
Hoare Logic and Model Checking
Model Checking
Lecture 8: Linear temporal logic (LTL)

Dominic Mulligan
Based on previous slides by Alan Mycroft and Mike Gordon

Programming, Logic, and Semantics Group
University of Cambridge

Academic year 2016–2017

1

Learning outcomes

By the end of this lecture, you should:

• Be familiar with the linear model of time
• Be familiar with LTL syntax and semantics

2

Linear model of time

Linear time

LTL’s conception of time:

• At each moment in time exactly one successor state
• No “branching” of time into multiple futures
• Examine single execution of a system, and view it holistically

LTL can express path properties of systems

LTL formulae describe infinite paths through transition system

3

Right-serial transition systems

Suppose T = 〈S, S0,→〉 is a transition system

Call T right-serial when:

for every s ∈ S there exists s′ ∈ S such that s→ s′

Intuitively: “every state in S has a→-successor”

Can convert any TS into right-serial TS:

• Add fresh state s to S
• Add transition s→ s and s′ → s for all terminal s′ ∈ S

4

LTL syntax

Atomic propositions

Throughout we fix a set of atomic propositions, AP

Domain specific, and depend on modelling task

Recall examples from Lecture 1:

lift_empty moving dispense

other examples:

cargo_bay_full student_in_lecture_theatre

Will use p, q, r, and so on, to range over atomic propositions

5

LTL formulae

Define LTL formulae with the recursive grammar:

φ, ψ, ξ, . . . ::= > | ⊥ | p
::= ¬φ
::= φ ∧ ψ | φ ∨ ψ | φ⇒ ψ

::= �φ | ♦φ | ©φ | φ UNTIL ψ

6

Intuitive explanation of LTL formulae

First line:
> | ⊥ | p

>, ⊥, and p ∈ AP are all LTL formulae

• > is the logical truth constant (or “true”),
• ⊥ is the logical falsity constant (or “false”),
• p is embedding of atomic propositions into formulae

7

Intuitive explanation of LTL formulae

Second line:
¬φ

If φ is an LTL formula, then ¬φ is a formula

• ¬φ is negation (or “not φ”)

8

Intuitive explanation of LTL formulae

Third line:
φ ∧ ψ | φ ∨ ψ | φ⇒ ψ

If φ and ψ are LTL formulae, then so are φ ∧ ψ, φ ∨ ψ, φ⇒ ψ

• φ ∧ ψ is conjunction (or “φ and ψ”)
• φ ∨ ψ is disjunction (or “φ or ψ”)
• φ⇒ ψ is implication (or “ if φ then ψ”, or “ψ whenever φ”)

9

Intuitive explanation of LTL formulae

Last line:
�φ | ♦φ | ©φ | φ UNTIL ψ

If φ and ψ are LTL formulae, then so are �φ, ♦φ,©φ and φ UNTIL ψ

• �φ is “henceforth φ”, or “from now, always φ”
• ♦φ is “at some future point φ”
• ©φ is “ immediately after φ”, or “ in the next state φ”
• φ UNTIL ψ is “at some future point ψ, but until then φ”

10

Alternative syntax for modalities

You may also see (e.g. in “Logic in Computer Science”):

• Gφ instead of �φ
• Fφ instead of ♦φ
• Xφ instead of©φ

Author’s preference, just syntactic differences

G = (G)lobally, F = (F)uture, X = Ne(X)t

11

Operator precedence

We add parentheses freely to disambiguate

Assign operator precedence to reduce number of parentheses:

• Unary ¬, �, ♦, and© bind most tightly
• After that UNTIL
• After that ∨ and ∧
• Finally⇒ binds least tightly

12

Precedence examples

So:
�φ⇒ ♦© ψ means (�φ) ⇒ (♦(©ψ))

φ⇒ ψ ∨�ψ means φ⇒ (φ ∨ (�ψ))

φ ∨ ξ ⇒ ψ UNTIL ξ means (φ ∨ ξ) ⇒ (ψ UNTIL ξ)

and so on...

13

Example LTL formulae

Suppose started and ready are atomic propositions, then:

�¬(started ∧ ¬ready)

can be read as:

it is always the case that the system is never in a “started”
state whilst not being “ready”

14

Example LTL formulae

Suppose requested and acknowledged are atomic propositions, then:

�(requested ⇒ ♦acknowledged)

can be read as:

it is always the case that a “request” is always eventually
“acknowledged” by the system

15

Example LTL formulae

Suppose enabled is an atomic proposition, then:

�♦enabled

can be read as:

it is always the case that the system is eventually
“enabled”

the system is “enabled” infinitely often

16

Example LTL formulae

Suppose deadlock is an atomic proposition, then:

♦�deadlock

can be read as:

eventually it will be always the case that the system is in
“deadlock”

“deadlock” is inevitable

17

Semantics of LTL

Making intuition precise

Previous examples:

• Showed examples of properties expressible in LTL,
• Provided intuition for meaning of LTL formulae

Time to make that intuition precise...

