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INDISTINGUISHABLE FROM MAGIC

With computing ubiquitous and mobile tech-
nology an integral part of our everyday in-
teractions,1 text entry has become increas-
ingly problematic for interface designers. 

Users need to be able to enter text when they’re on the go, 
encumbered, lack access to a full- size keyboard, and in 
other challenging situations. They expect to be able to ef-
ficiently interact with a wide variety of evolving interface 
technologies, including smart watches and other wear-
ables, wall- sized and tabletop displays, and even their own 
bodies as interaction surfaces.2

Text entry is a complex process that can demand a sub-
stantial user investment in time to learn. Consequently, 
people are reluctant to adopt radically different text- entry 
methods that require more than a few minutes of training. 
However, the availability of inexpensive high- quality sen-
sors combined with recent progress in signal processing and 
machine learning has resulted in a wide range of probabi-
listic text- entry methods. An example is the typical touch-
screen keyboard’s automatic error- correction algorithm, 
which calculates posterior word probabilities by combin-
ing likelihoods from a touch model with prior probabili-
ties from a statistical language model. Another example is 

speech recognition, which assigns 
posterior probabilities to word se-
quences by combining likelihoods 
from an acoustic model with prior 
probabilities from a statistical lan-
guage model. 

Currently, these and other probabilistic text- entry 
methods focus almost exclusively on achieving  high- 
performance single- modality input, primarily by lower-
ing error rates. Here, I argue that a superior alternative 
is to leverage the hypothesis spaces of multiple probabi-
listic text- entry methods to provide users with flexible 
error- correction mechanisms and an ability to integrate 
speech, typing, and gesturing. Such an approach can pro-
vide higher performance without forcing users to invest 
considerable time in learning new text- entry techniques.

DESIGNING FOR MAINSTREAM SUCCESS
Hundreds of text- entry methods have been proposed in 
the last two decades, primarily for mobile devices. How-
ever, few have achieved mainstream user adoption. In the 
mobile context, the seven most popular methods are

 › single- stroke letter alphabets,3

 › multitap and predictive text entry on a keypad,
 › a touchscreen keyboard,
 › a physical thumb keyboard,
 › a gesture keyboard,4

 › handwriting recognition, and
 › speech recognition.

All of these text- entry methods share two critical traits: 
good performance and high similarity to other mainstream 
methods. Unsuccessful approaches often have one of these 
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traits, but not both. Thus, providing 
competitive entry and error rates alone 
is insufficient to achieve widespread 
adoption; it’s also critical to minimize 
the user effort required to become pro-
ficient. This implies that any future 
solution must be similar to a familiar 
one—a phenomenon known in eco-
nomics as path dependency.5 As a result 
of this constraint, the text- entry design 
space is very narrow.

As Figure 1 shows, users must in-
vest significant time to learn a text- 
 entry method that substantially de-
parts from a familiar one such as a 
QWERTY keyboard or speech recog-
nition. The familiar method’s perfor-
mance is flat because user learning 
is already saturated; in contrast, the 
unfamiliar method’s performance 
follows a learning curve. Initially, the 
new method’s performance is lower, 
but if it eventually proves superior, 
it will surpass the familiar method’s 
performance at the crossover point. 
Ultimately, user learning of the new 
method will saturate and provide a 
maximum performance benefit. For a 
new text- entry method to be consid-
ered worth learning, this benefit must 
be worth the initial time investment.

However, in some cases, users are 
unlikely to reach the crossover point. 
Consider, for example, text entry for 
a tiny device such as a smart watch. 
ZoomBoard6 is an existing technol-
ogy that lets users type on the device 
using a QWERTY touchscreen, albeit 
with two interactions instead of one: 
the first touch zooms in on a region of 
the keyboard, and the second selects 
the intended key. The two closed- loop 
touch interactions make performance 
slow, limiting text entry to about 
10 words per minute (wpm), but the 
method is simple and easy to learn. 
Suppose a new text- entry method, such 
as a chorded keyboard variant with 
optimal letter assignments, prom-
ises better performance but demands 

40 hours of typing experience just to 
achieve a comparable 10 wpm. Assum-
ing the user casually types for 5 min-
utes per day, it would take 480 days to 
reach the crossover point. Such a time 
investment is unlikely to be worth the 
eventual performance benefit.

