Learning outcomes

Hoare Logic and Model Checking

Model Checking
Lecture 10: Computation Tree Logic (CTL) By the end of this lecture, you should:

- Be familiar with the branching model of time

- Be familiar with CTL syntax and semantics
Dominic Mulligan

Based on previous slides by Alan Mycroft and Mike Gordon - Understand CTL semantic equivalence, and why it is important

- Be familiar with important CTL equivalences
Programming, Logic, and Semantics Group o . .)
University of Cambridge - Be familiar with Existential Normal Form

Academic year 2016-2017

2
Branching time

CTL's conception of time:

- At each moment in time exactly potentially multiple futures

Branching model of time - Time “branches” into multiple futures at each state
- Quantify over possible futures

CTL therefore describes “state properties” of systems

CTL formulae describe states in transition system

A note on models

Note: by changing model of time, not changed underlying model
CTL models are based on right-serial transition systems, same as LTL CTL syntax
Changing conception of time: —

- Affects properties that can be expressed by formulae
- Affects what CTL formulae describe (states, not paths)

4
Atomic propositions CTL state and path formulae

Define state formulae with the following grammar:

QU =E=T|L|p
n= 0
N A AR JE
n=Vo | 3¢

Like in LTL, we fix a set AP of atomic propositions

. and path formulae with the following grammar:
We continue to use p, g, , and so on to range over AP

¢,,& == QP | 0P | 0P | & UNTIL ¥

In semantics of CTL:

- Path formulae are evaluated relative to a path
- State formulae are evaluated relative to a state

Intuitive explanation of CTL formulae Intuitive explanation of CTL formulae

First line (of state formula grammar):

T|Lllp Second line (of state formula grammar):

T, L, and p for p atomic are all primitive CTL state formulae P

- T is the logical truth constant (or “true”), . .
If ® is a CTL state formula, then =@ is a CTL state formula

- L is the logical falsity constant (or “false”),

- pis the embedding of atomic propositions into CTL formulae + —® is negation of ¢ (or “not @7)

The last should now be familiar too!

7 8
Intuitive explanation of CTL formulae Intuitive explanation of CTL formulae

Last line (of state formula grammar):

Third line (of state formula grammar): Vo | 3¢

ATV 2= T If and ¢ are CTL path formulae, then V¢ and J¢ are CTL state

If ® and ¥ are CTL state formulae, thensoare AV, dV U, & = ¥ formulae

. & AU is conjunction (or “® and ") - Vo is “¢ along every path that starts here

- J¢ is “¢ along at least one path that starts here”, or “there exists

- &\ ¥ is disjunction (or “® or ¥")
a path where ¢ holds”

- ® = U is implication (or “if ® then ¥" or “i) whenever ¢")

Specific to CTL!

Intuitive explanation of CTL formulae Alternative syntax for modalities

Path formula grammar: .
g Grammar above enforces path formula be “covered” by quantifier

O2 |02 | 0P | © UNTIL ¥ Impossible to construct OV¢ or 3¢ UNTIL ¥

If @ and W are CTL state formulae, then O®, O0®, 0P, and & UNTIL ¥ Effect is to have
are CTL path formulae
vOe 00 vod 0P

- O is “henceforth ®”, or “from now, always ®”

- 0@ is “at some future point ®” 7O SO® HE b) o, O)

- O® is “immediately after ®”, or “in the next state ®” v, 30, and so on, are “derived modalities”
- ® UNTIL W is “at some future point ¥, but until then ®”

1 12
Alternative syntax for modalities Operator precedence

Some collapse grammar of CTL into a single grammar of “formulae”

Less clear (to me, anyway) what is going on:

. . . We add parentheses freely to disambiguate
- Vand 3 are instructions: “go off and examine paths”

- Path formulae evaluated relative to paths Assign precedence to reduce number of parentheses needed:
- State formulae relative to states - Unary -, V, 3,0, ¢, and O bind most tightly
- Grammar closer to grammar of CTLx - After that UNTIL

- After that v and A
Might also see (e.g. in “Logic in Computer Science”): . Finally = binds least tightly
- Aand E instead of Vand 3

- X, G, F,and U instead of O, J, ¢, and UNTIL

Precedence examples Example CTL formulae

So: Suppose started and ready are atomic propositions, then:

®=vVOWV means &= (V(OW)) IO (started A —ready)

®=TVv3IOU means &= (Vv ((F(OT))) can be read as:

TORVES UIILE means (WO YE) = (& uim, £ it is possible to get to a state where “started” holds but

and so on... “ready” does not

15 16
Example CTL formulae Example CTL formulae

Suppose started and ready are atomic propositions, then: Suppose deadlock is an atomic proposition, then:
VO-(started A —ready) V{OVdeadlock
can be read as: can be read as:
it is not possible to get to a state where “started” holds the system will always progress to a state where it is
but “ready” does not henceforth permanently “deadlocked”

Example CTL formulae

Suppose floor2, floor5, direction_up, and button_pressed_5 are
atomic propositions, then:

VO(floor2 A direction_up A button_pressed_5 =

V(direction_up UNTIL floorb)) Semantics of CTL

can be read as:

A lift on the second floor travelling upwards will always
continue to travel upwards until reaching level 5 whenever it
contains passengers wishing to reach that floor

19

Making intuition precise Models for CTL

Recall M = (S, Sy, —, L), where:

Previous examples: - S set of states

- Showed examples of properties expressible in CTL, - Sy C S set of initial states
- Provided intuition for meaning of CTL formulae - — C S x S (right-serial) transition relation on S

- L: S — P(AP) labelling function
Time to make that intuition precise...

