
Hoare Logic and Model Checking
Model Checking
Lecture 11: Model checking for Computation Tree Logic

Dominic Mulligan
Based on previous slides by Alan Mycroft and Mike Gordon

Programming, Logic, and Semantics Group
University of Cambridge

Academic year 2016–2017

1

Learning outcomes

At the end of this lecture, you should:

• Understand the CTL model checking problem
• Understand the “satisfaction set” of states for CTL formulae
• Know the naïve recursive labelling algorithm for computing
satisfaction sets

• Understand CTL model checking is a reachability problem
• Know the computational complexity of CTL model checking

2

The CTL model checking problem

CTL model checking problem

Suppose M = �S, S0,→,L� is a CTL model

Suppose also that s ∈ S is a state, and Φ is a CTL state formula

We want to establish whether s |= Φ (as efficiently as possible)

Importantly: we want to establish whether s |= Φ for all s ∈ S0

“All possible initial states satisfy Φ”

This is the CTL model checking problem

3

States that satisfy formulae

In M, define:
Sat(Φ) = {s ∈ S | s |= Φ}

The “states that satisfy Φ”

CTL model checking problem can be solved by:

1. Computing Sat(Φ) set for relevant CTL state formula
2. Checking whether S0 ⊆ Sat(Φ)

Then: how do we compute Sat(Φ)?

4

Simple recursive algorithm

Reminder: Existential Normal Form

Recall from last lecture:

• Existential Normal Form formulae have negations “pushed in”
• Only use a subset of modalities
• Theorem: every CTL state formula Φ has an equivalent ENF
formula

In this lecture, we work only with ENF formulae (fewer cases to cover)

To extend our algorithm implementations to full CTL:

• Wrap them in another function accepting a CTL formula,
• Use translation hidden in constructive proof of theorem above,
• Call the algorithm on this translated formula

5

Characterising Sat(Φ)

Suppose Φ is ENF formula

Take a step back:

• We aim to algorithmically compute Sat(Φ) in order to check
s |= Φ for s ∈ S0

• But what is this set?

Need to first characterise Sat(Φ) to understand whether algorithm
correct

6

Characterising Sat(Φ): the ‘easy’ cases

For M = �S, S0,→,L�, we have:

Sat(�) = S

Sat(p) = {s | p ∈ L(s)}
Sat(¬Φ) = S − Sat(Φ)

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Here: S − Sat(Φ) is relative complement

Note, per setwise reasoning, we have Sat(Φ ∨Ψ) = Sat(Φ) ∪ Sat(Ψ)

Other derived connectives similarly map onto setwise operations

7

Characterising Sat(Φ): the ∃�Φ case

For M = �S, S0,→,L�, we have:

Sat(∃�Φ) = {s ∈ S | Post(s) ∩ Sat(Φ) �= {}}

Here, Post(s) = {s� | s → s�}

8

Characterising Sat(Φ): the ∃(Φ UNTIL Ψ) case

For M = �S, S0,→,L�, we have:

Sat(∃(Φ UNTIL Ψ)) is the smallest T ⊆ S, such that:

1. Sat(Ψ) ⊆ T ,
2. If s ∈ Sat(Φ) with Post(s) ∩ T �= {} then s ∈ T

Here, “smallest” is interpreted with respect to set inclusion order

9

Correctness of characterisation of Sat(∃(Φ UNTIL Ψ)) (1)

Suppose T = Sat(∃(Φ UNTIL Ψ))

∃(Φ UNTIL Ψ) satisfies an “expansion law”:

∃(Φ UNTIL Ψ) ≡ Ψ ∨ (Φ ∧ ∃� ∃(Φ UNTIL Ψ))

T = Sat(∃(Φ UNTIL Ψ))

= Sat(Ψ ∨ (Φ ∧ ∃� ∃(Φ UNTIL Ψ)))

= Sat(Ψ) ∪ (Sat(Φ) ∩ {s ∈ S | Post(s) ∩ Sat(∃(Φ UNTIL Ψ)) �= {}})
= Sat(Ψ) ∪ (Sat(Φ) ∩ {s ∈ S | Post(s) ∩ T �= {}})

So:

1. Sat(Ψ) ⊆ T

2. s ∈ Sat(Φ) with Post(s) ∩ T �= {} implies s ∈ T

10

Correctness of characterisation of Sat(∃(Φ U Ψ)) (2)

Suppose T satisfies:

1. Sat(Ψ) ⊆ T ,
2. If s ∈ Sat(Φ) with Post(s) ∩ T �= {} then s ∈ T

Aim to show Sat(∃(Φ UNTIL Ψ)) ⊆ T

Suppose s ∈ Sat(∃(Φ UNTIL Ψ))

Work by cases on whether s ∈ Sat(Ψ)

One case is easy:

If s ∈ Sat(Ψ) then s ∈ T per (1) above

11

Correctness of characterisation of Sat(∃(Φ U Ψ)) (3)

Otherwise suppose s /∈ Sat(Ψ)

Note π = s0, s1, s2, . . . exists where s = π[0] and π |= Φ UNTIL Ψ

Let n > 0 be such π[n] |= Ψ and π[i] |= Φ for 0 ≤ i < n

Then π[n] ∈ Sat(Ψ) and therefore π[n] ∈ T per (1) above

Then π[n− 1] ∈ Sat(Φ) and π[n− 1] ∈ T since
π[n] ∈ Post(π[n− 1]) ∩ T

Then π[n− 2] ∈ Sat(Φ) and π[n− 2] ∈ T since
π[n− 1] ∈ Post(π[n− 2]) ∩ T

...

