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Introduction

In the past lectures we have given

• a notation for specifying the intended behaviour of programs

• a proof system for proving that programs satisfy their

intended specification

• a semantics capturing the precise meaning of this notation

Now we are going to look at ways of finding proofs, including:

• derived rules & backwards reasoning

• finding invariants

• ways of annotating programs prior to proving

We are also going to look at proof rules for total correctness.
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Forward and backwards reasoning

Forward & backwards reasoning

The proof rules we have seen so far are best suited for forward

directed reasoning where a proof tree is constructed starting from

axioms towards the desired specification.

For instance, consider a proof of

` {X = a} X := X + 1 {X = a+ 1}

using the assignment rule:

` {P[E/V ]} V := E {P}
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Forward reasoning

It is often more natural to work backwards, starting from the root

of the proof tree and generating new subgoals until all the leaves

are axioms.

We can derive rules better suited for backwards reasoning.

For instance, we can derive this backwards-assignment rule:

` P ) Q[E/V ]

` {P} V := E {Q}
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Backwards sequenced assignment rule

The sequence rule can already be applied bottom, but requires us

to guess an assertion R :

` {P} C

1

{R} ` {R} C

2

{Q}
` {P} C

1

;C
2

{Q}

In the case of a command sequenced before an assignment, we can

avoid having to guess R with the sequenced assignment rule:

` {P} C {Q[E/V ]}
` {P} C ;V := E {Q}

This is easily derivable using the sequencing rule and the

backwards-assignment rule (exercise).
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Backwards reasoning

In the same way, we can derive a backwards-reasoning rule for

loops by building in consequence:

` P ) I ` {I ^ B} C {I} ` I ^ ¬B ) Q

` {P} while B do C {Q}

This rule still requires us to guess I to apply it bottom-up.
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Proof rules

` P ) Q

` {P} skip {Q}
` {P} C

1

{R} ` {R} C

2

{Q}
` {P} C

1

;C
2

{Q}

` P ) Q[E/V ]

` {P} V := E {Q}
` {P} C {Q[E/V ]}
` {P} C ;V := E {Q}

` P ) I ` {I ^ B} C {I} ` I ^ ¬B ) Q

` {P} while B do C {Q}

` {P ^ B} C

1

{Q} ` {P ^ ¬B} C

2

{Q}
` {P} if B then C

1

else C

2

{Q}
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Finding loop invariants

A verified factorial implementation

We wish to verify that the following command computes the

factorial of X and stores the result in Y .

while X 6= 0 do (Y := Y ⇤ X ;X := X � 1)

First we need to formalise the specification:

• Factorial is only defined for non-negative numbers, so X

should be non-negative in the initial state.

• The terminal state of Y should be equal to the factorial of the

initial state of X .

• The implementation assumes that Y is equal to 1 initially.
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A verified factorial implementation

This corresponds to the following partial correctness Hoare triple:

{X = x ^ X � 0 ^ Y = 1}
while X 6= 0 do (Y := Y ⇤ X ;X := X � 1)

{Y = x!}

Here ! denotes the usual mathematical factorial function.

Note that we used an auxiliary variable x to record the initial value

of X and relate the terminal value of Y with the initial value of X .
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How does one find an invariant?

` P ) I ` {I ^ B} C {I} ` I ^ ¬B ) Q

` {P} while B do C {Q}

Here I is an invariant that

• must hold initially

• must be preserved by the loop body when B is true

• must imply the desired postcondition when B is false
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How does one find an invariant?

` P ) I ` {I ^ B} C {I} ` I ^ ¬B ) Q

` {P} while B do C {Q}

The invariant I should express

• what has been done so far and what remains to be done

• that nothing has been done initially

• that nothing remains to be done when B is false
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A verified factorial implementation

{X = x ^ X � 0 ^ Y = 1}
while X 6= 0 do (Y := Y ⇤ X ;X := X � 1)

{Y = x!}

Take I to be Y ⇤ X ! = x! ^ X � 0, then we must prove:

• X = x ^ X � 0 ^ Y = 1 ) I

• {I ^ X 6= 0} Y := Y ⇤ X ;X := X � 1 {I}
• I ^ X = 0 ) Y = x!

The first and last proof obligation follow by basic arithmetic.

11

Proof rules

` P ) Q

` {P} skip {Q}
` {P} C

1

{R} ` {R} C

2

{Q}
` {P} C

1

;C
2

{Q}

` P ) Q[E/V ]

` {P} V := E {Q}
` {P} C {Q[E/V ]}
` {P} C ;V := E {Q}

` P ) I ` {I ^ B} C {I} ` I ^ ¬B ) Q

` {P} while B do C {Q}

` {P ^ B} C

1

{Q} ` {P ^ ¬B} C

2

{Q}
` {P} if B then C

1

else C

2

{Q}
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Proof outlines

In the literature, hand-written proofs in Hoare logic are often

written as informal proof outlines instead of proof trees.

Proof outlines are code listings annotated with Hoare logic

assertions between statements.
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Proof outlines

Here is an example of a proof outline for the second proof

obligation for the factorial function:

{Y ⇤ X ! = x! ^ X � 0 ^ X 6= 0}
{(Y ⇤ X ) ⇤ (X � 1)! = x! ^ (X � 1) � 0}
Y := Y ⇤ X ;

{Y ⇤ (X � 1)! = x! ^ (X � 1) � 0}
X := X � 1

{Y ⇤ X ! = x! ^ X � 0}
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Proof outlines

Writing out full proof trees or proof outlines by hand is tedious and

error-prone even for simple programs.