A radically novel text- entry method 
is thus unlikely to succeed, as the cost 
of learning how to enter text is too 
great. However, substantial progress 
can still be achieved by maximizing 
the potential of widely used probabi-
listic text- entry methods.

HELPING USERS  
CORRECT ERRORS
Except for the full- size QWERTY 
keyboard, current mainstream text-  
 entry methods are probabilistic—they 
assign posterior probability distribu-
tions to letter or word sequences. Such 
methods can be implemented even on 
a regular  QWERTY keyboard by, for in-
stance, modeling the physical keys as a 
coarse pixel grid and typing errors as 
deviations on this grid. 

When a probabilistic text- entry 
method infers a user’s intentions, 
it searches a vast hypothesis space of 
all possible letter or word sequences 

in a language. Of course, the user is 
typically only interested in the best 
hypothesis. However, errors are un-
avoidable in text entry, and when this 
happens the next best hypotheses can 
be used to reduce frustration and im-
prove error- correction performance.

Designers can exploit this hypoth-
esis space by converting it into a word- 
confusion network—a time- ordered 
series of connected word- confusion 
clusters. Each cluster contains a set of 
word hypotheses, and the probabilities 
of these hypotheses sum to one. The left 
side of Figure 2 shows a word- confusion 
network with two clusters. Epsilon tran-
sitions capture the possibility that no 
word was intended, and if this transition 
is chosen, no word is generated.

The right side of Figure 2 shows how 
a word- confusion network can be ar-
ranged in a user interface to let users 
explore the hypothesis space.7 The top 
row shows the text currently output by 
the system. The cells below are buttons 
that represent the most likely word hy-
potheses from the network for every 
time step. Pushing a button changes 
the corresponding output text. An X 
button represents an epsilon transi-
tion, which is the hypothesis that no 
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Figure 1. For a new text- entry method to be worth learning, the eventual maximum 
performance benefit to users must be worth the initial time investment.
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word was intended at this point; if the 
user presses this button, the system de-
letes the corresponding output word. 
Note that all word hypotheses are or-
dered by probability, except for epsilon 
transitions, which are always assigned 
to the bottom row for consistency. 
Other orderings are certainly possible.

A word- confusion network presented 
as a user interface can improve error 

correction by letting users easily ac-
cess the next- best word candidates 
in the hypothesis space. It also pro-
vides additional flexibility in the use 
of multiple modalities. For instance, 
a speech recognizer might generate 
the original hypothesis space and cor-
responding word- confusion network, 
while a touch- based user interface 
could be used to revise the text.

SMARTER ERROR 
CORRECTION
When correcting a text- entry error, 
users currently must either tap on 
the backspace key or select the mis-
taken text to signal to the system that 
an error- correction action is about to 
occur and to indicate the replacement 
text’s location. However, the rich hy-
pothesis space of probabilistic text 
entry can be used to design more flex-
ible user interfaces.

For example, suppose a user in-
tends to enter “call me now” using a 
speech recognizer, touchscreen key-
board, or gesture keyboard but the sys-
tem instead outputs “call be now.” To 
address this type of error, a colleague 
and I developed an algorithm that, in 
this instance, lets users change “be” 
into “me” simply by typing or speaking 
“me,” without any explicit reference to 
the error location.8 Optionally, users 
can provide more context to improve 
accuracy—in the above example, the 
user could type or speak “call me,” “me 
now,” or “call me now.” 

