pairs of ma-
jor communities have sets of smaller communities that act
as “bridges” between them (e.g., between the lower left and
lower right, near the center).

information can be represented as a directed network in
which vertices represent items and there is a edge from
item A to another item B if B was frequently purchased
by buyers of A. In our study we have ignored the directed
nature of the network (as is common in community struc-
ture calculations), assuming any link between two items,
regardless of direction, to be an indication of their simi-
larity. The network we study consists of items listed on
the Amazon web site in August 2003. We concentrate on
the largest component of the network, which has 409 687
items and 2 464 630 edges.

The dendrogram for this calculation is of course too
big to draw, but Fig. 1 illustrates the modularity over the
course of the algorithm as vertices are joined into larger
and larger groups. The maximum value is Q = 0.745,
which is high as calculations of this type go [21, 32]
and indicates strong community structure in the network.
The maximum occurs when there are 1684 communities
with a mean size of 243 items each. Fig. 2 gives a visual-
ization of the community structure, including the major
communities, smaller “satellite” communities connected
to them, and “bridge” communities that connect two ma-
jor communities with each other.

Looking at the largest communities in the network, we
find that they tend to consist of items (books, music) in
similar genres or on similar topics. In Table I, we give in-
formal descriptions of the ten largest communities, which
account for about 87% of the entire network. The remain-
der is generally divided into small, densely connected
communities that represent highly specific co-purchasing
habits, e.g., major works of science fiction (162 items),
music by John Cougar Mellencamp (17 items), and books



Amazon:	Top	Communities	
(87%	of	nodes)
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Rank Size Description
1 114538 General interest: politics; art/literature; general fiction; human nature; technical books; how things,

people, computers, societies work, etc.
2 92276 The arts: videos, books, DVDs about the creative and performing arts
3 78661 Hobbies and interests I: self-help; self-education; popular science fiction, popular fantasy; leisure; etc.
4 54582 Hobbies and interests II: adventure books; video games/comics; some sports; some humor; some classic

fiction; some western religious material; etc.
5 9872 classical music and related items
6 1904 children’s videos, movies, music and books
7 1493 church/religious music; African-descent cultural books; homoerotic imagery
8 1101 pop horror; mystery/adventure fiction
9 1083 jazz; orchestral music; easy listening
10 947 engineering; practical fashion

TABLE I: The 10 largest communities in the Amazon.com network, which account for 87% of the vertices in the network.
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FIG. 3: Cumulative distribution of the sizes of communities
when the network is partitioned at the maximum modularity
found by the algorithm. The distribution appears to follow
a power law form over two decades in the central part of its
range, although it deviates in the tail. As a guide to the
eye, the straight line has slope −1, which corresponds to an
exponent of α = 2 for the raw probability distribution.

about (mostly female) spies in the American Civil War
(13 items). It is worth noting that because few real-
world networks have community metadata associated
with them to which we may compare the inferred com-
munities, this type of manual check of the veracity and
coherence of the algorithm’s output is often necessary.

One interesting property recently noted in some net-
works [30, 32] is that when partitioned at the point
of maximum modularity, the distribution of community
sizes s appears to have a power-law form P (s) ∼ s−α

for some constant α, at least over some significant range.
The Amazon co-purchasing network also seems to ex-
hibit this property, as we show in Fig. 3, with an expo-
nent α ≃ 2. It is unclear why such a distribution should
arise, but we speculate that it could be a result either of

the sociology of the network (a power-law distribution in
the number of people interested in various topics) or of
the dynamics of the community structure algorithm. We
propose this as a direction for further research.

IV. CONCLUSIONS

We have described a new algorithm for inferring com-
munity structure from network topology which works by
greedily optimizing the modularity. Our algorithm runs
in time O(md log n) for a network with n vertices and
m edges where d is the depth of the dendrogram. For
networks that are hierarchical, in the sense that there
are communities at many scales and the dendrogram is
roughly balanced, we have d ∼ log n. If the network is
also sparse, m ∼ n, then the running time is essentially
linear, O(n log2 n). This is considerably faster than most
previous general algorithms, and allows us to extend com-
munity structure analysis to networks that had been con-
sidered too large to be tractable. We have demonstrated
our algorithm with an application to a large network of
co-purchasing data from the online retailer Amazon.com.
Our algorithm discovers clear communities within this
network that correspond to specific topics or genres of
books or music, indicating that the co-purchasing ten-
dencies of Amazon customers are strongly correlated with
subject matter. Our algorithm should allow researchers
to analyze even larger networks with millions of vertices
and tens of millions of edges using current computing re-
sources, and we look forward to seeing such applications.
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Amazon:	
Community	Size	Distribution

