
Formal Languages and Automata

5 lectures for

2016-17 Computer Science Tripos

Part IA Discrete Mathematics

by Ian Leslie

c© 2014,2015 AM Pitts; 2016,2017 IM Leslie (minor tweaks)

What is this course about?

◮ Examining the power of an abstract machine

What can this box of tricks do?

What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

Automaton is the box of tricks, language recognition is
what it can do.

What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

◮ Formalisms to describe languages and automata

Very useful for future courses.

What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

◮ Formalisms to describe languages and automata

◮ Proving a particular case: relationship between regular
languages and finite automata

Perhaps the simplest result about power of a machine.
Finite Automata are simply a formalisation of finite state
machines you looked at in Digital Electronics.

A word about formalisms to describe
languages

◮ Classically (i.e. when I was young) this would be done
using production-based grammars.

e.g. S → NV
e.g. I → ID, I → D, I → −D

A word about formalisms to describe
languages

◮ Classically (i.e. when I was young) this would be done
using production-based grammars.

◮ Here will we use rule induction

Excuse to introduce rule induction now, useful in other
things

Syllabus for this part of the course

◮ Inductive definitions using rules
and proofs by rule induction.

◮ Regular expressions and pattern matching.

◮ Finite automata and regular languages:
Kleene’s theorem.

◮ The Pumping Lemma.

mathematics needed for computer science

Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity
Theory, Semantics of Programming Languages

Part II Natural Language Processing, Optimising Compilers,
Denotational Semantics, Temporal Logic and Model
Checking

N.B. we do not cover the important topic of context-free grammars, which prior to 2013/14 was

part of the CST IA course Regular Languages and Finite Automata that has been subsumed into

this course.

see course web page for relevant Tripos questions

Formal Languages

Alphabets

An alphabet is specified by giving a finite set, Σ, whose
elements are called symbols. For us, any set qualifies as a
possible alphabet, so long as it is finite.

Examples:

◮ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 10-element set of decimal digits.

◮ {a, b, c, . . . , x, y, z}, 26-element set of lower-case characters of
the English language.

◮ {S | S ⊆ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, 210-element set of all
subsets of the alphabet of decimal digits.

Non-example:

◮ N = {0, 1, 2, 3, . . . }, set of all non-negative whole numbers is
not an alphabet, because it is infinite.

Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε,

notation for the
string of length 0

a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

In general, an denotes the string of length n just containing a symbols

Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

◮ If Σ = ∅ (the empty set), then what is Σ
∗?

Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

◮ If Σ = ∅ (the empty set), then Σ
∗ = {ε}.

Concatenation of strings

The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ
∗ are u = ab, v = ra and

w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra

Concatenation of strings

The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ
∗ are u = ab, v = ra and

w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra

N.B. (uv)w = uvw = u(vw) (any u,v,w)
uǫ = u =ǫu

The length of a string u ∈ Σ
∗ is denoted |u|.

Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ
∗ a (formal)

language over the alphabet Σ.

We will use inductive definitions to describe languages in terms of

grammatical rules for generating subsets of Σ
∗.

Inductive Definitions

Axioms and rules

for inductively defining a subset of a given set U

◮ axioms
a

are specified by giving an element a of U

◮ rules
h1 h2 · · · hn

c

are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)

Axioms and rules

for inductively defining a subset of a given set U

◮ axioms
a

are specified by giving an element a of U

which means that a is in the subset we are
defining

◮ rules
h1 h2 · · · hn

c

are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)

which means that c is in the subset we are
defining if all of h1, h2, . . . , hn are

Derivations

Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element u ∈ U is in the subset is by definition:

a finite rooted tree with vertexes labelled by elements of U
and such that:

◮ the root of the tree is u (the conclusion of the whole
derivation),

◮ each vertex of the tree is the conclusion of a rule
whose hypotheses are the children of the node,

◮ each leaf of the tree is an axiom.

we’ll draw with leaves at top, root at bottom

Example

U = {a, b}∗

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb

Example

U = {a, b}∗ The universal set from which
we are specifying a subset.

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb

Example

U = {a, b}∗ It is the set of all finite
strings containing a’s & b’s.

