
Hoare Logic and Model Checking

Kasper Svendsen

University of Cambridge

CST Part II – 2016/17

Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft

Pointers

Pointers and state

So far, we have been reasoning about a language without pointers,

where all values were numbers.

In this lecture we will extend the WHILE language with pointers

and introduce an extension of Hoare logic, called Separation Logic,

to simplify reasoning about pointers.

1

Pointers and state

E ::= N | null | V | E1 + E2 | expressions

| E1 − E2 | E1 × E2 | · · ·

B ::= T | F | E1 = E2 boolean expressions

| E1 ≤ E2 | E1 ≥ E2 | · · ·

C ::= skip | C1;C2 | V := E commands

| if B then C1 else C2

| while B do C

| V := [E] | [E1] := E2

| V := cons(E1, ...,En) | dispose(E)

2

Pointers and state

Commands are now evaluated with respect to a heap h that stores

the current value of allocated locations.

Reading, writing and disposing of pointers fails if the given

location is not currently allocated.

Fetch assignment command: V := [E]

• evaluates E to a location l and assigns the current value of l

to V ; faults if l is not currently allocated

3

Pointers and state

Heap assignment command: [E1] := E2

• evaluates E1 to a location l and E2 to a value v and updates

the heap to map l to v ; faults if l is not currently allocated

Pointer disposal command, dispose(E)

• evaluates E to a location l and deallocates location l from the

heap; faults if l is not currently allocated

4

Pointers and state

Allocation assignment command: V := cons(E1, ...,En)

• chooses n consecutive unallocated locations, say l1, ..., ln,

evaluates E1, ...,En to values v1, ..., vn, updates the heap to

map li to vi for each i and assigns l1 to V

Allocation never fails.

The language supports pointer arithmetic: e.g.,

X := cons(0, 1);Y := [X + 1]

5

Pointers and state

In this extended language we can work with proper data structures,

like the following singly-linked list.

12 99 37head

For instance, this operation deletes the first element of the list:

x := [head + 1]; // lookup address of second element

dispose(head); // deallocate first element

dispose(head + 1);

head := x // swing head to point to second element

6

Operational semantics

Pointers and state

For the WHILE language we modelled the state as a function

assigning values (numbers) to all variables:

s ∈ State
def
= Var→ Val

To model pointers we will split the state into a stack and a heap

• a stack assigns values to program variables, and

• a heap maps locations to values

State
def
= Store× Heap

7

Pointers and state

Values now includes both numbers and locations

Val
def
= Z + Loc

Locations are modelled as natural numbers

Loc
def
= N

To model allocation, we model the heap as a finite function

Store
def
= Var→ Val Heap

def
= Loc

fin→ Val

8

Pointers and state

WHILEp programs can fail in several ways

• dereferencing an invalid pointer

• invalid pointer arithmetic

To model failure we introduce a distinguished failure value

E [[−]] : Exp× Store→ { }+ Val

B[[−]] : BExp× Store→ { }+ B

⇓ : P(Cmd× State× ({ } ∪ State))

9

Pointer dereference

E [[E]](s) = l l ∈ dom(h)

〈V := [E], (s, h)〉 ⇓ (s[V 7→ h(l)], h)

E [[E]](s) = l l 6∈ dom(h)

〈V := [E], (s, h)〉 ⇓

10

Pointer assignment

E [[E1]](s) = l E [[E2]](s) = v

l ∈ dom(h) v 6=

〈[E1] := E2, (s, h)〉 ⇓ (s, h[l 7→ v])

E [[E1]](s) = l l 6∈ dom(h)

〈[E1] := E2, (s, h)〉 ⇓

E [[E2]](s) =

〈[E1] := E2, (s, h)〉 ⇓

11

Reasoning about pointers

Reasoning about pointers

In standard Hoare logic we can syntactically approximate the set of

program variables that might be affected by a command C .

mod(skip) = ∅
mod(X := E) = {X}
mod(C1;C2) = mod(C1) ∪mod(C2)

mod(if B then C1 else C2) = mod(C1) ∪mod(C2)

mod(while B do C) = mod(C)

12

The rule of constancy

The rule of constancy expresses that assertions that do not refer to

variables modified by a command are automatically preserved

during its execution.

