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Motivation

» Standard NNs cannot handle sequence information well.

» Can pass them sequences encoded as vectors, but input
vectors are fixed length.

» Models are needed which are sensitive to sequence input
and can output sequences.

» RNN: Recurrent neural network.

» Long short term memory (LSTM): development of RNN,
more effective for most language applications.

> More InfO http://neuralnetworksanddeeplearning.com/ (mostly about simpler models
and CNNs)
https://karpathy.github.i0/2015/05/21/rnn-effectiveness/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Sequences

» Video frame categorization: strict time sequence, one
output per input.

» Real-time speech recognition: strict time sequence.

» Neural MT: target not one-to-one with source, order
differences.

» Many language tasks: best to operate left-to-right and
right-to-left (e.g., bi-LSTM).

» attention: model ‘concentrates’ on part of input relevant at

a particular point. Caption generation: treat image data as
ordered, align parts of image with parts of caption.



Recurrent Neural Networks
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RNN language model: Mikolov et al, 2010
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Figure 1: Simple recurrent newral network.



RNN as a language model

» Input vector: vector for word at t concatenated to vector
which is output from context layer at t — 1.

» Performance better than n-grams but won'’t capture
‘long-term’ dependencies:
She shook her head.
She decided she did not want any more tea, so shook her
head when the waiter reappeared.

» not the same as long distance dependency in linguistics



Long Short Term Memory Networks (a)

» An RNN has just one layer in its repeating module.

» An LSTM has four layers that interact, each one with a
gate. Gates are ways to let information through (or not):

» Forget gate layer: look at previous cell state and current
input, and decide which information to throw away.

» Input gate layer: see which information in the current state
we want to update.

» Update layer: propose new values for the cell state.

» Output layer: Filter cell state and output the filtered result.

» For instance: store gender of subject until another subject
is seen.



Long Short Term Memory Networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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State-of-the-art (possibly out of date already ...)

» LSTMs have essentially replaced n-grams as language
models for speech.

» Image captioning and other multi-modal tasks which were
very difficult with previous methods are now feasible.

» Many traditional NLP tasks work very well with LSTMs, but
not necessarily the top performers: e.g., POS tagging and
NER: Choi 2016 — dynamic feature induction.

» Neural MT: broken away from plateau of SMT, especially
for grammaticality (partly because of
characters/subwords), but not yet industry strength.

» Definitely not there yet for text normalization: ‘33rpm’
normalized to ‘thirty two revolutions per minute’

https://arxiv.org/ftp/arxiv/papers/1611/1611.00068.pdf
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Word2vec



Embeddings

» embeddings: distributional models with dimensionality
reduction, based on prediction
» word2vec: as originally described (Mikolov et al 2013), a
NN model using a two-layer network (i.e., not deep!) to
perform dimensionality reduction.
» two possible architectures:
» given some context words, predict the target (CBOW)
» given a target word, predict the contexts (Skip-gram)
» Very computationally efficient, good all-round model (good
hyperparameters already selected).



The Skip-gram model ()
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Features of Word2Vec representations (a)

v

A representation is learnt at the reduced dimensionality
straightaway: we are outputting vectors of a chosen
dimensionality (parameter of the system).

Usually, a few hundred dimensions: dense vectors.

The dimensions are not interpretable: it is impossible to
look into ‘characteristic contexts’.

For many tasks, word2vec (skip-gram) outperforms
standard count-based vectors.

But mainly due to the hyperparameters and these can be
emulated in standard count models (see Levy et al).



What Word2Vec is famous for (a)
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BUT ...see Levy et al and Levy and Goldberg for discussion



The actual components of Word2Vec (a)
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A vocabulary. (Which words do | have in my corpus?)
A table of word probabilities.

Negative sampling: tell the network what not to predict.
Subsampling: don’t look at all words and all contexts.
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Negative sampling (a)

Instead of doing full softmax (very expensive), word2vec is
trained using logistic regression to discriminate between real
and fake words:
» Whenever considering a word-context pair, also give the
network contexts which are not the actual observed word.
» Sample from the vocabulary. The probability to sample
something more frequent in the corpus is higher.

» The number of negative samples will affect results.



Subsampling (a)

v

Instead of considering all words in the sentence, transform
it by randomly removing words from it:
considering all sentence transform randomly words

The subsampling function makes it more likely to remove a
frequent word.

Note that word2vec does not use a stop list.

Note that subsampling affects the window size around the
target (i.e., means word2vec window size is not fixed).

Also: weights of elements in context window vary.



Using word2vec

» predefined vectors or create your own
» can be used as input to NN model

» many researchers use the gensim Python library
https://radimrehurek.com/gensim/

» Emerson and Copestake (2016) find significantly better
performance on some tests using parsed data

» Levy et al’s papers are very helpful in clarifying word2vec
behaviour

» Bayesian version: Barkan (2016)

https://arxiv.org/ftp/arxiv/papers/1603/1603.06571.pdf


https://radimrehurek.com/gensim/
https://arxiv.org/ftp/arxiv/papers/1603/1603.06571.pdf
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Compositional semantics

» Compositional semantics is about providing a meaning
representation for an entire sentence.

» Classically (e.g., Montague) based on syntax and
morphology, meaning expressed as in logic:

every white cat is asleep
Vx[[white/ (x) A caf (x)] — asleep'(x)]

» Structures built deterministically from a rich syntactic
analysis (quantifier scope possibly underspecified).

» Useful in applications like database interfaces where
predicates can be grounded.

» Can be automatically induced for limited domains.



Compositional distributional semantics

» Compositional distributional semantics is typically about
the meaning of short phrases: e.g., white cat.

» Not so good at full sentences, or quantifiers, modals etc,
which compositional semantics deals with.

» In standard compositional distributional semantics, white
cats does not refer to entities which are white and cats, but
is more like creation of a new concept.

» Hence (perhaps) success of additive models.

» Unlike formal semantics, compositional distributional
semantics is good at semi-compositionality (compound
nouns, heavy table vs heavy rain vs heavy taxation etc).



Next time

» In two weeks ...

» Possibly: more advanced distributional semantics
techniques . ..
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