• A	power	law	
distribution	of	
community	size

• (more	on	
power	laws	in	
later	lectures)
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4 54582 Hobbies and interests II: adventure books; video games/comics; some sports; some humor; some classic
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FIG. 3: Cumulative distribution of the sizes of communities
when the network is partitioned at the maximum modularity
found by the algorithm. The distribution appears to follow
a power law form over two decades in the central part of its
range, although it deviates in the tail. As a guide to the
eye, the straight line has slope −1, which corresponds to an
exponent of α = 2 for the raw probability distribution.

about (mostly female) spies in the American Civil War
(13 items). It is worth noting that because few real-
world networks have community metadata associated
with them to which we may compare the inferred com-
munities, this type of manual check of the veracity and
coherence of the algorithm’s output is often necessary.

One interesting property recently noted in some net-
works [30, 32] is that when partitioned at the point
of maximum modularity, the distribution of community
sizes s appears to have a power-law form P (s) ∼ s−α

for some constant α, at least over some significant range.
The Amazon co-purchasing network also seems to ex-
hibit this property, as we show in Fig. 3, with an expo-
nent α ≃ 2. It is unclear why such a distribution should
arise, but we speculate that it could be a result either of

the sociology of the network (a power-law distribution in
the number of people interested in various topics) or of
the dynamics of the community structure algorithm. We
propose this as a direction for further research.

IV. CONCLUSIONS

We have described a new algorithm for inferring com-
munity structure from network topology which works by
greedily optimizing the modularity. Our algorithm runs
in time O(md log n) for a network with n vertices and
m edges where d is the depth of the dendrogram. For
networks that are hierarchical, in the sense that there
are communities at many scales and the dendrogram is
roughly balanced, we have d ∼ log n. If the network is
also sparse, m ∼ n, then the running time is essentially
linear, O(n log2 n). This is considerably faster than most
previous general algorithms, and allows us to extend com-
munity structure analysis to networks that had been con-
sidered too large to be tractable. We have demonstrated
our algorithm with an application to a large network of
co-purchasing data from the online retailer Amazon.com.
Our algorithm discovers clear communities within this
network that correspond to specific topics or genres of
books or music, indicating that the co-purchasing ten-
dencies of Amazon customers are strongly correlated with
subject matter. Our algorithm should allow researchers
to analyze even larger networks with millions of vertices
and tens of millions of edges using current computing re-
sources, and we look forward to seeing such applications.
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Limitations	of	Modularity

• Modularity	is	not	a	perfect	measures
– Plus	the	algorithm	described	has	a	complexity	of	
N^2	and	does	not	work	well	with	large	networks

• Problems	for	modules	with	a	number	of	
internal	links	of	the	order	of	√2L	or	smaller.

• Intuition:	modularity	depends	on	links	of	a	
community	to	the	“outside”,	ie the	rest	of	the	
network. S.	Fortunato,	S.	Barthelemy.	Resolution	

limit	 in	community	detection.	Proc.	Natl.	
Acad.	Sci.,	2007.



Louvain	Method

• Faster	method	with	complexity	O(L)
• Step	I:	
– Initially,	all	nodes	assigned	to	a	different	
community.

– For	each	node	i consider	neighbours (j)	and	
evaluate	gain	in	modularity	of	community	if	i
moves	to	j’s	community.	

–Move	node	i to	j’s	community	which	has	the	
largest	positive	gain.	

– Do	this	for	all	nodes.	Stop	when	no	improvement	
can	be	achieved.



Louvain	(Step	2)

• Step	II:
– Construct	a	new	network	whose	nodes	are	the	
communities	 identified	 during	Step	I.

– The	weight	of	the	link	between	 two	nodes	is	the	sum	
of	the	weight	of	the	links	between	 the	nodes	in	the	
corresponding	 communities.	Links	between	nodes	of	
the	same	community	 lead	to	weighted	self-loops.

• Repeat	Step	I	and	Step	II	on	this	network.
• The	passes	are	repeated	until	there	are	no	more	
changes	and	maximum	modularity	is	attained.



Example



Efficiency

• Faster	than	other	algorithms
• Complexity	is	linear	on	typical	and	sparse	
data.
– Possible	gains	in	modularity	are	easy	to	compute	
and	number	of	communities	decreases	drastically	
after	a	few	steps.



