
84 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

INDISTINGUISHABLE FROM MAGIC

With computing ubiquitous and mobile tech-
nology an integral part of our everyday in-
teractions,1 text entry has become increas-
ingly problematic for interface designers.

Users need to be able to enter text when they’re on the go,
encumbered, lack access to a full- size keyboard, and in
other challenging situations. They expect to be able to ef-
ficiently interact with a wide variety of evolving interface
technologies, including smart watches and other wear-
ables, wall- sized and tabletop displays, and even their own
bodies as interaction surfaces.2

Text entry is a complex process that can demand a sub-
stantial user investment in time to learn. Consequently,
people are reluctant to adopt radically different text- entry
methods that require more than a few minutes of training.
However, the availability of inexpensive high- quality sen-
sors combined with recent progress in signal processing and
machine learning has resulted in a wide range of probabi-
listic text- entry methods. An example is the typical touch-
screen keyboard’s automatic error- correction algorithm,
which calculates posterior word probabilities by combin-
ing likelihoods from a touch model with prior probabili-
ties from a statistical language model. Another example is

speech recognition, which assigns
posterior probabilities to word se-
quences by combining likelihoods
from an acoustic model with prior
probabilities from a statistical lan-
guage model.

Currently, these and other probabilistic text- entry
methods focus almost exclusively on achieving high-
performance single- modality input, primarily by lower-
ing error rates. Here, I argue that a superior alternative
is to leverage the hypothesis spaces of multiple probabi-
listic text- entry methods to provide users with flexible
error- correction mechanisms and an ability to integrate
speech, typing, and gesturing. Such an approach can pro-
vide higher performance without forcing users to invest
considerable time in learning new text- entry techniques.

DESIGNING FOR MAINSTREAM SUCCESS
Hundreds of text- entry methods have been proposed in
the last two decades, primarily for mobile devices. How-
ever, few have achieved mainstream user adoption. In the
mobile context, the seven most popular methods are

 › single- stroke letter alphabets,3

 › multitap and predictive text entry on a keypad,
 › a touchscreen keyboard,
 › a physical thumb keyboard,
 › a gesture keyboard,4

 › handwriting recognition, and
 › speech recognition.

All of these text- entry methods share two critical traits:
good performance and high similarity to other mainstream
methods. Unsuccessful approaches often have one of these

Next- Generation
Text Entry
Per Ola Kristensson, University of Cambridge

Letting users seamlessly switch among

typing, speaking, and gesturing will facilitate

communication via emerging smart devices

in a wide variety of situations.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

 J U LY 2 0 1 5 85

INDISTINGUISHABLE FROM MAGIC
EDITOR ANTTI OULASVIRTA

Aalto University; antti.oulasvirta@aalto.fi

traits, but not both. Thus, providing
competitive entry and error rates alone
is insufficient to achieve widespread
adoption; it’s also critical to minimize
the user effort required to become pro-
ficient. This implies that any future
solution must be similar to a familiar
one—a phenomenon known in eco-
nomics as path dependency.5 As a result
of this constraint, the text- entry design
space is very narrow.

As Figure 1 shows, users must in-
vest significant time to learn a text-
 entry method that substantially de-
parts from a familiar one such as a
QWERTY keyboard or speech recog-
nition. The familiar method’s perfor-
mance is flat because user learning
is already saturated; in contrast, the
unfamiliar method’s performance
follows a learning curve. Initially, the
new method’s performance is lower,
but if it eventually proves superior,
it will surpass the familiar method’s
performance at the crossover point.
Ultimately, user learning of the new
method will saturate and provide a
maximum performance benefit. For a
new text- entry method to be consid-
ered worth learning, this benefit must
be worth the initial time investment.