The algorithm realizes this func-
tionality by merging word- confusion 
networks from different probabilis-
tic text- entry modalities, as Figure 
3 shows. In this case, it takes two 
networks as inputs and then, using 
some of the probability mass in each 
word- confusion cluster, softens the 
networks by adding epsilon and wild-
card transitions. Epsilon transitions 
let the algorithm proceed to the next 
cluster without generating a word. 
Wildcard transitions indicate that 
the algorithm can either stay in the 
same cluster and generate any word 
(self- loops), or proceed to the next 
cluster and generate a wildcard word 
that matches any word. Thereafter, 
the algorithm searches for the high-
est joint probability path through 
both networks using a token- passing 
model. The search space is infinite, 
but a search is still viable via beam 
pruning. The algorithm’s free pa-
rameters, such as the epsilon-  and 
wildcard- transition probabilities, are 
tuned on training data.
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Figure 3. Merging probabilistic text- entry modalities to achieve smarter error cor-
rection. In this case, the user intended to type or speak “call me now,” but the system 
inadvertently output “call be now.” The merge algorithm takes two word- confusion 
networks as inputs from different text- entry modalities (blue solid lines) and then, using 
some of the probability mass in each word- confusion cluster, softens the networks by 
adding epsilon and wildcard transitions (red dashed lines). Epsilon transitions let the 
algorithm proceed to the next cluster without generating a word. Wildcard transitions in-
dicate that the algorithm can either stay in the same cluster and generate any word (self- 
loops), or proceed to the next cluster and generate a wildcard word that matches any 
word. Thereafter, the algorithm searches for the highest joint probability path through 
both networks using a token- passing model. 
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Figure 2. Example word- confusion network consisting of two word- confusion clusters 
(left), and a user interface representation of the network (right). 
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COMBINING TYPING, 
SPEECH, AND GESTURING
Any probabilistic text- entry method 
that outputs word- confusion networks 
can be used with our algorithm. For 
example, a speech recognizer could be 
the source of the original text, and a 
touchscreen keyboard could be used 
for error correction. Because the merge 
process is asynchronous and doesn’t 
rely on specific timing data, it’s also 
possible for a user to simultaneously 
speak and type the same sentence 
and have the algorithm leverage both 
hypothesis spaces to maximize the 
probability of correctly inferring the 
intended text. Our experiments show 
that merging speech and gesture- 
 keyboard text entry can reduce the 
word error rate by 53 percent relative, 
and using only the gesture keyboard to 
correct misrecognized spoken words 
can reduce the word error rate by 44 
percent relative.8

Allowing users to seamlessly switch 
between different text- entry methods 
is useful because different methods 
tend to have different performance enve-
lopes. Figure 4 shows an example of two 
performance envelopes where each cir-
cle represents an entry rate−error rate 
pair for a particular stimulus sentence 
entered by a user (in practice, there 
might be tens of thousands of such 
samples).

The distribution of the performance 
envelopes reveals the tradeoffs in 
speed and accuracy between the text- 
entry methods. For example, speech 
recognition is fast when there are no 
errors but results in dramatically lower 
performance when users must correct 
errors (red solid circles). In contrast, 
a touchscreen keyboard offers lower 
peak text- entry rates but degrades less 
with errors (dashed blue circles). This 
suggests that text- entry methods with 
different performance characteristics 
can complement one another depend-
ing on the ease of error correction and 
the importance of high text- entry rates, 
among other things. The precise objec-
tives are likely to change depending on 
a user’s particular context. Leveraging 

the hypothesis spaces of multiple prob-
abilistic text- entry methods makes it 
possible to design interfaces that let us-
ers choose their own operating points 
on the fly.

A llowing users to combine mul-
tiple probabilistic text- entry 
modalities and error- correction 

strategies is likely to become everyday 
practice for two reasons. First, no method 
is appropriate in all situations. Second, 
any approach that dramatically reimag-
ines how users enter text is unlikely to 
achieve widespread adoption, in large 
part due to the often unfavorable tradeoff 
between the initial training investment 
and the eventual performance gain.

Letting users seamlessly switch 
among typing, speaking, and gestur-
ing will facilitate communication via 
emerging smart devices in a wide va-
riety of situations. For example, when 
temporarily encumbered or otherwise 
unable to type, a person could readily 
switch from keyboard text entry to 
speech entry. With users increasingly 
relying on inherently uncertain prob-
abilistic text- entry methods, such flex-
ibility is going to become even more 
important in the future. 
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