Social and Technological
Network Data Analytics

Lecture 11: Information Cascades

and Epidemics Applications
Ack to D. Liben-Nowell and M. Cha for slides.
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In This Lecture

* In this lecture we will show some more
examples of applications of epidemics and
information cascades in real networks.
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Characterizing Social
Cascades in Flickr

* Flickr social network (25%): WCC.

* Growing dataset over 100 days.

* 2M users.

e Favourite photo info used.

e 34,734,221 favorite markings over 11,267,320
distinct photos.
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Questions Answered

* Does contentin Flickr spread along links in the
social network?

 What are the properties of content
dissemination in Flickr (e.g., how long after
being exposed to a piece of content do users
tend to propagate it)?

* Can existing epidemiological models
characterize the information dissemination

observed in Flickr?
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How did fans get to know
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Mechanisms of

Information Propagation T

* Featuring (front page, hotlists)
* External links

e Search results

* Links between content

* Online social links

T UNIVERSITY OF
¥ CAMBRIDGE




How to identify information flow

through social links? S

* Did a particular bookmark spread through

social links?
* No: if a user bookmarks a photo and if none of
his friends have previously bookmarked the

photo

* Yes: if a user bookmarks a photo after
one of his friends bookmarked the photo
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Steady Increase

" 75% of bookmarks through social links
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Who is driving the increase
in fan numbers?

the “social cascade” group
accounts for over half of
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Time in Cascades

——o— Infector (max=133) 7
— — - Infectee (max=904)
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o e
Transmission waiting time to cascade (days) 20% ot first cascade

steps happens in
the first 3 days.
20% take longer
than a month.
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Potential Infectors

Number of infected contacts

35% of SOC'?' cascade when user marks the picture
events are influenced by a as favourite.

single infector; 20% of the
events by two infectors;
and the remaining 45%
involve three or more
potential infectors. For 10%
of the events, the infectee
had more than 10 contacts
who had already marked

the same photo as a o A S S
favorite. W] e e
0 1 2
10 10 10
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Model of Spreading

e Let’s recall the definition of

RO i idemi del
in epidemic models R :k2>/<k>2

* |f RO>1 spreads
* |f RO<1 dies out
* RO=1 epidemic threshold

(©)

* ro0 empirical calculation: Time=0
— For each fan, count how
many friends further
bookmark the same
photo. Average the count.

Time =1

. - Time =5
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Estimations

1. Formula based estimation of RO:
— Estimating p: Given an infected node countthe
neighbours subsequentlyinfected and average.
— This allows to derive a general R*0 from the

equation

2. Empirical estimation of RO:
— Givenstart node of cascade, countthe number of
directly infected nodes
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RO correlation across all photos
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Predicting spreading

* The correlation means that by using the social
network properties and some simple
observation over a short time series of user
activity we can predict the popularity of
photos.
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Discussion

* Social Cascades occurin Flickr

 The basic reproduction number of popular
photos is between 1 and 190. This is much higher
than very infectious diseases like measles,
indicating that social networks are efficient
transmission mediums and online content can be
very infectious.

* Given the expected spread and the node degree
they can predict the expectedspread on various
networks (knowing <k>).
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Another study on cascades

* Tracing information flow on a global scale
using Internet chain-letter data.
* |raq Petition Example:

Date: Mon, 17 Mar 2003 16:39:51 -0600
From: XXXX <XXXX@mac.com>

To: usa@un.int, president@whitehouse.gov
Subject: UN Petition

UN Petition for Peace

(K" to 1nduce turther diplomacy, but they say our numbers are more Non-essential personnel are now evacuating from the US embassies in
q the middle east. Was is about to start. It takes is 20% of us to cry out
1) Alice Thomas o y

3 for "NO WAR" to induce further diplomacy, but they say our numbers are more

LE 2) Bob Smith like 2%. US Congress has authorized the President of the US to go to war

d 3) Charlie Miller against Iraq. Please consider '.chls an urgent request.. UN Petition for
Peace, Stand for Peace. Islam is not the Enemy. War is NOT the Answer.

y 4) Dianna Johnson Speak against a THIRD WORLD WAR. The UN is gathering signatures in an

| . 5

o 5) Eve Brown effort to avoid a tragic world event.

8 6) Frank Davis Please COPY (rather than Forward) this e-mail in a new message, sign

il 7) Gina Williams at the erlxd of '.che Z!.ist, .and send it to all the p?ople whom you know. If

le you receive this list with more than 500 names signed, please send a copy

[] of the message to:

u decide not To sign, please consider forwarding the petition on

usa@un.int
and president@whitehouse.gov

Even if you decide not to sign, please consider forwarding the petition on
instead of eliminating it
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Data Cleaning and Gathering

 Query search engine to find

copies of petitions.
— (~650 distinct copies found.)
— (~20K distinct names.)

* compute propagation tree

from these copies

— (x > y if there is a copy where x
immediatelyprecedesy:.)
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s this really a tree?