` {P} C {Q} mod(C) ∩ FV (R) = ∅

` {P ∧ R} C {Q ∧ R}

This rule derivable in standard Hoare logic.

This rule is important for modularity as it allows us to only

mention the part of the state that we access.

13

Reasoning about pointers

Imagine we extended Hoare logic with a new assertion, E1 ↪→ E2,

for asserting that location E1 currently contains the value E2 and

extend the proof system with the following axiom:

` {>} [E1] := E2 {E1 ↪→ E2}

Then we loose the rule of constancy:

` {>} [X] := 1 {X ↪→ 1}

` {> ∧ Y ↪→ 0} [X] := 1 {X ↪→ 1 ∧ Y ↪→ 0}

(the post-condition is false if X and Y refer to the same location.)

14

Reasoning about pointers

In the presence of pointers, syntactically distinct variables can refer

to the same location. Updates made through one variable can thus

influence the state referenced by other variables.

This complicates reasoning as we explicitly have to track inequality

of pointers to reason about updates:

` {E1 6= E3 ∧ E3 ↪→ E4} [E1] := E2 {E1 ↪→ E2 ∧ E3 ↪→ E4}

15

Separation logic

Separation logic

Separation logic is an extension of Hoare logic that simplifies

reasoning about mutable state using new connectives to control

aliasing.

Separation logic was proposed by John Reynolds in 2000 and

developed further by Peter O’Hearn and Hongsek Yang around

2001. It is still a very active area of research.

16

Separation logic

Separation logic introduces two new concepts for reasoning about

mutable state::

• ownership: Separation logic assertions do not just describe

properties of the current state, they also assert ownership of

part of the heap.

• separation: Separation logic introduces a new connective,

written P ∗ Q, for asserting that the part of the heap owned

by P and Q are disjoint.

This makes it easy to describe data structures without sharing.

17

Separation logic

Separation logic introduces a new assertion, written E1 7→ E2, for

reasoning about individual heap cells.

The points-to assertion, E1 7→ E2, asserts

• that the current value of heap location E1 is E2, and

• asserts ownership of heap location E1.

18

Meaning of separation logic assertions

The semantics of a separation logic assertion, written [[P]](s), is a

set of heaps that satisfy the assertion P.

The intended meaning is that if h ∈ [[P]](s) then P asserts

ownership of any locations in dom(h).

The heaps h ∈ [[P]](s) are thus referred to as partial heaps, since

they only contain the locations owned by P.

The empty heap assertion, only holds for the empty heap:

[[emp]](s)
def
= {[]}

19

Meaning of separation logic assertions

The points-to assertion, E1 7→ E2, asserts ownership of the location

referenced by E1 and that this location currently contains E2:

[[E1 7→ E2]](s)
def
= {h | dom(h) = {E [[E1]](s)}

∧ h(E [[E1]](s)) = E [[E2]](s)}

Separating conjunction, P ∗ Q, asserts that the heap can be split

into two distjoint parts such that one satisfies P and the other Q:

[[P ∗ Q]](s)
def
= {h | ∃h1, h2. h = h1] h2

∧ h1 ∈ [[P]](s) ∧ h2 ∈ [[Q]](s)}

Here we use h1] h2 as shorthand for h1 ∪ h2 where h1] h2 is only

defined when dom(h1) ∩ dom(h2) = ∅.

20

Examples of separation logic assertions

1. X 7→ E1 ∗ Y 7→ E2

This assertion is unsatisfiable in a state where X and Y refer

to the same location, since X 7→ E1 and Y 7→ E2 would both

assert ownership of the same location.

The following heap satisfies the assertion:

E1 E2X Y

2. X 7→ E ∗ X 7→ E

This assertion is not satisfiable.

21

Meaning of separation logic assertions

The first-order primitives are interpreted much like for Hoare logic:

[[⊥]](s)
def
= ∅

[[>]](s)
def
= Heap

[[P ∧ Q]](s)
def
= [[P]](s) ∩ [[Q]](s)

[[P ∨ Q]](s)
def
= [[P]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s)
def
= {h | h ∈ [[P]](s)⇒ h ∈ [[Q]](s)}

...