However, in some cases, users are
unlikely to reach the crossover point.
Consider, for example, text entry for
a tiny device such as a smart watch.
ZoomBoard6 is an existing technol-
ogy that lets users type on the device
using a QWERTY touchscreen, albeit
with two interactions instead of one:
the first touch zooms in on a region of
the keyboard, and the second selects
the intended key. The two closed- loop
touch interactions make performance
slow, limiting text entry to about
10 words per minute (wpm), but the
method is simple and easy to learn.
Suppose a new text- entry method, such
as a chorded keyboard variant with
optimal letter assignments, prom-
ises better performance but demands

40 hours of typing experience just to
achieve a comparable 10 wpm. Assum-
ing the user casually types for 5 min-
utes per day, it would take 480 days to
reach the crossover point. Such a time
investment is unlikely to be worth the
eventual performance benefit.

A radically novel text- entry method
is thus unlikely to succeed, as the cost
of learning how to enter text is too
great. However, substantial progress
can still be achieved by maximizing
the potential of widely used probabi-
listic text- entry methods.

HELPING USERS
CORRECT ERRORS
Except for the full- size QWERTY
keyboard, current mainstream text-
 entry methods are probabilistic—they
assign posterior probability distribu-
tions to letter or word sequences. Such
methods can be implemented even on
a regular QWERTY keyboard by, for in-
stance, modeling the physical keys as a
coarse pixel grid and typing errors as
deviations on this grid.

When a probabilistic text- entry
method infers a user’s intentions,
it searches a vast hypothesis space of
all possible letter or word sequences

in a language. Of course, the user is
typically only interested in the best
hypothesis. However, errors are un-
avoidable in text entry, and when this
happens the next best hypotheses can
be used to reduce frustration and im-
prove error- correction performance.

Designers can exploit this hypoth-
esis space by converting it into a word-
confusion network—a time- ordered
series of connected word- confusion
clusters. Each cluster contains a set of
word hypotheses, and the probabilities
of these hypotheses sum to one. The left
side of Figure 2 shows a word- confusion
network with two clusters. Epsilon tran-
sitions capture the possibility that no
word was intended, and if this transition
is chosen, no word is generated.

The right side of Figure 2 shows how
a word- confusion network can be ar-
ranged in a user interface to let users
explore the hypothesis space.7 The top
row shows the text currently output by
the system. The cells below are buttons
that represent the most likely word hy-
potheses from the network for every
time step. Pushing a button changes
the corresponding output text. An X
button represents an epsilon transi-
tion, which is the hypothesis that no

Performance

Crossover point

Time investment

Unfamiliar text-entry method

Bene�t

Familiar text-entry method

Time

Figure 1. For a new text- entry method to be worth learning, the eventual maximum
performance benefit to users must be worth the initial time investment.

86 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

INDISTINGUISHABLE FROM MAGIC

word was intended at this point; if the
user presses this button, the system de-
letes the corresponding output word.
Note that all word hypotheses are or-
dered by probability, except for epsilon
transitions, which are always assigned
to the bottom row for consistency.
Other orderings are certainly possible.

A word- confusion network presented
as a user interface can improve error

correction by letting users easily ac-
cess the next- best word candidates
in the hypothesis space. It also pro-
vides additional flexibility in the use
of multiple modalities. For instance,
a speech recognizer might generate
the original hypothesis space and cor-
responding word- confusion network,
while a touch- based user interface
could be used to revise the text.

SMARTER ERROR
CORRECTION
When correcting a text- entry error,
users currently must either tap on
the backspace key or select the mis-
taken text to signal to the system that
an error- correction action is about to
occur and to indicate the replacement
text’s location. However, the rich hy-
pothesis space of probabilistic text
entry can be used to design more flex-
ible user interfaces.

For example, suppose a user in-
tends to enter “call me now” using a
speech recognizer, touchscreen key-
board, or gesture keyboard but the sys-
tem instead outputs “call be now.” To
address this type of error, a colleague
and I developed an algorithm that, in
this instance, lets users change “be”
into “me” simply by typing or speaking
“me,” without any explicit reference to
the error location.8 Optionally, users
can provide more context to improve
accuracy—in the above example, the
user could type or speak “call me,” “me
now,” or “call me now.”