Performance	and	Modularity	results	
for	various	networks	and	approaches



Louvain	over	a	telecom	network	
in	Belgium

The	colours are	different	
languages	spoken	by	
people.	The	intermediate	
node	is	one	with	a	lot	of	
language	mixing.

Edges	are	calls.	Each	of	
these	communities	 are	
more	than	100	people.



Overlapping	Communities

Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.
Most real networks typically contain parts in which the nodes

(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.
In general, each node i of a network can be characterized by a

membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sova;b nodes, which we define as the overlap size between these
communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcoma : Finally, the
size scoma of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.

1Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Department of Biological Physics, Eötvös University,
Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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• Community	
membership	
could	overlap:	
a	node	could	
be	part	of	more	
than	1	
community.



Nodes	can	belong	to	more
than	1	social	circle!

[Palla et�al.,�)05]

� A node belongs to many social circles� A�node�belongs�to�many�social�circles
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Clique	Percolation	Method:
the	idea	(Palla 2005)

• Two	nodes	belong	to	the	same	community	if	
they	can	be	connected	through	adjacent	
k-cliques.

• A	k-clique	is	a	fully	connected	graph	of	k	
nodes.

• K-cliques	are	adjacent	if	they	have	k-1	
overlapping	nodes.

• K-clique	community:	nodes	which	can	be	
reached	through	a	sequence	of	adjacent	k-
cliques.

[Palla et�al.,�)05]

� Two nodes belong to the same community if theyTwo�nodes�belong�to�the�same�community�if�they�
can�be�connected�through�adjacent�k�cliques:
� k�clique:

� Fully�connected�
graph�on�k nodes

� Adjacent k�cliques: 4-cliqueAdjacent�k cliques:
� overlap�in�k-1 nodes

� k�clique�community
� Set�of�nodes�that�can�
be�reached�through�a�
sequence of adjacent

adjacent
3-cliques

sequence�of�adjacent�
k�cliques

11/10/2010 Jure�Leskovec,�Stanford�CS224W:�Social�and�Information�Network�Analysis,�http://cs224w.stanford.edu 4



Clique	Percolation	Method:
The	algorithm

• Find	the	maximal	cliques
– A	maximal	clique	 is	a	clique	 that	cannot	be	extended	
by	including	one	more	adjacent	vertex

– This	is	complex	but	real	networks	are	relatively	 sparse.
• Build	clique	overlap	matrix
– Each	clique	 is	an	entry
– Connect	 two	cliques	if	they	overlap	 in	at	least	k-1	
nodes

• Communities:	
– Connected	 components	of	the	clique	overlap	matrix



Example
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Figure 1: A simple illustration of the extraction of the k-clique-communities at k = 4 using the clique-
clique overlap matrix. Top left picture shows the graph in which the different cliques are marked by
different colours. The according clique-clique overlap matrix is shown in the top right corner. To obtain
the k-clique-communities at k = 4, we delete the off-diagonal elements that are smaller than 3 and also
the diagonal elements that are smaller than 4, resulting in the matrix shown in the bottom left of the
figure. The connected components (the k-clique-communities) corresponding to this matrix are shown
in the bottom right.

and every diagonal element smaller than k in the matrix, replacing the remaining elements by one, and
then carrying out a component analysis of this matrix. The resulting separate components are equivalent
to the different k-clique-communities. A simple illustration of the above is given in Fig. 1.

Another advantage of this method is that the clique-clique overlap matrix encodes all information
necessary to obtain the communities for any value of k, therefore once the clique-clique overlap matrix
is constructed, the k-clique-communities for all possible values of k can be obtained very quickly. In
contrast to this, in a simple k-clique finding approach the search for the k-cliques would have to be
restarted from the beginning for every single value of k.

1.1.2 Locating the cliques

As discussed in the previous section, in contrast to the k-cliques, cliques cannot be subsets of larger
cliques, therefore they have to be located in a decreasing order of their size. The largest possible clique
size in the studied graph is determined from the degree-sequence. Starting with this clique size, our
algorithm repeatedly chooses a node, extracts every clique of this size containing that node, then deletes
the node and its edges. (The deletion of the already examined nodes inhibits the finding of the same
clique multiple times). When no nodes are left, the clique size is decreased by one and the clique finding
procedure is restarted on the original graph. The already found cliques influence the further search since
the yet unrevealed (smaller) cliques cannot be subsets of them.

