
Hoare Logic and Model Checking
Model Checking
Lecture 10: Computation Tree Logic (CTL)

Dominic Mulligan
Based on previous slides by Alan Mycroft and Mike Gordon

Programming, Logic, and Semantics Group
University of Cambridge

Academic year 2016–2017

1

Learning outcomes

By the end of this lecture, you should:

• Be familiar with the branching model of time
• Be familiar with CTL syntax and semantics
• Understand CTL semantic equivalence, and why it is important
• Be familiar with important CTL equivalences
• Be familiar with Existential Normal Form

2

Branching model of time

Branching time

CTL’s conception of time:

• At each moment in time exactly potentially multiple futures
• Time “branches” into multiple futures at each state
• Quantify over possible futures

CTL therefore describes “state properties” of systems

CTL formulae describe states in transition system

3

A note on models

Note: by changing model of time, not changed underlying model

CTL models are based on right-serial transition systems, same as LTL

Changing conception of time:

• Affects properties that can be expressed by formulae
• Affects what CTL formulae describe (states, not paths)

4

CTL syntax

Atomic propositions

Like in LTL, we fix a set AP of atomic propositions

We continue to use p, q, r, and so on to range over AP

5

CTL state and path formulae

Define state formulae with the following grammar:

Φ,Ψ,Ξ ::= > | ⊥ | p
::= ¬Φ
::= Φ ∧Ψ | Φ ∨Ψ | Φ ⇒ Ψ

::= ∀φ | ∃φ

and path formulae with the following grammar:

φ, ψ, ξ ::= ©Φ | �Φ | ♦Φ | Φ UNTIL Ψ

In semantics of CTL:

• Path formulae are evaluated relative to a path
• State formulae are evaluated relative to a state

6

Intuitive explanation of CTL formulae

First line (of state formula grammar):

> | ⊥ | p

>, ⊥, and p for p atomic are all primitive CTL state formulae

• > is the logical truth constant (or “true”),
• ⊥ is the logical falsity constant (or “false”),
• p is the embedding of atomic propositions into CTL formulae

The last should now be familiar too!

7

Intuitive explanation of CTL formulae

Second line (of state formula grammar):

¬Φ

If Φ is a CTL state formula, then ¬Φ is a CTL state formula

• ¬Φ is negation of φ (or “not Φ”)

8

Intuitive explanation of CTL formulae

Third line (of state formula grammar):

Φ ∧Ψ | Φ ∨Ψ | Φ ⇒ Ψ

If Φ and Ψ are CTL state formulae, then so are Φ ∧Ψ, Φ ∨Ψ, Φ ⇒ Ψ

• Φ ∧Ψ is conjunction (or “Φ and Ψ”)
• Φ ∨Ψ is disjunction (or “Φ or Ψ”)
• Φ ⇒ Ψ is implication (or “ if Φ then Ψ”, or “ψ whenever φ”)

9

Intuitive explanation of CTL formulae

Last line (of state formula grammar):

∀φ | ∃φ

If φ and ψ are CTL path formulae, then ∀φ and ∃φ are CTL state
formulae

• ∀φ is “φ along every path that starts here”
• ∃φ is “φ along at least one path that starts here”, or “there exists
a path where φ holds”

Specific to CTL!

10

Intuitive explanation of CTL formulae

Path formula grammar:

©Φ | �Φ | ♦Φ | Φ UNTIL Ψ

If Φ and Ψ are CTL state formulae, then©Φ, �Φ, ♦Φ, and Φ UNTIL Ψ

are CTL path formulae

• �Φ is “henceforth Φ”, or “from now, always Φ”
• ♦Φ is “at some future point Φ”
• ©Φ is “ immediately after Φ”, or “ in the next state Φ”
• Φ UNTIL Ψ is “at some future point Ψ, but until then Φ”

11

Alternative syntax for modalities

Grammar above enforces path formula be “covered” by quantifier

Impossible to construct �∀φ or ∃φ UNTIL Ψ

Effect is to have

∀�Φ ∃�Φ ∀♦Φ ∃♦Φ

∀© Φ ∃© Φ ∀(Φ UNTIL Ψ) ∃(Φ UNTIL Ψ)

∀�, ∃©, and so on, are “derived modalities”

12

Alternative syntax for modalities

Some collapse grammar of CTL into a single grammar of “formulae”

Less clear (to me, anyway) what is going on:

• ∀ and ∃ are instructions: “go off and examine paths”
• Path formulae evaluated relative to paths
• State formulae relative to states
• Grammar closer to grammar of CTL?