The algorithm realizes this func-
tionality by merging word- confusion
networks from different probabilis-
tic text- entry modalities, as Figure
3 shows. In this case, it takes two
networks as inputs and then, using
some of the probability mass in each
word- confusion cluster, softens the
networks by adding epsilon and wild-
card transitions. Epsilon transitions
let the algorithm proceed to the next
cluster without generating a word.
Wildcard transitions indicate that
the algorithm can either stay in the
same cluster and generate any word
(self- loops), or proceed to the next
cluster and generate a wildcard word
that matches any word. Thereafter,
the algorithm searches for the high-
est joint probability path through
both networks using a token- passing
model. The search space is infinite,
but a search is still viable via beam
pruning. The algorithm’s free pa-
rameters, such as the epsilon- and
wildcard- transition probabilities, are
tuned on training data.

call 0.94 be 0.57 now 0.47
0.01

*
0.01

*
0.01

*
0.01

*

0.01
*

0.01
*

0.01
*

0.01
*

0.01
*

* 0.03

* 0.03

ε 0.02

ε 0.02

ε 0.02ε 0.02

me 0.09

* 0.03

ε 0.02 ε 0.21

bee 0.28 cow 0.28

ball 0.38 see 0.06 co 0.09 no 0.19

fee 0.06

*0.03

*0.03 *0.03*0.03

me 0.82call 0.56 ε 0.87 now 0.75

Figure 3. Merging probabilistic text- entry modalities to achieve smarter error cor-
rection. In this case, the user intended to type or speak “call me now,” but the system
inadvertently output “call be now.” The merge algorithm takes two word- confusion
networks as inputs from different text- entry modalities (blue solid lines) and then, using
some of the probability mass in each word- confusion cluster, softens the networks by
adding epsilon and wildcard transitions (red dashed lines). Epsilon transitions let the
algorithm proceed to the next cluster without generating a word. Wildcard transitions in-
dicate that the algorithm can either stay in the same cluster and generate any word (self-
loops), or proceed to the next cluster and generate a wildcard word that matches any
word. Thereafter, the algorithm searches for the highest joint probability path through
both networks using a token- passing model.

call 0.6 me 0.6

ε 0.3

ball 0.1

be 0.2

ε 0.2

call me

call me

ball be

X X

Figure 2. Example word- confusion network consisting of two word- confusion clusters
(left), and a user interface representation of the network (right).

 J U LY 2 0 1 5 87

COMBINING TYPING,
SPEECH, AND GESTURING
Any probabilistic text- entry method
that outputs word- confusion networks
can be used with our algorithm. For
example, a speech recognizer could be
the source of the original text, and a
touchscreen keyboard could be used
for error correction. Because the merge
process is asynchronous and doesn’t
rely on specific timing data, it’s also
possible for a user to simultaneously
speak and type the same sentence
and have the algorithm leverage both
hypothesis spaces to maximize the
probability of correctly inferring the
intended text. Our experiments show
that merging speech and gesture-
 keyboard text entry can reduce the
word error rate by 53 percent relative,
and using only the gesture keyboard to
correct misrecognized spoken words
can reduce the word error rate by 44
percent relative.8

Allowing users to seamlessly switch
between different text- entry methods
is useful because different methods
tend to have different performance enve-
lopes. Figure 4 shows an example of two
performance envelopes where each cir-
cle represents an entry rate−error rate
pair for a particular stimulus sentence
entered by a user (in practice, there
might be tens of thousands of such
samples).