The cliques of size s containing a given node v can be found by examining the interrelations of the
neighbours of v. In our algorithm this is implemented in the following way: First, a set A is constructed

3

Maximal	
cliques

Overlap	Matrix:	
elements	 are	n.	of	
overlapping	
nodes

Erase	elements	
less	than	4	on	
diagonal	and	less	
than	3	elsewhere

K-cliques



Example



Application

Overlapping	
networks:
1) Parisi’s

coauthorship
networks

2) Networks	of	
“bright”	in	the	
word	association	
network

3) Protein	to	protein	
interaction	
network	



Application:	
Phone	Call	Network [Palla et�al.,�)07]

Communities�in�a�
4tiny6�part�of�a�phone�

ll � t k� f� �calls�network�of�4�
million�users�
[Barabasi�Palla,�2007]
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Community	Detection	
and	Weak	Ties

• Twitter	was	analyzed	trying	to	identify	if	the	
static	network	of	followers	gives	information	
about	the	dynamics	of	retweeting and	
mentioning.

• Dataset:	follower	network	(undirected),	2M	
users,	and	network	of	tweets,	mention	and	
retweets for	1	month.

• Some	community	detection	methods	are	used	
to	find	clusters	in	the	follower	network.



Sample

A

between groups bridge links no-group linksinternal links

B

• Gray:	followers
• Red:	mentions
• Green:	retweet
• 3	groups,	one	user	
between	groups.



Some	statistics
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Internal	Links 3

Oslom [30, 31] (see Methods). The analysis has also
been performed with other clustering techniques [32–36],
reaching similar conclusions (see Appendix I for a de-
tailed account on these results). We have detected 92, 062
groups, three of which are graphically depicted in Fig-
ure 1A with each sphere corresponding to a single user.
In general, the links can be classified according to their
position with respect to the user groups: internal, be-
tween groups, bridges and links involving nodes not as-
signed to any group as shown in Figure 1B.

The statistics characterizing the groups and links are
displayed in Figure 2. The group size distribution decays
slowly for three orders of magnitude and does not show
a characteristic group size (Figure 2A). For instance, the
largest group contains around 10, 000 users. Also the
number of groups each user belongs to shows high het-
erogeneity: 37.4% of the users has not been allocated to
any group, while there exists a user belonging to more
than 100 groups (see Figure 2B). The percentage of links
falling in the di�erent types regarding the groups is de-
picted in Figure 2C. Although the non-classified users
are 37% of the total, the links connected to them are less
than 6% and the percentage is even lower for those with
mentions or retweets. The most common type of con-
nections is the between-group links. One may wonder if
the algorithm for clusters detection is doing a good job
when there is such a large proportion of between-group
links. The clustering method is trying to find groups of
mutually interconnected nodes that would be extremely
rare in a randomized instance of the network, rather
than optimizing the ratio between number of between-
group and internal links. In the Appendix II, this ar-
gument is further developed and the capacity of Oslom
to detect planted communities is proved in a benchmark
even in situations with a high ratio between the number
of between-groups and internal links. Another relevant
point to highlight is the di�erent potential of each type of
links to carry mentions and retweets. As it can be seen in
the Figure 2C, the red bars for mentions in internal links
and bridges almost double the abundance of links in the
follower network in these categories. The links between
groups, on the other hand, attract far less mentions.

Internal links. According to Granovetter’s the-
ory, one could expect the internal connections inside a
group to bear closer relations. Mechanisms such as ho-
mophily [37], cognitive balance [38, 39] or triadic clo-
sure [24] favor this kind of structural configurations. Un-
fortunately, we have no means to measure the closeness of
a user-user relation in a sociological sense in our Twitter
dataset. However we can verify whether the link has been
used for mentions, whether the interchange has been re-
ciprocated or whether it has happened more than once.
The fraction of links of each type internal to the groups
as a function of the group size reveals an interesting pat-
tern as can be seen in Figure 3A. Note that the fraction
of links in the follower network is taken as the reference
for comparison. Links with mentions are more abundant
as internal links than the baseline follower relations for
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FIG. 3: Internal activity. (A) Fraction of internal links as
a function of the group size in number of users. The curve
for the follower network acts as baseline for mentions and
retweets. Note that if mentions/retweets were randomly ap-
pearing over follower links then the red/green curve should
match the black curve. (B) Distribution of the number of
mentions per link. (C) Fraction of links with mentions as a
function of their intensity. The dashed curves are the total
for the follower network (black) and for the links with men-
tions (red). While the other curves correspond (from bottom
to top) to fractions of links with: 1 non-reciprocated mention
(diamonds), 3 mentions (circles), 6 mentions (triangle up) and
more than 6 reciprocated mentions (triangle down).

