
Overview of LSTMs and word2vec
and a bit about compositional distributional semantics if

there’s time

Ann Copestake

Computer Laboratory
University of Cambridge

November 2016



Outline

RNNs and LSTMs

Word2vec

Compositional distributional semantics

Some slides adapted from Aurelie Herbelot.



Outline.

RNNs and LSTMs

Word2vec

Compositional distributional semantics



Motivation

I Standard NNs cannot handle sequence information well.
I Can pass them sequences encoded as vectors, but input

vectors are fixed length.
I Models are needed which are sensitive to sequence input

and can output sequences.
I RNN: Recurrent neural network.
I Long short term memory (LSTM): development of RNN,

more effective for most language applications.
I More info: http://neuralnetworksanddeeplearning.com/ (mostly about simpler models

and CNNs)
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://neuralnetworksanddeeplearning.com/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Sequences

I Video frame categorization: strict time sequence, one
output per input.

I Real-time speech recognition: strict time sequence.
I Neural MT: target not one-to-one with source, order

differences.
I Many language tasks: best to operate left-to-right and

right-to-left (e.g., bi-LSTM).
I attention: model ‘concentrates’ on part of input relevant at

a particular point. Caption generation: treat image data as
ordered, align parts of image with parts of caption.



Recurrent Neural Networks

http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNN language model: Mikolov et al, 2010



RNN as a language model

I Input vector: vector for word at t concatenated to vector
which is output from context layer at t − 1.

I Performance better than n-grams but won’t capture
‘long-term’ dependencies:
She shook her head.
She decided she did not want any more tea, so shook her
head when the waiter reappeared.

I not the same as long distance dependency in linguistics



Long Short Term Memory Networks (A)

I An RNN has just one layer in its repeating module.
I An LSTM has four layers that interact, each one with a

gate. Gates are ways to let information through (or not):
I Forget gate layer: look at previous cell state and current

input, and decide which information to throw away.
I Input gate layer: see which information in the current state

we want to update.
I Update layer: propose new values for the cell state.
I Output layer: Filter cell state and output the filtered result.

I For instance: store gender of subject until another subject
is seen.



Long Short Term Memory Networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


State-of-the-art (possibly out of date already . . . )

I LSTMs have essentially replaced n-grams as language
models for speech.

I Image captioning and other multi-modal tasks which were
very difficult with previous methods are now feasible.

I Many traditional NLP tasks work very well with LSTMs, but
not necessarily the top performers: e.g., POS tagging and
NER: Choi 2016 — dynamic feature induction.

I Neural MT: broken away from plateau of SMT, especially
for grammaticality (partly because of
characters/subwords), but not yet industry strength.

I Definitely not there yet for text normalization: ‘33rpm’
normalized to ‘thirty two revolutions per minute’
https://arxiv.org/ftp/arxiv/papers/1611/1611.00068.pdf

https://arxiv.org/ftp/arxiv/papers/1611/1611.00068.pdf


Outline.

RNNs and LSTMs

Word2vec

Compositional distributional semantics



Embeddings

I embeddings: distributional models with dimensionality
reduction, based on prediction

I word2vec: as originally described (Mikolov et al 2013), a
NN model using a two-layer network (i.e., not deep!) to
perform dimensionality reduction.

I two possible architectures:
I given some context words, predict the target (CBOW)
I given a target word, predict the contexts (Skip-gram)

I Very computationally efficient, good all-round model (good
hyperparameters already selected).



The Skip-gram model (A)



Features of Word2Vec representations (A)

I A representation is learnt at the reduced dimensionality
straightaway: we are outputting vectors of a chosen
dimensionality (parameter of the system).

I Usually, a few hundred dimensions: dense vectors.
I The dimensions are not interpretable: it is impossible to

look into ‘characteristic contexts’.
I For many tasks, word2vec (skip-gram) outperforms

standard count-based vectors.
I But mainly due to the hyperparameters and these can be

emulated in standard count models (see Levy et al).



What Word2Vec is famous for (A)

BUT . . . see Levy et al and Levy and Goldberg for discussion



The actual components of Word2Vec (A)

I A vocabulary. (Which words do I have in my corpus?)
I A table of word probabilities.
I Negative sampling: tell the network what not to predict.
I Subsampling: don’t look at all words and all contexts.



Negative sampling (A)

Instead of doing full softmax (very expensive), word2vec is
trained using logistic regression to discriminate between real
and fake words:

I Whenever considering a word-context pair, also give the
network contexts which are not the actual observed word.

I Sample from the vocabulary. The probability to sample
something more frequent in the corpus is higher.

I The number of negative samples will affect results.



Subsampling (A)

I Instead of considering all words in the sentence, transform
it by randomly removing words from it:
considering all sentence transform randomly words

I The subsampling function makes it more likely to remove a
frequent word.

I Note that word2vec does not use a stop list.
I Note that subsampling affects the window size around the

target (i.e., means word2vec window size is not fixed).
I Also: weights of elements in context window vary.



Using word2vec

I predefined vectors or create your own
I can be used as input to NN model
I many researchers use the gensim Python library
https://radimrehurek.com/gensim/

I Emerson and Copestake (2016) find significantly better
performance on some tests using parsed data

I Levy et al’s papers are very helpful in clarifying word2vec
behaviour

I Bayesian version: Barkan (2016)
https://arxiv.org/ftp/arxiv/papers/1603/1603.06571.pdf

https://radimrehurek.com/gensim/
https://arxiv.org/ftp/arxiv/papers/1603/1603.06571.pdf


Outline.

RNNs and LSTMs

Word2vec

Compositional distributional semantics



Compositional semantics

I Compositional semantics is about providing a meaning
representation for an entire sentence.

I Classically (e.g., Montague) based on syntax and
morphology, meaning expressed as in logic:

every white cat is asleep
∀x [[white′(x) ∧ cat′(x)]→ asleep′(x)]

I Structures built deterministically from a rich syntactic
analysis (quantifier scope possibly underspecified).

I Useful in applications like database interfaces where
predicates can be grounded.

I Can be automatically induced for limited domains.



Compositional distributional semantics

I Compositional distributional semantics is typically about
the meaning of short phrases: e.g., white cat.

I Not so good at full sentences, or quantifiers, modals etc,
which compositional semantics deals with.

I In standard compositional distributional semantics, white
cats does not refer to entities which are white and cats, but
is more like creation of a new concept.

I Hence (perhaps) success of additive models.
I Unlike formal semantics, compositional distributional

semantics is good at semi-compositionality (compound
nouns, heavy table vs heavy rain vs heavy taxation etc).



Next time

I In two weeks . . .
I Possibly: more advanced distributional semantics

techniques . . .


	RNNs and LSTMs
	Word2vec
	Compositional distributional semantics

