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Outline of today’s lecture (and some of next week’s?)

Clustering

Brief overview of LDA

Latent variables

Dirichlet distribution

Gibbs sampling (lecture 6)

Hyperparameters

LDA again

NB: some slides borrowed from Diarmuid Ó Séaghdha
http:
//www.cl.cam.ac.uk/~do242/Teaching/HIT-MSRA-2011/
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Clustering vs classification

I Classification: predefined classes, usually supervised.
I Clustering: groupings induced from data:

I Hard clustering: each item is in one cluster
I Soft clustering: probability distribution over clusters

I Number of clusters known in advance? Required for e.g.,
k-means, but potentially useful if open.

I Probabilistic soft clustering: formally very like generative
classifier, but no labels observed when training!

I Clustering is good in contexts where categories are
(somewhat) arbitrary.

I Downsides: labelling clusters may be hard/impossible:
difficult to evaluate as standalone system.



Word Sense Disambiguation vs Word Sense Induction

I WSD: different tokens classified according to senses
defined in a particular dictionary (e.g., Wordnet).
BUT:

I Dictionaries differ!
I Lexicographers must distinguish between senses, but don’t

actually see them as hard classes (apart from homonyms).
I Utility of distinctions depends on the NLP application.

I WSI: different tokens clustered by similarity of use.
I Something analogous to task-specific WSI happens

implicitly in various NLP systems, but is not treated as a
separate module.



Topic modelling (D)

Topic 1 Topic 2 Topic 3
“business” “technology” “travel”

0.7 0.3 0

Topic 1 Topic 2 Topic 3
“business” “technology” “travel”

0.6 0 0.4



Topic classification vs topic modelling

I Predefined document classes are sometimes available
(libraries, scientific abstracts).

I But classes are often not predefined, predefined classes
may be unsuitable.

I Automatically induced topics give an alternative way of
organising big data collections.

I But: topic modelling (usually) doesn’t give a very good
approximation to conventional categories.

I However: this doesn’t matter for many applications . . .



Example - biomedical corpus (D)

I Most probable words for topics found by LDA in the
OpenPMC corpus of biomedical scientific articles:

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
sequence exposure important retinal neurons
sequences levels number lens mice

genome study large cells receptor
genes health specific retina receptors
gene data studies patients pain

protein environmental result expression rats
species risk potential corneal synaptic

dna effects type eye brain
data children represent rpe nerve

proteins studies long mutation neuronal



Example - Twitter corpus (D)

I Most probable words for topics found by LDA in a corpus of
Twitter users in London during 2010:

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
world lol blog love baby
cup haha post #xfactor kids

england good updated factor family
#worldcup dont comment big children

football yeah published cheryl school
south hey entry amazing child
spain love blogs show parents
africa hope blogging live fun
game gonna posts john great

germany time posting brother toys



But what are topics?

I LDA is almost invariably illustrated with clean subject
topics (as earlier), but low frequency topics are usually
much less coherent.

I Topic modelling has become very popular within digital
humanities: e.g., http:
//dsl.richmond.edu/dispatch/pages/intro

I Historians are interested in topics like TRADE, but other
scholars find less obvious topics useful.

I From now on, implicit scare quotes around the term “topic”!

http://dsl.richmond.edu/dispatch/pages/intro
http://dsl.richmond.edu/dispatch/pages/intro


“A topic like this one is hard to interpret. But for a literary
scholar, that’s a plus.”
https://tedunderwood.com/2012/04/07/
topic-modeling-made-just-simple-enough/

https://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/
https://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/
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Documents as mixtures of topics (D)
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Documents as mixtures of topics (D)

Microsoft revenues hit a record as Xbox
sales soar
Microsoft’s business division which includes
Office software is its biggest seller . Sales of

the company’s Xbox 360 videogame console and its

Office software helped fuel the growth . Net income

at the world’s biggest software maker jumped 23% to

23.15bn for the year .

“business” “technology” “general”



Latent Dirichlet Allocation (LDA)

I LDA: latent variable model: a set of latent variables Z
connects documents and words.

I In topic modelling terms: LDA clusters words (types) into
topics and assigns documents a distribution over topics.

I Mixture model assumption: each word (token) in a
document is associated with a single mixture component
(i.e., topic).