Might also see (e.g. in “Logic in Computer Science”):

• A and E instead of ∀ and ∃
• X , G, F , and U instead of©, �, ♦, and UNTIL

13

Operator precedence

We add parentheses freely to disambiguate

Assign precedence to reduce number of parentheses needed:

• Unary ¬, ∀, ∃, �, ♦, and© bind most tightly
• After that UNTIL
• After that ∨ and ∧
• Finally⇒ binds least tightly

14

Precedence examples

So:
Φ ⇒ ∀©Ψ means Φ ⇒ (∀(©Ψ))

Φ ⇒ Ψ ∨ ∃�Ψ means Φ ⇒ (Φ ∨ (∃(�Ψ)))

∀© Φ ∨ Ξ ⇒ Ψ UNTIL Ξ means ((∀(©Φ)) ∨ Ξ) ⇒ (Ψ UNTIL Ξ)

and so on...

15

Example CTL formulae

Suppose started and ready are atomic propositions, then:

∃♦(started ∧ ¬ready)

can be read as:

it is possible to get to a state where “started” holds but
“ready” does not

16

Example CTL formulae

Suppose started and ready are atomic propositions, then:

∀�¬(started ∧ ¬ready)

can be read as:

it is not possible to get to a state where “started” holds
but “ready” does not

17

Example CTL formulae

Suppose deadlock is an atomic proposition, then:

∀♦∀�deadlock

can be read as:

the system will always progress to a state where it is
henceforth permanently “deadlocked”

18

Example CTL formulae

Suppose floor2, floor5, direction_up, and button_pressed_5 are
atomic propositions, then:

∀�(floor2 ∧ direction_up ∧ button_pressed_5 ⇒
∀(direction_up UNTIL floor5))

can be read as:

A lift on the second floor travelling upwards will always
continue to travel upwards until reaching level 5 whenever it
contains passengers wishing to reach that floor

19

Semantics of CTL

Making intuition precise

Previous examples:

• Showed examples of properties expressible in CTL,
• Provided intuition for meaning of CTL formulae

Time to make that intuition precise...

20

Models for CTL

RecallM = 〈S, S0,→,L〉, where:

• S set of states
• S0 ⊆ S set of initial states
• → ⊆ S × S (right-serial) transition relation on S
• L : S → P(AP) labelling function

“Right serial” means ∀s ∈ S.∃s′ ∈ S.s→ s′

21

Infinite paths of states

Fix a CTL modelM = 〈S, S0,→,L〉

Write Paths(s) for set of infinite paths of S starting at s

Write π[i] for ith state of π (“ indexing”)

Write πi for suffix of π starting position i

22

Satisfaction at a state

SupposeM is a model, s is a state inM, and Φ is a state formula

Define the satisfaction relation s |= Φ recursively by:

s |= > always
s |= ⊥ never
s |= p iff p ∈ L(s)
s |= ¬Φ iff not s |= Φ

23

Satisfaction at a state

s |= Φ ∨Ψ iff s |= Φ or s |= Ψ

s |= Φ ∧Ψ iff s |= Φ and s |= Ψ

s |= Φ ⇒ Ψ iff not s |= Φ or if s |= Φ and s |= Ψ

24

Satisfaction at a state

s |= ∀φ iff π |= φ for every π ∈ Paths(s)

s |= ∃φ iff π |= φ for some π ∈ Paths(s)

π |= φ is the evaluation of path formula φ relative to a path π

25

Satisfaction along a path

SupposeM is a model, π is a path inM, and φ is a path formula

Define the satisfaction relation π |= φ by:

π |= ©Φ iff π[1] |= Φ

π |= �Φ iff π[i] |= Φ for all i
π |= ♦Φ iff π[i] |= Φ for some i
π |= Φ UNTIL Ψ iff π[i] |= Ψ for some i and π[j] |= Φ for all j < i