22

Examples of separation logic assertions

3. X 7→ E1 ∧ Y 7→ E2

This asserts that X and Y alias each other and E1 = E2:

E1X Y

23

Examples of separation logic assertions

4. X 7→ Y ∗ Y 7→ X

X Y

5. X 7→ E1,Y ∗ Y 7→ E2,null

E1 E2X

Here X 7→ E1, ...,En is shorthand for

X 7→ E1 ∗ (X + 1) 7→ E2 ∗ · · · ∗ (X + n − 1) 7→ En

24

Summary: Separation logic assertions

Separation logic assertions describe properties of the current state

and assert ownership of parts of the current heap.

Separation logic controls aliasing of pointers by asserting that

assertions own disjoint heap parts.

25

Separation logic triples

Separation logic triples

Separation logic (SL) extends the assertion language but uses the

same Hoare triples to reason about the behaviour of programs

` {P} C {Q} ` [P] C [Q]

but with a different meaning.

Our SL triples extend the meaning of our HL triples in two ways

• they ensure that our WHILEp programs do not fail

• they require that we respect the ownership discipline

associated with assertions

26

Separation logic triples

Separation logic triples require that we assert ownership in the

precondition of any heap-cells modified.

For instance, the following triple asserts ownership of the location

denoted by X and stores the value 2 at this location

` {X 7→ 1} [X] := 2 {X 7→ 2}

However, the following triple is not valid, because it updates a

location that it may not be the owner of

6` {Y 7→ 1} [X] := 2 {Y 7→ 1}

27

Framing

How can we make this idea that triples must assert ownership of

the heap-cells they modify precise?

The idea is to require that all triples must preserve any assertions

disjoint from the precondition. This is captured by the frame-rule:

` {P} C {Q} mod(C) ∩ FV (R) = ∅

` {P ∗ R} C {Q ∗ R}

The assertion R is called the frame.

28

Framing

How does preserving all frames force triples to assert ownership of

heap-cells they modify?

Imagine that the following triple did hold and preserved all frames:

{Y 7→ 1} [X] := 2 {Y 7→ 1}

In particular, it would preserve the frame x 7→ 1:

{Y 7→ 1 ∗ X 7→ 1} [X] := 2 {Y 7→ 1 ∗ X 7→ 1}

This triple definitely does not hold, since the location referenced by

X contains 2 in the terminal state.

29

Framing

This problem does not arise for triples that assert ownership of the

heap-cells they modify, since triples only have to preserve frames

disjoint from the precondition.

For instance, consider this triple which does assert ownership of X

{X 7→ 1} [X] := 2 {X 7→ 2}

If we frame on X 7→ 1 then we get the following triple which holds

vacuously since no initial states satisfies X 7→ 1 ∗ X 7→ 1.

{X 7→ 1 ∗ X 7→ 1} [X] := 2 {X 7→ 2 ∗ X 7→ 1}

30

Meaning of Separation logic triples

The meaning of {P} C {Q} in Separation logic is thus

• C does not fault when executed in an initial state satisfying P,

• if C terminates in a terminal state when executed from an

initial heap h1] hF where h1 satisfies P then the terminal

state has the form h′1] hF where h′1 satisfies Q

This bakes-in the requirement that triples must satisfy framing, by

requiring that they preserve all disjoint frames hF .

31

Meaning of Separation logic triples

Written formally, the meaning is:

|= {P} C {Q} def
=

(∀s, h. h ∈ [[P]](s)⇒ ¬(〈C , (s, h)〉 ⇓)) ∧
(∀s, s ′, h, h′, hF . dom(h) ∩ dom(hF) = ∅ ∧
h ∈ [[P]](s) ∧ 〈C , (s, h] hF)〉 ⇓ (s ′, h′)

⇒ ∃h′1. h′ = h′1] hF ∧ h′1 ∈ [[Q]](s ′))

32

Summary

Separation logic is an extension of Hoare logic with new primitives

to simplify reasoning about pointers.

Separation logic extends Hoare logic with a notion of ownership

and separation to control aliasing and reason about shared

mutable data structures.

Suggested reading:

• John C. Reynolds. Separation Logic: A Logic for Shared

Mutable Data Structures.

33

	Pointers
	Operational semantics
	Reasoning about pointers
	Separation logic
	Separation logic triples