I LDA can also be seen as a distributional model with
dimensionality reduction (to |Z |-dimensional space)

I LDA can be used for distributional similarity and modelling
selectional preferences.

I LDA related to LSA, but probabilistic rather than geometric
notion of dimensionality reduction.



LDA as a generative model (intuitively)

LDA models documents as though they were generated by the
following process:

1. Generate the topics (a topic is just a distribution over a
fixed vocabulary)

2. Generate each document as follows:
2.1 Randomly choose a distribution over topics
2.2 To choose each word in the document:

2.2.1 Randomly choose a topic from the distribution created in
Step 2.1

2.2.2 Randomly choose a word from that topic’s distribution over
the vocabulary

But we don’t know the topics, or the distributions associated
with the topics, so we have to work this out from the documents.



LDA - the generative story (D)

for topic z ∈ {1 . . . |Z |} do
Φz ∼ Dirichlet(β)

end for
for document d ∈ {1 . . . |D|} do
θd ∼ Dirichlet(α)
for word i ∈ d do

zi ∼ Multinomial(θd )
wi ∼ Multinomial(Φzi )

end for
end for



LDA - the maths (from Diarmuid’s slides) I

I The joint distribution of observed and hidden variables is:

P(D, z,Φ,θ;α,β) =
∏
d∈D

p(θd ;α)
∏
i∈d

P(zi ;θd )P(wi ;Φz)

I We can integrate out the multinomial parameters Φ and θ
due to Dirichlet-multinomial conjugacy. This means we
average over all possible parameter values rather than
committing to one particular value.

I The posterior distribution over topic assignments z is:

P(z|D;α,β) ∝P(D|z;β)P(z;α)

=

∫
Φ

p(Φ;β)

∫
θ

p(θ;α)·∏
d∈D

∏
i∈d

P(wi |zi ;Φ)P(zi |d ;θ)dθdΦ



LDA - the maths (from Diarmuid’s slides) II

I http://www.isi.edu/natural-language/people/
bayes-with-tears.pdf

I Optimising the posterior distribution is an intractable
problem; we must use approximate methods: for instance,
Gibbs sampling.

http://www.isi.edu/natural-language/people/bayes-with-tears.pdf
http://www.isi.edu/natural-language/people/bayes-with-tears.pdf


Unpicking LDA

Various concepts used in LDA may well be unfamiliar:
I Latent variables
I Dirichlet distribution
I Gibbs sampling
I Hyperparameters (|Z |, α, β)

These are important in various ML algorithms. In the remainder
of the lecture, I discuss these each (briefly) before returning to
LDA.
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Latent variables in probabilistic approaches

H

I Latent (hidden) variables inserted between conditionally
dependent observed variables: models have far fewer
parameters.

I Latent variables can compute a compressed
representation of the data.

I Induce some hidden structure, which we can examine.



Probabilistic models with latent variables

I Usually we have many more observed variables (e.g.,
documents, words) than latent variables (e.g., topics).

I The number of latent variables is a hyperparameter.
I Include many popular approaches, both continuous and

discrete: Gaussian mixture model (GMM) etc.
I Often compute maximum likelihood (ML) or the maximum

a posteriori (MAP) by expectation maximization (EM).
I k-means is a variant of EM for GMMs.
I Chapter 9 of Bishop (2006)
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Dirichlet distribution

Dirichlet is to the multinomial as the beta distribution is to the
binomial.
Beta distribution:

I Suppose we have a coin which may or may not be fair:
how do we estimate the probability of it coming up heads
(i.e., estimate what the binomial actually is)?

I Suppose we toss it 4 times and it comes up heads every
time: do we assume P(heads)= 1?

I Probably not, because we know something about coins:
we want to use this prior knowledge about the distribution.

I The beta distribution describes possible binomial
distributions: the prior allows smoothing.

I Equivalent to pretending we’ve already done some coin
tosses.



Priors (Bishop, 2006: p71)

I conjugate priors: priors are expressed to be in the same
functional form as the posterior distribution, hence we can
integrate out the parameters in LDA.

I Posterior distribution can become the prior for new
experiments.

I add-one smoothing is just a special case (which often
works quite well, so may be sensible if you really don’t
know anything much about the distribution to start with).