The distribution of the performance
envelopes reveals the tradeoffs in
speed and accuracy between the text-
entry methods. For example, speech
recognition is fast when there are no
errors but results in dramatically lower
performance when users must correct
errors (red solid circles). In contrast,
a touchscreen keyboard offers lower
peak text- entry rates but degrades less
with errors (dashed blue circles). This
suggests that text- entry methods with
different performance characteristics
can complement one another depend-
ing on the ease of error correction and
the importance of high text- entry rates,
among other things. The precise objec-
tives are likely to change depending on
a user’s particular context. Leveraging

the hypothesis spaces of multiple prob-
abilistic text- entry methods makes it
possible to design interfaces that let us-
ers choose their own operating points
on the fly.

A llowing users to combine mul-
tiple probabilistic text- entry
modalities and error- correction

strategies is likely to become everyday
practice for two reasons. First, no method
is appropriate in all situations. Second,
any approach that dramatically reimag-
ines how users enter text is unlikely to
achieve widespread adoption, in large
part due to the often unfavorable tradeoff
between the initial training investment
and the eventual performance gain.

Letting users seamlessly switch
among typing, speaking, and gestur-
ing will facilitate communication via
emerging smart devices in a wide va-
riety of situations. For example, when
temporarily encumbered or otherwise
unable to type, a person could readily
switch from keyboard text entry to
speech entry. With users increasingly
relying on inherently uncertain prob-
abilistic text- entry methods, such flex-
ibility is going to become even more
important in the future.

REFERENCES
1. G.D. Abowd, “What Next, Ubicomp?

Celebrating an Intellectual Disap-
pearing Act,” Proc. 2012 ACM Conf.
Ubiquitous Computing (UbiComp 12),
2012, pp. 31−40.

2. C. Harrison, D. Tan, and D. Morris,
“Skinput: Appropriating the Body
as an Input Surface,” Proc. 28th ACM
Conf. Human Factors in Computing
Systems (CHI 10), 2010, pp. 453−462.

3. D. Goldberg and C. Richardson,
“Touch- Typing with a Stylus,” Proc.
INTERACT 1993 and CHI 1993 Conf.
Human Factors in Computing Systems
(CHI 93), 1993, pp. 80−87.

4. P.O. Kristensson and S. Zhai,
“SHARK2: A Large Vocabulary Short-
hand Writing System for Pen- Based
Computers,” Proc. 17th Ann. ACM
Symp. User Interface Software and

Technology (UIST 04), 2004,
pp. 43−52.

5. P.A. David, “Clio and the Economics
of QWERTY,” American Economic Rev.,
vol. 75, no. 2, 1985, pp. 332−337.

6. S. Oney et al., “ZoomBoard: A Dimin-
utive QWERTY Soft Keyboard Using
Iterative Zooming for Ultra- Small
Devices,” Proc. 31st ACM Conf. Human
Factors in Computing Systems (CHI 13),
2013, pp. 2799−2802.

7. J. Ogata and M. Goto, “Speech Repair:
Quick Error Correction Just by Using
Selection Operation for Speech Input
Interfaces,” Proc. 6th Ann. Conf. Int’l
Speech Communication Assoc. (Inter-
speech 2005), 2005, pp. 133−136.

8. P.O. Kristensson and K. Vertanen,
“Asynchronous Multimodal Text
Entry Using Speech and Gesture
Keyboards,” Proc. 12th Ann. Conf. Int’l
Speech Communication Assoc. (Inter-
speech 2011), 2011, pp. 581−584.

Entry rate

Error rate

Figure 4. Hypothetical performance
envelopes for two text- entry methods.
Each circle represents an entry rate−
error rate pair for a particular stimulus
sentence entered by a user. The distri-
bution of the performance envelopes re-
veals the tradeoffs in speed and accuracy
between the two methods.

PER OLA KRISTENSSON, coinventor
of the gesture keyboard, is a univer-
sity lecturer and leads the Intelligent
Interactive Systems group in the
Department of Engineering at the
University of Cambridge, UK. Contact
him at pok21@cam.ac.uk.

