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Learning outcomes

By the end of this lecture, you should:

• Be familiar with the branching model of time
• Be familiar with CTL syntax and semantics
• Understand CTL semantic equivalence, and why it is important
• Be familiar with important CTL equivalences
• Be familiar with Existential Normal Form
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Branching model of time

Branching time

CTL’s conception of time:

• At each moment in time exactly potentially multiple futures
• Time “branches” into multiple futures at each state
• Quantify over possible futures

CTL therefore describes “state properties” of systems

CTL formulae describe states in transition system
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A note on models

Note: by changing model of time, not changed underlying model

CTL models are based on right-serial transition systems, same as LTL

Changing conception of time:

• Affects properties that can be expressed by formulae
• Affects what CTL formulae describe (states, not paths)
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CTL syntax

Atomic propositions

Like in LTL, we fix a set AP of atomic propositions

We continue to use p, q, r, and so on to range over AP
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CTL state and path formulae

Define state formulae with the following grammar:

Φ,Ψ,Ξ ::= � | ⊥ | p
::= ¬Φ
::= Φ ∧Ψ | Φ ∨Ψ | Φ ⇒ Ψ

::= ∀φ | ∃φ

and path formulae with the following grammar:

φ,ψ, ξ ::= �Φ | �Φ | ♦Φ | Φ UNTIL Ψ

In semantics of CTL:

• Path formulae are evaluated relative to a path
• State formulae are evaluated relative to a state
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Intuitive explanation of CTL formulae

First line (of state formula grammar):

� | ⊥ | p

�, ⊥, and p for p atomic are all primitive CTL state formulae

• � is the logical truth constant (or “true”),
• ⊥ is the logical falsity constant (or “false”),
• p is the embedding of atomic propositions into CTL formulae

The last should now be familiar too!
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Intuitive explanation of CTL formulae

Second line (of state formula grammar):

¬Φ

If Φ is a CTL state formula, then ¬Φ is a CTL state formula

• ¬Φ is negation of φ (or “not Φ”)
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Intuitive explanation of CTL formulae

Third line (of state formula grammar):

Φ ∧Ψ | Φ ∨Ψ | Φ ⇒ Ψ

If Φ and Ψ are CTL state formulae, then so are Φ ∧Ψ, Φ ∨Ψ, Φ ⇒ Ψ

• Φ ∧Ψ is conjunction (or “Φ and Ψ”)
• Φ ∨Ψ is disjunction (or “Φ or Ψ”)
• Φ ⇒ Ψ is implication (or “ if Φ then Ψ”, or “ψ whenever φ”)
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Intuitive explanation of CTL formulae

Last line (of state formula grammar):

∀φ | ∃φ

If φ and ψ are CTL path formulae, then ∀φ and ∃φ are CTL state
formulae

• ∀φ is “φ along every path that starts here”
• ∃φ is “φ along at least one path that starts here”, or “there exists
a path where φ holds”

Specific to CTL!
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Intuitive explanation of CTL formulae

Path formula grammar:

�Φ | �Φ | ♦Φ | Φ UNTIL Ψ

If Φ and Ψ are CTL state formulae, then �Φ, �Φ, ♦Φ, and Φ UNTIL Ψ

are CTL path formulae

• �Φ is “henceforth Φ”, or “from now, always Φ”
• ♦Φ is “at some future point Φ”
• �Φ is “ immediately after Φ”, or “ in the next state Φ”
• Φ UNTIL Ψ is “at some future point Ψ, but until then Φ”
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Alternative syntax for modalities

Grammar above enforces path formula be “covered” by quantifier

Impossible to construct �∀φ or ∃φ UNTIL Ψ

Effect is to have

∀�Φ ∃�Φ ∀♦Φ ∃♦Φ

∀� Φ ∃� Φ ∀(Φ UNTIL Ψ) ∃(Φ UNTIL Ψ)

∀�, ∃�, and so on, are “derived modalities”
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Alternative syntax for modalities

Some collapse grammar of CTL into a single grammar of “formulae”