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb

Example

U = {a, b}∗

Now the axioms and rules to define the
subset :

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 14

◮ abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

◮ abaab is not in that subset (there is no derivation with that
conclusion – why?)

(In fact u ∈ {a, b}∗ is in the subset iff it contains the same number of a and b symbols.)

rules or templates?

u v

uv
(for all u, v ∈ U)

is really a template for a (potentially) infinite
set of rules

Example: transitive closure

Given a binary relation R ⊆ X × X on a set X, its
transitive closure R+ is the smallest (for subset
inclusion) binary relation on X which contains R and which
is transitive (∀x, y, z ∈ X. (x, y) ∈ R+ & (y, z) ∈ R+ ⇒ (x, z) ∈ R+).

R+ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction to prove this

Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction to prove this, since S ⊆ X × X
being closed under the axioms & rules is the same as it

containing R, being reflexive and being transitive.

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

Derivation is a finite (labelled) tree with u at
root, axiom at leaves and each vertex the
conclusion of a rule whose hypotheses are the
children of the vertex.

(We usually draw the trees with the root at
the bottom.)

Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S ⊆ U is closed under the axioms and rules if

◮ for every axiom
a

, it is the case that a ∈ S

◮ for every rule
h1 h2 · · · hn

c
, if h1, h2, . . . , hn ∈ S, then c ∈ S.

E.g. for the axiom & rules

ǫ

u

aub

u

bua

u v

uv
for all u, v ∈ {a, b}∗

the subset

{u ∈ {a, b}∗ | #a(u) = #b(u)}

(where #a(u) is the number of ’a’s
in the string u)

E.g. for the axiom & rules

ǫ

u

aub

u

bua

u v

uv
for all u, v ∈ {a, b}∗

the subset

{u ∈ {a, b}∗ | #a(u) = #b(u)}

is closed under the axiom & rules.

N.B. for a given set R of axioms & rules

{u ∈ U | ∀S ⊆ U.(S closed under R) =⇒ u ∈ S}

is closed under R (Why?) and so is the smallest
such (with respect to subset inclusion, ⊆)

N.B. for a given set R of axioms & rules

{u ∈ U | ∀S ⊆ U.(S closed under R) =⇒ u ∈ S}

is closed under R (Why?) and so is the smallest
such (with respect to subset inclusion, ⊆)

This set contains all items that are in every set
that is closed under R

N.B. for a given set R of axioms & rules

{u ∈ U | ∀S ⊆ U.(S closed under R) =⇒ u ∈ S}

is closed under R (Why?) and so is the smallest
such (with respect to subset inclusion, ⊆)

This set contains all items that are in every set
that is closed under R

Perhaps better written as

⋂
(∀S ⊆ U.(S closed under R))

is closed under R.

Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

“the least subset closed under the axioms &
rules”

is sometimes take as the definition of

“inductively defined subset”

Proof of the Theorem [Page 23 of notes]

Closure part

◮ I is closed under each axiom
a

because we can construct a derivation
witnessing a ∈ I . . .

. . . which is simply a tree with one node
containing a

Closure part (2)

◮ I is closed under each rule r =
h1 h2 . . . hn

c

because if h1 h2 . . . hn ∈ I . . .

we have n derivations from axioms to each
hi and so . . .

we can just make these the n children to
our rule r to form a big tree . . .

which is a derivation witnessing c ∈ I

Proof of the Theorem

so we have closure under rules & axioms

Now the “least such subset” part

We need to show, for every S ⊆ U

(S closed under axioms and rules) ⇒ I ⊆ S

That is, I is the least subset, in that any other
subset that is closed under the axioms & rules
contains I .

Least Subset

So we need to show that every element of I is
contained in any set S ⊆ U which is closed under
the rules & axioms

Q: How can we characterise an element of I?
A: For each element of I there is a derivation
that witnesses its membership

So let’s do induction on the height of the
derivation (i.e. the height of the tree)

Least Subset ­ Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

Need to show:

◮ P(0) (consider these to be single (axiom)
node derivations)

◮ ∀(k ≤ n) P(k) ⇒ P(n + 1)

since if P(n) is true for all n, then all
derivations have their conclusion in S, and thus
every element of I is in S.