“Right serial” means Vs € S.3s' € S.s — ¢

Infinite paths of states Satisfaction at a state

Suppose M is a model, s is a state in M, and ® is a state formula

Fix a CTL model M = (S, Sy, —, £) Define the satisfaction relation s = ® recursively by:

Write Paths(s) for set of infinite paths of S starting at s sET always

. . . L never
Write =[4] for i*" state of w (“indexing”) 9|= _

skEDp iff pe L(s)

Write 7t for suffix of 7 starting position 4 sl -0 iff not s = @

22 23
Satisfaction at a state Satisfaction at a state

sEOVY ffsEdorsEWw sE=Vo iff m |= ¢ for every m € Paths(s)
SEDAT ffsE=Edands =W s |=d¢ iff m |= ¢ for some w € Paths(s)
5= B= Ui e 2 = @ Or life | = © &gl 2= & m = ¢ is the evaluation of path formula ¢ relative to a path =

24 25

Satisfaction along a path Notes on satisfaction relations

Suppose M is a model, 7 is a path in M, and ¢ is a path formula Two relations are mutually recursive—mutually recursive grammar
Define the satisfaction relation = |= ¢ by: Satisfaction relation for path formulae similar to LTL relation
. BUT:
™ = O® iff 7[1] = @
m = O iff 7[i] = ® for all i - In LTL modality O¢ uses all suffixes of path =
T O iff x[i] = @ for some 4 - In CTL modality OO® uses all indexes of path «
7= ® UNTIL U iff x[i] = © for some i and «[j] = ® forall j < i + Similar for other modalities

Tip: imagine types of 7, 7[i] and satisfaction relations

Examples Examples

CTL model as a picture:

We have sp EaAbAc

Examples

We have sp = V(b UNTIL c)

Examples

We have s; = VOVQOec

Examples

1%

We have s1 = VQOc

Examples

2

We have s; = 30a

Examples

Semantic equivalence

We have sy = 30c

34

Satisfaction in model Semantic equivalence

Say ® and ¥ are semantically equivalent (& = ¥) when:

M = @ if and only if M = W for all models M
Write M = ® when s = @ for all states s in M

. Intuitively ® = W asserts that:
Read M = @ as “model M satisfies ®”

Holds whenever all states of M satisfy ® - ® and ¥ have same “semantic content”
- Safe to replace ® with ¥ (and vice versa) in any context
- Quantifying over M means can't distinguish models

Properties of semantic equivalence Important semantic equivalences

Semantic equivalence:

- Is reflexive (¢ = ¢)

. g g T==1
- Is symmetric (¢ = ¢ implies ¢ = ¢)
- Is transitive (¢ = ¢ and ¢ = ¢ implies ¢ = &) P=TV=-DOVU
Also is congruent with structure of formulae OV = —(~® A D)

Example: ¢1 = ¢ implies =¢1 =~ and 3O ¢1 = 3O ¢2

37

38
Important semantic equivalences Example proof

VO®=-30-d
VO® = —3(T UNTIL —®) Task: show @ V ¥ = —(=® A)
VO = V(T UNTIL B) Fix arbitrary model M and state s in M

Need to show s =@ v ¥ if and only if s = =(=® A =)
V(® UNTIL ¥) = —3(—W UNTIL (=B A —0)) A ~I0-0

30® = 3(T UNTIL ®)

39 40

Assume s = —(=® A -0)
Assume s = ® VvV ¥

Then not s = =® and s = =¥
ThensEdorsE v

Then not (not s = ® and not s = ¥)
Assume without loss of generality s = ®

Hence either s = ® or s =¥
Then not s = —®

Without loss of generality, assume s = ®
Hence not s = =® A =0

Then s = ® Vv ¥, as required
Therefore s E —(=® A =¥), as required

Therefore ® V¥ = —(=® A =)

4 42

Define formulae in Existential Normal Form (ENF) by:

QU =T]|p
=0 AT | P

- CTL uses a branching model of time
==3(Q® | I(® UNTIL ¥) | IO

- CTL state formulae express “state properties” of systems
Theorem: - CTL semantics with respect to states in model
- Equivalence when formulae have same “semantic content”

Every state formula has an equivalent ENF formula) . ‘
- Can use equivalences to rewrite a formula into ENF

Proof: by structural induction, using previous semantic equivalences
and congruences

Note proof is constructive: describes an algorithm

43 44