groups of size up to 150 users. This particular value
brings reminiscences of the quantity known as the Dun-
bar number [40], the cognitive limit to the number of peo-
ple with whom each person can have a close relationship
and that has recently been discussed in the context of
Twitter [41]. Although we have identified larger groups,
the density of mentions is similar to the density of links
in the follower network. In addition, the distribution of
the number of times that a link is used (its intensity) for
mentions is wide, which allows for a systematic study of
the dependence of intensity and position (see Figure 3B).
The more intense (or reciprocated) a link with mentions
is, the more likely it becomes to find this link as internal
(Figure 3C).

Links between groups. The next question to con-
sider is the characteristics of links between groups. These
links occur mainly between groups containing less than
200 users (Figure 4A-C). However, their frequency de-
pends on the quality of the links (if they bear mentions

Internal	mentions	are	more	
than	follower	links	with	
groups	around	100.

The	distribution	of	mentions	
over	links	is	quite	wide

C:	The	dashed	curves	are	the	
total	for	the	follower	network	
(black)	and	for	the	links	with	
mentions	(red).	Others	(from	
bottom	to	top):	fractions	of	
links	with:	1	non-reciprocated	
mentions	(diamonds),	3	
mentions	(circles),	6	mentions	
(triangle	up)	and	more	than	6	
reciprocated	mentions	
(triangle	down).



Links	between	groups
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FIG. 4: Group-group activity. (A) Distribution of the number
of links in the follower network between groups as a function
of the size of the groups. (B) Fractions of links of the di�erent
types (follower, with mentions and with retweets) as a func-
tion of the size of the group at the link origin, and (C) at the
targeted group. (D) Frequency of between-group links as a
function of the group-group similarity for the di�erent type of
links. In the inset, ratio between the frequency of links with
retweets and with mentions.

or retweets). While links with mentions are less abun-
dant than the baseline, those with retweets are slightly
more abundant. According to the strength of weak ties
theory [24, 26, 27], weak links are typically connections
between persons not sharing neighbors, being important
to keep the network connected and for information dif-
fusion. We investigate whether the links between groups
play a similar role in the online network as information
transmitters and if this is related to the overlap of the
connected individuals’ local environments. The actions
more related to information di�usion are retweets [14]
that show a slight preference for occurring on between-
group links (Figures 4B and 4C). This preference is en-
hanced when the similarity between connected groups is
taken into account. We define the similarity between two
groups, A and B, in terms of the Jaccard index of their
connections:

similarity(A,B) =
| ⇥ links of A and B|
| � links of A and B| . (1)

The similarity estimates the overlap between the groups’
connections. The general pattern is that links with
mentions more likely occur between closer groups, while
retweets occur between groups with low similarity (Fig-
ure 4D). Mentions as personal messages are typically ex-
changed between users with similar environments.

Links with retweets are related to information transfer
and the similarity of the groups between which they take
place is small. It is more natural for a user to retweet

news from groups that are related to her own, but still
not too close either. Otherwise the information could
have already propagated by other channels. This trend
is not related to the size of the considered groups (see
Appendix III).
Bridge links. The communication between groups

can take place in two ways. The information can prop-
agate by means of links between groups or by passing
through an intermediary user belonging to more than
one group. These users have a high potential as infor-
mation bridges between communities [25]. Actually, sev-
eral previous works pointed out to the existence of spe-
cial users in Twitter regarding the communication in the
network [18, 42]. We call the links connected to bridg-
ing users bridges by extension. Bridges behave similarly
to internal links regarding the mentions: the fraction of
bridges with mentions is similar to the fraction of inter-
nal links with mentions as is shown in Figure 5A. The
aspect that di�erentiate the bridges is the way they at-
tract retweets. Bridges bear retweets with a higher likeli-
hood than either internal or between-groups connections
(see Figure 5A and Appendix III). Furthermore, the like-
lihood of finding retweets on a bridge increases with the
number of groups assigned to the users connected by the
link (Figure 5B). Our results highlight therefore the rel-
evance of bridges in the propagation of information in
the network playing a role similar to the weak ties in
Granovetter’s theory.