Then π[0] ∈ Sat(Φ) and π[0] ∈ T since π[1] ∈ Post(π[0]) ∩ T

Therefore s = π[0] ∈ T , as required
12

Characterising Sat(Φ): the ∃(�Φ) case

For M = �S, S0,→,L�, we have:

Sat(∃(�Φ)) is the largest T ⊆ S, such that:

1. T ⊆ Sat(Φ)

2. If s ∈ T then Post(s) ∩ T �= {}

Here, “largest” is interpreted with respect to set inclusion order

13

Correctness of characterisation of Sat(∃�Φ) (1)

Suppose T = Sat(∃�Φ)

∃�Φ also satisfies an “expansion law”:

∃�Φ ≡ Φ ∧ ∃� ∃�Φ

T = Sat(∃�Φ)

= Sat(Φ ∧ ∃� ∃�Φ)

= Sat(Φ) ∩ {s ∈ S | Post(s) ∩ Sat(∃�Φ) �= {}}
= Sat(Φ) ∩ {s ∈ S | Post(s) ∩ T �= {}}

So:

1. Sat(∃�Φ) ⊆ Sat(Φ)

2. s ∈ T implies Post(s) ∩ T �= {}

14

Correctness of characterisation of Sat(∃�Φ) (2)

Suppose T satisfies:

1. T ⊆ Sat(Φ)

2. s ∈ T implies Post(s) ∩ T �= {}

Aim to show T ⊆ Sat(∃�Φ)

Suppose s ∈ T (for T non-empty), define π:

π[0] = s ∈ T

π[1] is some state s1 ∈ Post(s0) ∩ T , which exists as s0 ∈ T per (2)

π[2] is some state s2 ∈ Post(s1) ∩ T , which exists as s1 ∈ T per (2)

...

Hence π[i] ∈ T ⊆ Sat(Φ) for all i ≥ 0 and π |= �Φ and s ∈ Sat(∃�Φ)

As this applies to any s ∈ T , we have T ⊆ Sat(∃�Φ) as required
15

Recursive labelling algorithm

Pseudocode:
function Sat(Φ):

switch Φ do:
case �: return S

case p: return {s ∈ S | p ∈ L(s)}
case ¬Ψ: return S − Sat(Ψ)

case Ψ ∧ Ξ: return Sat(Ψ) ∩ Sat(Ξ)

case ∃�Ψ: return {s ∈ S | Post(s) ∩ Sat(Ψ) �= {}}
case ∃(Ψ UNTIL Ξ): return SatExistsUntil(Ψ, Ξ)
case ∃(�Ψ): return SatExistsSquare(Ψ)

end function

16

Subprocedure SatExistsUntil

Pseudocode for SatExistsUntil:
function SatExistsUntil(Φ, Ψ):

T ← Sat(Ψ)

while {s ∈ Sat(Φ)− T | Post(s) ∩ T �= {}} �= {} do:
s ← some state from {s ∈ Sat(Φ)− T | Post(s) ∩ T �= {}}
T ← T ∪ {s}

end while
return T

end function

17

Subprocedure SatExistsSquare

Pseudocode for SatExistsSquare:
function SatExistsSquare(Φ):

T ← Sat(Φ)

while {s ∈ T | Post(s) ∩ T = {}} �= {} do
s ← some state from {s ∈ T | Post(s) ∩ T = {}}
T ← T − {s}

end while
return T

end function

18

Correctness of recursive labelling algorithm (1)

Recall Sat(∃(Φ UNTIL Ψ)) is smallest T ⊆ S:

Sat(Ψ) ⊆ T s ∈ Sat(Φ) and Post(s) ∩ T �= {} implies s ∈ T

This suggests an iterative procedure for computing
Sat(∃(Φ UNTIL Ψ)):

T0 = Sat(Ψ)

T1+i = Ti ∪ {s ∈ Sat(Φ) | Post(s) ∩ Ti �= {}}

Iterate until fixed point is reached

Ti states can reach Ψ-state in at most i steps along Φ-path

SatExistsUntil implements this idea

19

Correctness of recursive labelling algorithm (2)

Recall Sat(∃�Φ) is largest T ⊆ S:

T ⊆ Sat(Φ) s ∈ T implies Post(s) ∩ T �= {}

This suggests an iterative procedure for computing Sat(∃�Φ):

T0 = Sat(Φ)

T1+i = Ti ∩ {s ∈ Sat(Φ) | Post(s) ∩ Ti �= {}}

Iterate until fixedpoint is reached

SatExistsSquare implements this idea

20

CTL model checking as reachability

SatExistsUntil and SatExistsSquare are both “backwards searches”

In both cases:

• We start with an initial “guess”
• Move backwards along → transitions, refining guess
• Until we stop

CTL model checking can therefore be seen as a reachability problem

Correctness of algorithm relies crucially on:

• Finiteness of CTL models
• Fixed-point characterisation of CTL

21

Computational complexity

Above algorithm is naïve

Can improve performance by considering only strongly connected
components during SatExistsSquare

Do not consider this here

Complexity of optimised variant of above algorithm is
O(| Φ | ·(V + E)):

• V is number of states in model
• E is number of transitions in model
• | Φ | is “size” of formula being checked

22

Summary

• CTL model checking is a reachability problem
• Can model check CTL formulae by computing Sat-set of ENF
equivalent

• Satisfaction-set can be computed recursively using a “labelling
algorithm”

• Correctness of algorithm depends on fixed-point characterisation
of CTL formulae

• Rely crucially on finite models for termination
• Variant of labelling algorithm is O(| Φ | ·(V + E)) complexity

23