Least Subset ­ Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

◮ P(0):
trivially true since conclusion is an axiom
and S is closed under axioms

Least Subset ­ Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

◮ P(0):
trivially true since conclusion is an axiom
and S is closed under axioms

◮ ∀(k ≤ n) P(k) ⇒ P(n + 1):

Least Subset ­ Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

◮ P(0):
trivially true since conclusion is an axiom
and S is closed under axioms

◮ ∀(k ≤ n) P(k) ⇒ P(n + 1):
Suppose ∀(k ≤ n) P(k) and that D is a
derivation of height n + 1 with, say,
conclusion c

D

D1

c1

D2

c2

• • • Dk

ck

c

D

D1

c1

D2

c2

• • • Dk

ck

csome rule

c is the result of applying some rule to a set of
conclusions c1 c2 . . . ck

D

D1

c1

D2

c2

• • • Dk

ck

csome rule

heights
≤ n

But the derivations for the ci all have height
≤ n. So the ci are all in S by assumption

and since S is closed under all axioms & rules,
c ∈ S

so ∀(k ≤ n) P(k) ⇒ P(n + 1)

Thus every element in I is in any S that is closed
under the axioms & rules that inductively
defined I .

Thus I is the least subset that is closed under
those axioms & rules.

Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

We use a similar approach as method of proof: given a property P(u)
of elements of U, to prove ∀u ∈ I. P(u) it suffices to show

◮ base cases: P(a) holds for each axiom
a

◮ induction steps: P(h1) & P(h2) & · · · & P(hn)⇒ P(c)

holds for each rule
h1 h2 · · · hn

c

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)
◮ ∀u ∈ I . P(u) ⇒ P(aub)

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)
◮ ∀u ∈ I . P(u) ⇒ P(aub)
◮ ∀u ∈ I . P(u) ⇒ P(bua)

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)
◮ ∀u ∈ I . P(u) ⇒ P(aub)
◮ ∀u ∈ I . P(u) ⇒ P(bua)
◮ ∀u, v ∈ I . P(u)∧ P(v) ⇒ P(uv)

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

◮ induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

◮ induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It’s not so easy to show ∀u ∈ {a, b}∗. P(u)⇒ u ∈ I – rule induction for I is not much help for
that.)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a

u

au

u v

buv

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

In this case Rule Induction says:
if (0) P(a)
& (1) ∀u ∈ I . P(u) ⇒ P(au)
& (2) ∀u, v ∈ I . P(u)∧ P(v) ⇒ P(buv)
then ∀u ∈ I . P(u)

for any predicate P(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

Asked to show

u ∈ I ⇒ #a(u) > #b(u)

i.e., that there are more ’a’s than ’b’s in every
string in I

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

Asked to show

u ∈ I ⇒ #a(u) > #b(u)

so do so using Rule Induction with

P(u) = #a(u) > #b(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(0) P(a) holds (1 > 0)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(1) If P(u), then #a(au) = 1 + #a(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(1) If P(u), then #a(au) = 1 + #a(u)
> #a(u) > #b(u) (because P(u))

= #b(au)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(1) If P(u), then #a(au) = 1 + #a(u)
> #a(u) > #b(u) (because P(u))

= #b(au)
so P(au) holds as well, and thus P(u) ⇒ P(au)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(2) If P(u)∧ P(v), then #a(buv) = #a(u) + $#a(v)
≥ ((#b(u) + 1) + (#b(v) + 1)) (why?)

> #b(buv)
so P(buv)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

if (0) P(a) X

& (1) ∀u ∈ I . P(u) ⇒ P(au) X

& (2) ∀u, v ∈ I . P(u)∧ P(v) ⇒ P(buv) X

then ∀u ∈ I . P(u)
so for all u ∈ I, we have #a(u) > #b(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

although we have
∀u ∈ I . P(u)

we don’t have
∀u ∈ {a, b}∗ . P(u) ⇒ u ∈ I

e.g. P(aab) but aab /∈ I (Why?)

Deciding membership of an inductively defined
subset can be hard!

Deciding membership of an inductively defined
subset can be hard!

really, Really hard

e.g. ...