26

Notes on satisfaction relations

Two relations are mutually recursive—mutually recursive grammar

Satisfaction relation for path formulae similar to LTL relation

BUT:

• In LTL modality �φ uses all suffixes of path π
• In CTL modality �Φ uses all indexes of path π
• Similar for other modalities

Tip: imagine types of πi, π[i] and satisfaction relations

27

Examples

CTL model as a picture:

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

28

Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s0 |= a ∧ b ∧ c

29

Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s0 |= ∀(b UNTIL c)

30

Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s1 |= ∀©c

31

Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s1 |= ∀©∀©c

32

Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s1 |= ∃♦a
33

Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s2 |= ∃�c
34

Semantic equivalence

Satisfaction in model

WriteM |= Φ when s |= Φ for all states s inM

ReadM |= Φ as “modelM satisfies Φ”

Holds whenever all states ofM satisfy Φ

35

Semantic equivalence

Say Φ and Ψ are semantically equivalent (Φ ≡ Ψ) when:

M |= Φ if and only ifM |= Ψ for all modelsM

Intuitively Φ ≡ Ψ asserts that:

• Φ and Ψ have same “semantic content”
• Safe to replace Φ with Ψ (and vice versa) in any context
• Quantifying overM means can’t distinguish models

36

Properties of semantic equivalence

Semantic equivalence:

• Is reflexive (φ ≡ φ)
• Is symmetric (φ ≡ ψ implies ψ ≡ φ)
• Is transitive (φ ≡ ψ and ψ ≡ ξ implies φ ≡ ξ)

Also is congruent with structure of formulae

Example: φ1 ≡ φ2 implies ¬φ1 ≡ ¬φ2 and ∃© φ1 ≡ ∃© φ2

37

Important semantic equivalences

> ≡ ¬⊥

Φ ⇒ Ψ ≡ ¬Φ ∨Ψ

Φ ∨Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

38

Important semantic equivalences

∀© Φ ≡ ¬∃© ¬Φ

∀�Φ ≡ ¬∃(> UNTIL ¬Φ)

∀♦Φ ≡ ∀(> UNTIL Φ)

∀(Φ UNTIL Ψ) ≡ ¬∃(¬Ψ UNTIL (¬Φ ∧ ¬Ψ)) ∧ ¬∃�¬Ψ

∃♦Φ ≡ ∃(> UNTIL Φ)

39

Example proof

Task: show Φ ∨Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Fix arbitrary modelM and state s inM

Need to show s |= Φ ∨Ψ if and only if s |= ¬(¬Φ ∧ ¬Ψ)

40

One direction

Assume s |= Φ ∨Ψ

Then s |= Φ or s |= Ψ

Assume without loss of generality s |= Φ

Then not s |= ¬Φ

Hence not s |= ¬Φ ∧ ¬Ψ

Therefore s |= ¬(¬Φ ∧ ¬Ψ), as required

41

T’other

Assume s |= ¬(¬Φ ∧ ¬Ψ)

Then not s |= ¬Φ and s |= ¬Ψ

Then not (not s |= Φ and not s |= Ψ)

Hence either s |= Φ or s |= Ψ

Without loss of generality, assume s |= Φ

Then s |= Φ ∨Ψ, as required

Therefore Φ ∨Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

42

Existential Normal Form

Define formulae in Existential Normal Form (ENF) by:

Φ,Ψ ::= > | p
::= Φ ∧Ψ | ¬Φ
::= ∃© Φ | ∃(Φ UNTIL Ψ) | ∃�Φ

Theorem:

Every state formula has an equivalent ENF formula

Proof: by structural induction, using previous semantic equivalences
and congruences

Note proof is constructive: describes an algorithm

43

Summary

• CTL uses a branching model of time
• CTL state formulae express “state properties” of systems
• CTL semantics with respect to states in model
• Equivalence when formulae have same “semantic content”
• Can use equivalences to rewrite a formula into ENF

44

	Branching model of time
	CTL syntax
	Semantics of CTL
	Semantic equivalence