Dirichlet and Dirichlet priors

I Dirichlet is for the multinomial, so Dirichlet priors may be
uniform (single value) or non-uniform (vector).

I In LDA experiments, the prior for the topic distribution (α) is
usually treated as non-uniform (which is possible because
the number of topics is usually fairly small) while β is
treated as uniform.

I Experiments and discussion in Wallach et al (2009), but
we’ll treat them both as uniform here.
Diarmuid’s Gibbs sampling slides (below) have α = (1,1):
pretend it’s just 1.
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Sampling in general

I Exact inference is intractable for most probabilistic
methods.

I Monte Carlo methods are a way of making approximations
via random samples.

I Markov Chain Monte Carlo methods: assume that the
sample of one state is based on the prior state.

I Sampling itself has to be tractable (approximate the
sampling procedure . . . )

I Bishop (2006: Chapter 11) discusses sampling in detail,
including Gibbs Sampling.



LDA - the maths: a recap

The posterior distribution over topic assignments z is:

P(z|D;α,β) ∝P(D|z;β)P(z;α)

=

∫
Φ

p(Φ;β)

∫
θ

p(θ;α)·∏
d∈D

∏
i∈d

P(wi |zi ;Φ)P(zi |d ;θ)dθdΦ

Optimising the posterior distribution is an intractable problem;
we must use approximate methods: for instance, Gibbs
sampling.



Gibbs sampling for LDA (all from Diarmuid’s slides) I

I Gibbs sampling is a general Markov Chain Monte Carlo
method for evaluating probability distributions that are
difficult or impossible to evaluate analytically; see
https://www.umiacs.umd.edu/~resnik/pubs/
LAMP-TR-153.pdf for an NLP-friendly introduction.

I The intuitive idea behind Gibbs sampling is to iterate
through the dataset, updating one “small part” of the model
at a time.

I Each update is non-deterministic: even from the same
starting state two sampling runs will visit different states.

I Typically we run the sampler for a large number of
iterations (e.g., 1000 passes through the corpus) and
estimate the posterior using the final sampling state or an
average over non-adjacent sampling states.

https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf
https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf


Gibbs sampling for LDA (all from Diarmuid’s slides) II

I For LDA, each sampling iteration updates the topic
assignment zi of each token wi in the corpus in succession,
fixing the assignments of all other tokens and using those
assignments to compute the distribution over values of zi :

P(zi = z|wi , z−i ,w−i ;α,β) ∝
f−i
zdi

+ αz

f−i
d +

∑
z′ αz′

f−i
zwi

+ βwi

f−i
z +

∑
w ′ βw ′

where we use the following notation:
w−i all words other than the i th token
z−i all topic assignments other than the i th token
fzd number of tokens in document d assigned to topic z
fzw number of tokens of type w in the corpus assigned to z
fd length in tokens of document d
fz number of tokens assigned to topic z



Gibbs sampling pseudocode – outer loop

Given documents D, topic vocabulary Z , no. of iterations ITS,
hyperparameters α, β:

for d = 1 to |D| do
for all w ∈ d do

TopicAssignments[z] = RandomInt(|Z |)
end for

end for
for i = 1 to ITERATIONS do

for d = 1 to |D| do
for all w ∈ d do

InnerLoop(w ,d ,TopicAssignments)
end for

end for
end for



Gibbs sampling pseudocode – outer loop

Given documents D, topic vocabulary Z , no. of iterations ITS,
hyperparameters α, β:

for d = 1 to |D| do
for all w ∈ d do
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Gibbs sampling pseudocode – inner loop

To update the topic assignment for a single w :
DecrementCounts(w) {Subtract 1 from all counts related to
w}
for z = 1 to |Z | do

Score[z] = ScoreTopic(w ,d ,z)
Sum = Sum + Score[z]

end for
r = Random(Sum) {Random number between 0 and Sum}
newZ = -1
while r >= 0 do

newZ = newZ + 1
r = r - Score[z]

end while
TopicAssignments[w ] = newZ
IncrementCounts(w ,d ,z)



Gibbs sampling example

Toy example: |Z | = 2, α = (1,1), β = 0.1, |V | = 4

Doc 1: a a b a b a a

2 1 2 1 2 1 1

Doc 2: c c d a c

1 2 2 1 2

Doc 3: a b b b

2 2 1 2

Doc 4: d

1

Random initialisation

???1 ???