Collatz Conjecture

f (n) =







1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Does this define a total function f : N → N?

(nobody knows)

Collatz Conjecture

f (n) =







1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Does this define a total function f : N → N?

(nobody knows)

(If it does then f is necessarily the
unary 1 function n 7→ 1)

Collatz Conjecture

f (n) =







1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Does this define a total function f : N → N?

(nobody knows)

Can reformulate as a problem about inductively
defined subsets...

Collatz Conjecture

f (n) =







1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Is the subset I ⊆ N inductively defined by

0 1

k

2k

6k + 4

2k + 1
(k ≥ 1)

equal to the whole of N?

Regular Expressions

Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ
∗ a (formal)

language over the alphabet Σ.

Concrete syntax: strings of symbols

◮ possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

◮ or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =

if x > 100 then x − 10

else f (f (x + 11))

in f 1 end

(∗ v a l u e i s 9 9 ∗)

Abstract syntax: finite rooted trees

◮ vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) – in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

◮ label of the root gives the ‘outermost form’ of the whole phrase

E.g. for the ML expression
on Slide 42:

let

fun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f 1

Regular Expressions

A regular expression defines a pattern of
symbols (and thus a language).

Important to distinguish between the language
a particular regular expression defines and the
set of possible regular expressions.

We about to look at the second of these.

Regular expressions (concrete syntax)

over a given alphabet Σ.

Let Σ
′ be the 6-element set {ǫ, ∅, |, ∗, (,)} (assumed disjoint from Σ)

U = (Σ ∪ Σ
′)∗

axioms:
a ǫ ∅

rules:
r

(r)

r s

r|s

r s

rs

r

r∗

(where a ∈ Σ and r, s ∈ U)

Some derivations of regular expressions
(assuming a, b ∈ Σ)

ǫ

a

b

b∗

ab∗

ǫ|ab∗

ǫ a

ǫ|a

b

b∗

ǫ|ab∗

ǫ

a b

ab

ab∗

ǫ|ab∗

ǫ

a

b

b∗

(b∗)

a(b∗)

(a(b∗))

ǫ|(a(b∗))

ǫ a

ǫ|a

(ǫ|a)

b

b∗

(b∗)

(ǫ|a)(b∗)

ǫ

a b

ab

(ab)

(ab)∗

((ab)∗)

ǫ|((ab)∗)

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) as an ML datatype declaration:

datatype ′a RE = Union of (′a RE) ∗ (′a RE)
| Concat of (′a RE) ∗ (′a RE)
| Star of ′a RE

| Null

| Empty

| Sym of ′a

(the type ′
a RE is parameterised by a type variable ′

a standing for the alphabet Σ)

Some abstract syntax trees of regular expressions
(assuming a, b ∈ Σ)

1. 2. 3.

Union

Null Concat

Syma Star

Symb

Concat

Union

Null Syma

Star

Symb

Union

Null Star

Concat

Syma Symb

(cf. examples a few slides previous)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Syma, Star(Symb)))

2. Concat(Union(Null, Syma), Star(Symb))

3. Union(Null, Star(Concat(Syma, Symb)))

Relating concrete and abstract syntax

for regular expressions over an alphabet Σ, via an
inductively defined relation ∼ between strings and trees:

a ∼ Syma ǫ ∼ Null ∅ ∼ Empty

r ∼ R

(r) ∼ R

r ∼ R s ∼ S

r|s ∼ Union(R, S)

r ∼ R s ∼ S

rs ∼ Concat(R, S)

r ∼ R

r∗ ∼ Star(R)

For example:

ǫ|(a(b∗)) ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Concat(Union(Null, Syma), Star(Symb))

Thus ∼ is a ‘many-many’ relation between strings and trees.

◮ Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ∼ parse(r).

◮ Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying
pp(R) ∼ R.

(See CST IB Compiler construction course.)