18

Models for LTL

Suppose T = 〈S, S0,→〉 is a right-serial transition system

Suppose L : S −→ P(AP) is a labelling function for T

Recall:

• Assigns sets of atomic propositions to states
• Intuitively: “which atomic propositions are true at a state”

Call 〈S, S0,→,L〉 an LTL model (or just a model)

We useM,M′, and so on, to range over models

19

Infinite paths of states

A path in modelM is an infinite sequence of states

s0, s1, s2, s3, and so on

such that si → si+1 and si ∈ S for all i

Will also write s0 → s1 → . . . for a path

Will use π, π′, and so on, to range over paths

20

Suffixes of paths

Suppose π = s0 → s1 → s2 → . . . is a path in some model

We write πi to denote the ith suffix of π

So π2 is s2 → s3 → . . .

And trivially π0 = π

The suffix operation πi just “chops off” i states from start of π

21

Path indexes

Suppose π = s0 → s1 → s2 → . . . is a path in some model

We write π[i] to denote the ith index of π

So π[0] = s0 and π[2] = s2 and π[4] = s4, and so on

22

Satisfaction along a path

SupposeM is a model, π is a path inM, and φ is an LTL formula

Define the satisfaction relation π |= φ recursively by:

π |= > always
π |= ⊥ never
π |= p iff p ∈ L(π[0])
π |= ¬φ iff not π |= φ

23

Satisfaction along a path

π |= φ ∨ ψ iff π |= φ or π |= ψ

π |= φ ∧ ψ iff π |= φ and π |= ψ

π |= φ⇒ ψ iff not π |= φ or if π |= φ and π |= ψ

24

Satisfaction along a path

π |= �φ iff πi |= φ for all i ≥ 0

π |= ♦φ iff πi |= φ for some i ≥ 0

π |= ©φ iff π1 |= φ

π |= φ UNTIL ψ iff πi |= ψ for some i ≥ 0 and πj |= φ for 0 ≤ j < i

25

Notes on satisfaction relation

May also writeM, π |= φ to make model explicit

Note in clauses for �φ and ♦φ:

• Current state is counted as “future” too
• Makes some desirable properties hold of � and ♦

• Matter of taste: some version of LTL do not permit this

�φ takes all suffixes of path π, whereas ♦φ takes some suffix

Note complexity of until—existential and universal quantification!

26

Examples

LTL model as a picture:

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

27

Examples

Consider path π = s0, s1, s2, s2, s2, . . .

Then:

• π |= a

• π |= b ∧©b

• π |= c⇒ ♦ c

• π |= ♦� c

• π |= ¬�♦ a

28

Examples

(Same model as before):

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

29

Examples

Consider path π = s0, s1, s2, s3, s0, s1, s2, s3, . . .

Then:

• π |= �♦ (a ∧ b ∧ c)
• π |= (�♦ a) ∧ (�♦ b) ∧ (�♦ c)

• π |= ♦(c ∧ ¬ b)

• π |= �♦ a

30

The LTL model checking problem

Model checking LTL

GivenM and LTL formula φ

Establish whetherM, π |= φ for all π starting in initial states ofM

This is known as the LTL model checking problem

How do model checkers solve the LTL model checking problem?

31

A clue

Define (for some modelM):

Words(φ) = {L(π) | M, π |= φ}

Words(M) = {L(π) | for all π inM s.t. π[0] ∈ S0}

Here, L(π) is “mapping” of labelling function across states of π

As name suggests can be thought of as a set of “words”:

• Alphabet is P(AP),
• Words are infinite, not finite, like regular words,
• Write P(AP)ω for set of all infinite words over P(AP),
• NoteWords(φ) ⊆ P(AP)ω andWords(M) ⊆ P(AP)ω

LTL model checking can be seen as a language problem, and natural
tools to use are automata

32

A derivation

Note:

M |= φ iff Words(M) ⊆Words(φ)

iff Words(M) ∩ (P(AP)ω \Words(φ)) = {}
iff Words(M) ∩Words(¬φ) = {}

Words(M) ⊆Words(φ) expresses that “all possible behaviours in
M satisfy φ”

Also: recall S ⊆ T iff S ∩ T̄ = {}

33

Strategy

Suppose we have some automaton A¬φ that accepts infinite words,
such that language of A¬φ isWords(¬φ)

Then combine to obtain an automaton A¬φ ⊗M

Constructed so that language of A¬φ ⊗M isWords(¬φ)∩Words(M)

Check for emptiness:

• If there is some word w ∈Words(¬φ) ∩Words(M) then this
corresponds to a path π whereM, π |= ¬φ

• Need to check if this path π starts in an initial state ofM
• If so, it is a counterexample toM |= φ, and thereforeM 6|= φ,
• If no such path exists thenM |= φ.

34

Some notes

This is a sketch:

• Not enough time to go into details of algorithm, as construction
of automaton from LTL formulae φ fiddly,

• Logic in Computer Science avoids construction, see e.g. §5.2 of
“Principles of model checking” for more details,

• Libraries exist for constructing automata from LTL formulae.

Need to use special type of automata: ω-automata, accept ω-regular
languages, an infinite generalisation of regular languages

Common type to use for LTL model checking is Büchi automata,
technique due to Vardi and Wolper

Using this technique, complexity of model checking is O(V · 2|φ|)

35

Summary

• LTL uses a linear model of time
• LTL formulae express “path properties” of systems
• LTL semantics with respect to infinite paths in model
• Can use automata-theoretic techniques to solve LTL model
checking problem

• Complexity of LTL model checking exponential in size of formula

36

	Linear model of time
	LTL syntax
	Semantics of LTL
	The LTL model checking problem