III. DISCUSSION

In summary, we have found groups of users analyz-
ing the follower network of Twitter with clustering tech-
niques. The activity in the network in terms of the mes-
sages called mentions and retweets clearly correlates with
the landscape that the presence of the groups introduces
in the network. Mentions, which are supposed to be
more personal messages, tend to concentrate inside the
groups or on links connecting close groups. Retweets,
which are associated to information propagation events,
appear with higher probability in links between groups,
especially those that connect groups that do not show a
high overlap, and more importantly on links connected to
users that act as bridges between groups. These bridging
users and their links, that we call bridges, play an impor-
tant role in the spreading of new information. The bridg-
ing users acquire information in one group and launch
retweets targeting the other groups of which they are
members. The relevance of certain users for the spread
of information in online social media has been discussed
in previous works. Our method provides a way to iden-
tify these special users as brokers of information between
di�erent groups using as only input the follower network.
From the sociological point of view, the way that the

activity localizes with respect to the groups allow us to
establish a parallelism with the organization of o⇤ine
social networks. In particular, we have shown that the

Occur	between	groups	of	
<200	nodes

Retweets seem	to	occur	
more	between	groups	
than	within!	Weak	ties!!!!!
Retweets also	seem	to	
happen	between less	
similar	groups!

sim(A,B) = |linksAandB |
|linksAandB |
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FIG. 5: Bridges between groups. (A) Ratio between the number of links with mentions or retweets and number of follower links.
(B) Distribution of the links in the follower network (black curve), those with mentions (red curve) and retweets (green curve)
as a function of the number of non-shared groups of the users connected by the link. Inset, ratios between these distributions
and the follower network.

theory of the strength of weak ties proposed by Granovet-
ter to characterize o⇤ine social network applies also to
an online network. The specific properties of Twitter of-
fers an opportunity to study directly the importance of
the links for personal communications or for information
di�usion. According to the theory, the strongest social
ties should tend to appear at the interior of the groups
or between close groups as happens for the links with
mentions in Twitter. In addition, the socially weak ties
are expected to be more common connecting di�erent
groups and to be important for the propagation of in-
formation in the network. This is similar to what we
observe for the links with retweets that concentrate with
high probability in links between dissimilar groups or in
bridges. Besides the roles assigned by Granovetter’s the-
ory to the links, we have found that bridging users are
also an important component to take into account for un-
derstanding information propagation. Despite the myth
of one million friends and the doubts on the social valid-
ity of online links, the simplest connections of the online
network bear valuable information on where higher qual-
ity interactions take place. The parallelism established
by our results in the organization of online and o⇤ine
networks suggests that a revision on the importance of
online networks as information sources to understand so-
cial relations is needed.

IV. MATERIALS AND METHODS

A. Description of the dataset

The data analyzed in this paper was collected in a two
step process: the fist stage corresponds to the collection
of the follower network (followers and followees), while

Property Follower Links with Links with

links mentions retweets

Users 2 408 534 377 760 26 480

Links 48 776 888 1 224 484 32 169

TABLE I: Overall characteristics of the follower network and
of the interactions taking place on it.

the second consists in the retrieval of the user activity
from the stream of Twitter (plain tweets, mentions and
retweets). In the first stage, the directed unweighted net-
work is obtained from the information on the followers
and followees of each user. The data was collected using
a breadth-first search technique: Starting from several
seeds, followers and followees of the seeds were retrieved.
Then the same procedure was repeated for the newly dis-
covered users obtaining a so-called snowball sampling of
the follower network. The procedure is stopped after sev-
eral steps when the number of newly discovered users in
n-th breadth is small compared with the total number
of users already discovered in the (n � 1)-th step. The
process was run in November 2008, gathering informa-
tion for a total of 2 408 534 users. Due to the internal
exploration of the network, one can anticipate that this
method tends to detect the users with the highest in or
out degree that belong to the largest connected cluster
of the network.
The second stage consists in searching for all the tweets

of the users found in the follower network for a period
of time from November 20 to December 11. The activity
dataset was constructed from these gathered tweets. The
tweets containing usernames with a ’@username’ func-
tional syntax were used for the mentions. Tweets that

Retweets on	a	bridge	increase	
with	the	number	of	groups	
assigned	to	the	bridging	nodes



Discussion	on	findings

• There	seems	to	be	a	correlation	with	the	role	
of	weak	ties	and	the	clustering	done	on	the	
followers	network

• Weak	ties	seem	to	be	carrier	of	information	
(retweets)	while	internal	group	links	seem	to	
be	more	about	mentions	and	communication



Summary

• We	have	discussed	modularity	based	
community	detection	as	well	as	overlapping	
community	detection.

• Many	methods	exist…

• We	have	shown	cluster	and	weak	ties	analysis	
on	an	online	social	network	dataset.
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