Less clear (to me, anyway) what is going on:

• ∀ and ∃ are instructions: “go off and examine paths”
• Path formulae evaluated relative to paths
• State formulae relative to states
• Grammar closer to grammar of CTL�

Might also see (e.g. in “Logic in Computer Science”):

• A and E instead of ∀ and ∃
• X , G, F , and U instead of �, �, ♦, and UNTIL
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Operator precedence

We add parentheses freely to disambiguate

Assign precedence to reduce number of parentheses needed:

• Unary ¬, ∀, ∃, �, ♦, and � bind most tightly
• After that UNTIL
• After that ∨ and ∧
• Finally ⇒ binds least tightly
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Precedence examples

So:
Φ ⇒ ∀�Ψ means Φ ⇒ (∀(�Ψ))

Φ ⇒ Ψ ∨ ∃�Ψ means Φ ⇒ (Φ ∨ (∃(�Ψ)))

∀� Φ ∨ Ξ ⇒ Ψ UNTIL Ξ means ((∀(�Φ)) ∨ Ξ) ⇒ (Ψ UNTIL Ξ)

and so on...
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Example CTL formulae

Suppose started and ready are atomic propositions, then:

∃♦(started ∧ ¬ready)

can be read as:

it is possible to get to a state where “started” holds but
“ready” does not
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Example CTL formulae

Suppose started and ready are atomic propositions, then:

∀�¬(started ∧ ¬ready)

can be read as:

it is not possible to get to a state where “started” holds
but “ready” does not
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Example CTL formulae

Suppose deadlock is an atomic proposition, then:

∀♦∀�deadlock

can be read as:

the system will always progress to a state where it is
henceforth permanently “deadlocked”
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Example CTL formulae

Suppose floor2, floor5, direction_up, and button_pressed_5 are
atomic propositions, then:

∀�(floor2 ∧ direction_up ∧ button_pressed_5 ⇒
∀(direction_up UNTIL floor5))

can be read as:

A lift on the second floor travelling upwards will always
continue to travel upwards until reaching level 5 whenever it
contains passengers wishing to reach that floor
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Semantics of CTL

Making intuition precise

Previous examples:

• Showed examples of properties expressible in CTL,
• Provided intuition for meaning of CTL formulae

Time to make that intuition precise...
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Models for CTL

Recall M = �S, S0,→,L�, where:

• S set of states
• S0 ⊆ S set of initial states
• → ⊆ S × S (right-serial) transition relation on S

• L : S → P(AP ) labelling function

“Right serial” means ∀s ∈ S.∃s� ∈ S.s → s�
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Infinite paths of states

Fix a CTL model M = �S, S0,→,L�

Write Paths(s) for set of infinite paths of S starting at s

Write π[i] for ith state of π (“ indexing”)

Write πi for suffix of π starting position i
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Satisfaction at a state

Suppose M is a model, s is a state in M, and Φ is a state formula

Define the satisfaction relation s |= Φ recursively by:

s |= � always
s |= ⊥ never
s |= p iff p ∈ L(s)
s |= ¬Φ iff not s |= Φ
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Satisfaction at a state

s |= Φ ∨Ψ iff s |= Φ or s |= Ψ

s |= Φ ∧Ψ iff s |= Φ and s |= Ψ

s |= Φ ⇒ Ψ iff not s |= Φ or if s |= Φ and s |= Ψ
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Satisfaction at a state

s |= ∀φ iff π |= φ for every π ∈ Paths(s)

s |= ∃φ iff π |= φ for some π ∈ Paths(s)

π |= φ is the evaluation of path formula φ relative to a path π
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Satisfaction along a path

Suppose M is a model, π is a path in M, and φ is a path formula

Define the satisfaction relation π |= φ by:

π |= �Φ iff π[1] |= Φ

π |= �Φ iff π[i] |= Φ for all i
π |= ♦Φ iff π[i] |= Φ for some i

π |= Φ UNTIL Ψ iff π[i] |= Ψ for some i and π[j] |= Φ for all j < i
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Notes on satisfaction relations