P(z1 = 1) ∝ fz1d1+α1

fd1+
∑

z′ αz′

fz1wa+βwa
fz1+

∑
w′ βw′

P(z1 = 2) ∝ fz2d1+α2

fd1+
∑

z′ αz′

fz2wa+βwa
fz2+

∑
w′ βw′

P(z1 = 1) ∝
(

4+1
6+2

)(
5+0.1
8+0.4

)
P(z1 = 2) ∝

(
2+1
6+2

)(
1+0.1
8+0.4

)P(z1 = 1) ∝ 0.38 P(z1 = 2) ∝ 0.05
Sample randomly in (0,0.43): 0.12

So z1 is set to 1
And move on to the next token. . .
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LDA - Interpreting the results

I The states visited by Gibbs sampler (after the burnin
period) can be used to estimate various properties of
interest.

I From a computational semantics perspective we are most
interested in
(a) Estimating the topic-word and document-topic distributions

Φ and θ.
(b) Evaluating the learned model in an application or through

comparison to human judgements.



LDA - Interpreting the results

I The posterior mean of the topic distribution θd for a
document d is given by:

θ̂dz(MEAN) =
fdz + αz

fd +
∑′

z α
′
z

I The posterior mean of the word distribution Φz for a topic z
is given by:

Φ̂zw(MEAN) =
fzw + βw

fz +
∑′

w β
′
w

I Recall that the effect of the Dirichlet prior is to smooth the
estimation of a multinomial distribution.



From Stevyers and Griffiths (2007)
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Dirichlet priors in LDA

I α and β are ‘officially’ the way we give the model
information about the distributions

I they smooth the estimation of the multinomial
I more practically: they allow us to experiment (‘tune

hyperparameters’) until we get the desired results . . .



Hyperparameters

I General experimental methodology:
I choose an evaluation metric (preferably not exactly the

same as final evaluation)
I explore parameter values on the development set to

maximize the results
I finally: evaluate on test set (be careful about repeating

evaluations too often!)
I the parameter space to be explored can be very large . . .
I number of latent variables |Z | is also a hyperparameter for

LDA, but mostly doesn’t matter as long as it’s big enough
(some topics will be almost unused)

I stopword list is also a hyperparameter
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LDA - the generative story, revisited

for topic z ∈ {1 . . . |Z |} do
Φz ∼ Dirichlet(β)

end for
for document d ∈ {1 . . . |D|} do
θd ∼ Dirichlet(α)
for word i ∈ d do

zi ∼ Multinomial(θd )
wi ∼ Multinomial(Φzi )

end for
end for



LDA - the maths, revisited

I The joint distribution of observed and hidden variables is:

P(D, z,Φ,θ;α,β) =
∏
d∈D

p(θd ;α)
∏
i∈d

P(zi ;θd )P(wi ;Φz)

I and the posterior distribution is estimated via Gibbs
sampling . . .



More on LDA and topic modelling

I Griffiths and Stevyers (2004): in the readings
I More diagrams/explanation:
http://psiexp.ss.uci.edu/research/papers/
SteyversGriffithsLSABookFormatted.pdf

I Diarmuid’s slides:
https://www.cl.cam.ac.uk/~do242/Teaching/
HIT-MSRA-2011/harbin_semantics_part2.pdf

I MALLET: various software, including topic modelling
http://mallet.cs.umass.edu/topics.php (with
tutorial).

http://psiexp.ss.uci.edu/research/papers/SteyversGriffithsLSABookFormatted.pdf
http://psiexp.ss.uci.edu/research/papers/SteyversGriffithsLSABookFormatted.pdf
https://www.cl.cam.ac.uk/~do242/Teaching/HIT-MSRA-2011/harbin_semantics_part2.pdf
https://www.cl.cam.ac.uk/~do242/Teaching/HIT-MSRA-2011/harbin_semantics_part2.pdf
http://mallet.cs.umass.edu/topics.php


Next lectures

Rough plan:
I Restricted Bolzmann Machines
I RNNs and LSTMs
I distributonal models and word2vec
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