In the next lecture we will look at using mechanisation to check

our proofs and help discharge trivial proof obligations.
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A verified fibonacci implementation

Imagine we want to prove the following fibonacci implementation

satisfies the given specification.

{X = 0 ^ Y = 1 ^ Z = 1 ^ 1  N ^ N = n}
while (Z < N) do

(Y := X + Y ;X := Y � X ;Z := Z + 1)

{Y = fib(n)}

First we need to understand the implementation:

• the Z variable is used to count loop iterations

• and Y and X are used to compute the fibonacci number
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A verified fibonacci implementation

{X = 0 ^ Y = 1 ^ Z = 1 ^ 1  N ^ N = n}
while (Z < N) do

(Y := X + Y ;X := Y � X ;Z := Z + 1)

{Y = fib(n)}

Take I ⌘ Y = fib(Z ) ^ X = fib(Z � 1), then we have to prove:

• X = 0 ^ Y = 1 ^ Z = 1 ^ 1  N ^ N = n ) I

• {I ^ (Z < N)} Y := X + Y ;X := Y � X ;Z := Z + 1 {I}
• (I ^ ¬(Z < N)) ) Y = fib(n)

Do all these hold?

The first two do (Exercise!)
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A verified fibonacci implementation

{X = 0 ^ Y = 1 ^ Z = 1 ^ 1  N ^ N = n}
while (Z < N) do

(Y := X + Y ;X := Y � X ;Z := Z + 1)

{Y = fib(n)}

Take I ⌘ Y = fib(Z ) ^ X = fib(Z � 1), then we have to prove:

• X = 0 ^ Y = 1 ^ Z = 1 ^ 1  N ^ N = n ) I

• {I ^ (Z < N)} Y := X + Y ;X := Y � X ;Z := Z + 1 {I}
• (I ^ ¬(Z < N)) ) Y = fib(n)

Do all these hold? The first two do (Exercise!)

17

A verified fibonacci implementation

{X = 0 ^ Y = 1 ^ Z = 1 ^ 1  N ^ N = n}
while (Z < N) do

(Y := X + Y ;X := Y � X ;Z := Z + 1)

{Y = fib(n)}

While Y = fib(Z ) ^ X = fib(Z � 1) is an invariant, it is not

strong enough to establish the desired post-condition.

We need to know that when the loop terminates then Z = n.

We need to strengthen the invariant to:

Y = fib(Z ) ^ X = fib(Z � 1) ^ Z  N ^ N = n
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Total correctness

Total correctness

So far, we have many concerned ourselves with partial correctness.

What about total correctness?

Recall, total correctness = partial correctness + termination.

The total correctness triple, [P] C [Q] holds if and only if

• whenever C is executed in a state satisfying P , then C

terminates and the terminal state satisfies Q
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Total correctness

WHILE-commands are the only commands that might not

terminate.

Except for the WHILE-rule, all the axioms and rules described so

far are sound for total correctness as well as partial correctness.
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Total correctness

The WHILE-rule is not sound for total correctness

` {>} X := X {>}
` {> ^>} X := X {>}

` {>} while true do X := X {> ^ ¬>} ` > ^ ¬> ) ?
` {>} while true do X := X {?}

If the WHILE-rule was sound for total correctness, then this would

show that while true do X := X always terminates in a state

satisfying ?.
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Total correctness

We need an alternative total correctness WHILE-rule that ensures

the loop always terminates.

The idea is to show that some non-negative quantity decreases on

each iteration of the loop.

This decreasing quantity is called a variant.
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Total correctness

In the rule below, the variant is E , and the fact that it decreases is

specified with an auxiliary variable n

` [P ^ B ^ (E = n)] C [P ^ (E < n)] ` P ^ B ) E � 0

` [P] while B do C [P ^ ¬B]

The second hypothesis ensures the variant is non-negative.
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Total correctness

Using the rule-of-consequence we can derive the following

backwards-reasoning total correctness WHILE rule

` P ) I ` I ^ ¬B ) Q

` I ^ B ) E � 0 ` [I ^ B ^ (E = n)] C [I ^ (E < n)]

` [P] while B do C [Q]
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Total correctness: Factorial example

Consider the factorial computation we looked at before

[X = x ^ X � 0 ^ Y = 1]

while X 6= 0 do (Y := Y ⇤ X ;X := X � 1)

[Y = x!]

By assumption X is non-negative and decreases in each iteration of

the loop.

To verify that this factorial implementation terminates we can thus

take the variant E to be X .
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Total correctness: Factorial example

[X = x ^ X � 0 ^ Y = 1]

while X 6= 0 do (Y := Y ⇤ X ;X := X � 1)

[Y = x!]

Take I to be Y ⇤ X ! = x! ^ X � 0 and E to be X .

Then we have to show that

• X = x ^ X � 0 ^ Y = 1 ) I

• [I ^ X 6= 0 ^ (X = n)] Y := Y ⇤ X ;X := X � 1 [I ^ (X < n)]

• I ^ X = 0 ) Y = x!

• I ^ X 6= 0 ) X � 0
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Total correctness

The relation between partial and total correctness is informally

given by the equation

Total correctness = partial correctness + termination

This is captured formally by the following inference rules

` {P} C {Q} ` [P] C [>]

` [P] C [Q]

` [P] C [Q]

` {P} C {Q}
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Summary: Total correctness

We have given rules for total correctness.

They are similar to those for partial correctness

The main di↵erence is in the WHILE-rule

• WHILE commands are the only ones that can fail to terminate

• for WHILE commands we must prove that a non-negative

expression is decreased by the loop body

28