* No.some responded twice (have 2 parents)
* Typographical changes are frequent

John Smith Santa Monica Calif John Smith Santa Monica USA John Smith Santa Monica Calif USA

e List rearrangements are common
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Propagation tree
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Solution

* Use the graph

weight(z — y) := # copies s.t. x immediately precedes y.

* run max-weight spanning arborescence
algorithm to produce a tree from G.
[Edmonds 1967]
* prune tree to eliminate any nodes that have

no poster nodes beneath them.
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Expectations

* The petitionis flooding the social network.
* Smallworld = the tree’s depth will be small. High
branching: people have many friends (10’s or 100’s).

* So the propagationtree should be shallow and wide.
* (unless it dies out quickly.)
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The tree looks like this

Q process doesn’'t die out quickly.
20K nodes in posted copies.

‘ tree is very deep.
median node depth ~ 288.

‘ tree is very narrow.
over 94% of nodes have only one child. {
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Modelling

* Let ustry to find a model that reproduces this:

* Deep tree
* Small width
* Large single child fraction

* |raq tree (18k nodes)
* depth 288, width 82, single-child fraction 94%
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Tried simulation on LivelJournal

* simulate on real social network (LiveJournal,
4.4M nodes). Randomly choose an initiator node
(= root).

* each recipient discards with prob 0, forwards
with prob1-6.6:=0.65 [Dodds Muhamad
Watts 2003]

* a non-discardingrecipient posts his copy with
prob mt (a posted copy ‘lights up’ the root-to-
poster path.)

e tree propagates from root until either (i) the
process dies out (‘fizzles’) or (ii) observable
portion of tree reaches size of Iraq tree.
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Epidemic Model

* randomly choose an initiator node (= root)
e for each x who first receives a list at time t: x

discards with probability 6 = 0.65; otherwise:
— X appends x to

— x forwards to all neighbours (who act at time t + 1)
— x posts with probability m.
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Why?

A
Social networks have lots of ‘cliquey” communities. Q
= high degrees in epidemic tree (not true in Iraq). <B>

(A) (C
® B © @ ® ©
G ®

One reason to think that cliques can be ‘“serialized’ :
BCDE don't react synchronously at time ¢t = 1.

A mails BCDE at ¢t =20
Each receives message at first email check after ¢t = O.

B responds first = C gets new copy from B.
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Asynchronous Model

 randomly choose an initiator node (= root)

* for each x who first receives a list at time t: x
chooses a delay T, where Pr[t] =???. At time t
+ T:
— x discards with probability 6 = 0.65; otherwise:
— x appends x to longestlist x received (in[t, t+ T ])

— x forwards to all x’s neighbours.
— X posts with probability .
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Delay Distribution

You receive a message at time t; you respond at time t + .

What does 7 look like"
Letters from Darwin and Einstein:

[Oliveira Barabasi 2005
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We use Pr[r] oc 773/2.

(though the precise exponent actually doesn’'t matter much.)
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Epidemic Model

 randomly choose an initiator node (= root)
e for each x who first receives a list at time t: x

chooses a delay t, where Pr[t] o< t=3/2, At

timet+ Tt

— x discards with probability 6 = 0.65; otherwise:

— x appends x to longestlist x received (in [t, t + T ]),
— x forwards to all x’s neighbours x,

— X posts with probability .
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Epidemic Model
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One More Ingredient

(18K nodes) | depth | width | single-child %
Iraq 288 82 94%
Epidemic 5| 9625 19%
Asynchronous 42 505 55%

Asynchronicity has serialized cliques, but we need more.
(e.g., social networks are ‘cliquey” but not just cliques.)

When x receives a list, it can either
— forward that list to all of z's friends, OR

— reply-to-all to all of x’s corecipients on the message.
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The Asynchronous Model

 randomly choose an initiator node (= root)
 for each x who first receives a list at time t: x

chooses a delay T, where Pr[t] oc t-3/2. At

time t + T:

— x discards with probability 6 = 0.65; otherwise:

— xappends x to longestlist x received (in [t, t+ T ])
— x forwards to all x’s neighbors.

— X posts with probability .
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The Full Model

* randomly choose an initiator node (= root)

e for each x who first receives a list at time t: x
chooses a delay T, where Pr[t] oc t-3/2. At
timet+Tt:

— x discards with probability 6 = 0.65; otherwise:

— x appends x to longestlist x received (in[t, t+ T ])

— with prob B3, x replies to all of x’s corecipients;
with prob 1 - B, x forwards to all of x’s neighbors.

— x posts with probability m.

The asynchronous model = full model with =0
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Studying Single Child Proportion

Iraq: 94%

1 single-child node fraction
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Tree Depth

Iraq: 288

post rate
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Tree Width

Iraq: 82 width
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It matches!

—Simulations: = 0.950, # = 0.22—
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Discussion

* A model with asynchronicity and group-reply
was a good initial approximation

e More data needed to understand what’s
happening
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Summary

* We have shown examples of application of
cascades and epidemic models to real data

* Real data is challenging and often processes
do not match exact models and need
tweaking.
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