Two relations are mutually recursive—mutually recursive grammar

Satisfaction relation for path formulae similar to LTL relation

BUT:

• In LTL modality �φ uses all suffixes of path π

• In CTL modality �Φ uses all indexes of path π

• Similar for other modalities

Tip: imagine types of πi, π[i] and satisfaction relations
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Examples

CTL model as a picture:

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}
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Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s0 |= a ∧ b ∧ c
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Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s0 |= ∀(b UNTIL c)
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Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s1 |= ∀�c
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Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s1 |= ∀�∀�c
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Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s1 |= ∃♦a
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Examples

s0 : {a, b, c}

s1 : {b} s2 : {c}

s3 : {c}

We have s2 |= ∃�c
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Semantic equivalence

Satisfaction in model

Write M |= Φ when s |= Φ for all states s in M

Read M |= Φ as “model M satisfies Φ”

Holds whenever all states of M satisfy Φ
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Semantic equivalence

Say Φ and Ψ are semantically equivalent (Φ ≡ Ψ) when:

M |= Φ if and only if M |= Ψ for all models M

Intuitively Φ ≡ Ψ asserts that:

• Φ and Ψ have same “semantic content”
• Safe to replace Φ with Ψ (and vice versa) in any context
• Quantifying over M means can’t distinguish models
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Properties of semantic equivalence

Semantic equivalence:

• Is reflexive (φ ≡ φ)
• Is symmetric (φ ≡ ψ implies ψ ≡ φ)
• Is transitive (φ ≡ ψ and ψ ≡ ξ implies φ ≡ ξ)

Also is congruent with structure of formulae

Example: φ1 ≡ φ2 implies ¬φ1 ≡ ¬φ2 and ∃� φ1 ≡ ∃� φ2
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Important semantic equivalences

� ≡ ¬⊥

Φ ⇒ Ψ ≡ ¬Φ ∨Ψ

Φ ∨Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

38

Important semantic equivalences

∀� Φ ≡ ¬∃� ¬Φ

∀�Φ ≡ ¬∃(� UNTIL ¬Φ)

∀♦Φ ≡ ∀(� UNTIL Φ)

∀(Φ UNTIL Ψ) ≡ ¬∃(¬Ψ UNTIL (¬Φ ∧ ¬Ψ)) ∧ ¬∃�¬Ψ

∃♦Φ ≡ ∃(� UNTIL Φ)
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Example proof

Task: show Φ ∨Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Fix arbitrary model M and state s in M

Need to show s |= Φ ∨Ψ if and only if s |= ¬(¬Φ ∧ ¬Ψ)
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One direction

Assume s |= Φ ∨Ψ

Then s |= Φ or s |= Ψ

Assume without loss of generality s |= Φ

Then not s |= ¬Φ

Hence not s |= ¬Φ ∧ ¬Ψ

Therefore s |= ¬(¬Φ ∧ ¬Ψ), as required
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T’other

Assume s |= ¬(¬Φ ∧ ¬Ψ)

Then not s |= ¬Φ and s |= ¬Ψ

Then not (not s |= Φ and not s |= Ψ)

Hence either s |= Φ or s |= Ψ

Without loss of generality, assume s |= Φ

Then s |= Φ ∨Ψ, as required

Therefore Φ ∨Ψ ≡ ¬(¬Φ ∧ ¬Ψ)
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Existential Normal Form

Define formulae in Existential Normal Form (ENF) by:

Φ,Ψ ::= � | p
::= Φ ∧Ψ | ¬Φ
::= ∃� Φ | ∃(Φ UNTIL Ψ) | ∃�Φ

Theorem:

Every state formula has an equivalent ENF formula

Proof: by structural induction, using previous semantic equivalences
and congruences

Note proof is constructive: describes an algorithm

43

Summary

• CTL uses a branching model of time
• CTL state formulae express “state properties” of systems
• CTL semantics with respect to states in model
• Equivalence when formulae have same “semantic content”
• Can use equivalences to rewrite a formula into ENF
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