Operator precedence for regular expressions

Star > Concat > Union

So
ε|ab∗ stands for ε|(a(b∗))

Union (Null, Concat (Syma, Star (Symb)))

Associativity for regular expressions

Concat & Union are left associative

So
abc stands for (ab)c

a|b|c stands for (a|b)|c

From now on, we will rely on operator
precedence (& associativity) conventions in the
concrete syntax of regular expressions to
allow us to map unambiguously to their
abstract syntax

associativity less important (in some sense)
than precedence because the meaning
(semantics) of concatenation and union is
always associative but not true of all operators, e.g. division

so abc has the same abstract syntax as (ab)c,
but different abstract syntax from a(bc), but
all of these have the same semantics.

Matching

Each regular expression r over an alphabet Σ determines a
language L(r) ⊆ Σ

∗. The strings u in L(r) are by
definition the ones that match r, where

◮ u matches the regular expression a (where a ∈ Σ) iff u = a

◮ u matches the regular expression ǫ iff u is the null string ε

◮ no string matches the regular expression ∅

◮ u matches r|s iff it either matches r, or it matches s

◮ u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

◮ u matches r∗ iff either u = ε, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

Inductive definition of matching

U = Σ
∗ ×{regular expressions over Σ}

axioms:
(a, a) (ε, ǫ) (ε, r∗)

rules:

(u, r)

(u, r|s)

(u, s)

(u, r|s)

(v, r) (w, s)

(vw, rs)

(u, r) (v, r∗)

(uv, r∗)

abstract syntax trees

(No axiom/rule involves the empty regular expression ∅ – why?)

Examples of matching

Assuming Σ = {a, b}, then:

◮ a|b is matched by each symbol in Σ

◮ b(a|b)∗ is matched by any string in Σ
∗ that starts with a ‘b’

◮ ((a|b)(a|b))∗ is matched by any string of even length in Σ
∗

◮ (a|b)∗(a|b)∗ is matched by any string in Σ
∗

◮ (ǫ|a)(ǫ|b)|bb is matched by just the strings ε, a, b, ab, and bb

◮ ∅b|a is just matched by a

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

An algorithm? what’s an algorithm? I mean
what is it in a mathematical sense?

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

An algorithm? what’s an algorithm? I mean
what is it in a mathematical sense?

leads us to define automata which "execute
algorithms"

Questions Computer Scientists ask

(a) Is there an algorithm which, given a string
u and a regular expression r, computes
whether or not u matches r?

in other words, decides, for any r, whether
u ∈ L(r)

An algorithm? what’s an algorithm? I mean
what is it in a mathematical sense?

leads us to define automata which "execute
algorithms"
next chunk of the course...

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not. Look at the unix utility grep.

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not. Look at the unix utility grep.

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not. Look at the unix utility grep.

No because such conveniences don’t allow us to
define languages we can’t already define

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not. Look at the unix utility grep.

No because such conveniences don’t allow us to
define languages we can’t already define

Why not include them in our basic definition??

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Yes and No

Yes because there are convenient notations
like [a − z] to mean a|b|c . . . |z and complement,
∼ r, which is defined to match all strings that r
does not. Look at the unix utility grep.

No because such conveniences don’t allow us to
define languages we can’t already define

Why not include them in our basic definition??

because they give us more rules to analyse!

Questions Computer Scientists ask

(c) Is there an algorithm which, given two
regular expressions r and s, computes
whether or not they are equivalent, in the
sense that L(r) and L(s) are equal sets?

We will answer this when we answer (a).

Questions Computer Scientists ask

(d) Is every language (subset of Σ
∗) of the

form L(r) for some r?

Pretty clearly no.

Questions Computer Scientists ask

(d) Is every language (subset of Σ
∗) of the

form L(r) for some r?

Pretty clearly no.

in fact even simple languages like anbn,∀n ∈ N

or well­bracketed arithmetic expressions are
not regular

Questions Computer Scientists ask

(d) Is every language (subset of Σ
∗) of the

form L(r) for some r?

Pretty clearly no.

in fact even simple languages like anbn,∀n ∈ N

or well­bracketed arithmetic expressions are
not regular

we will derive and use the Pumping Lemma to
show this

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?

Finite Automata

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non­deterministic) finite automata
in general

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non­deterministic) finite automata
in general

◮ define deterministic finite automata (as a
special case)

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non­deterministic) finite automata
in general

◮ define deterministic finite automata (as a
special case)

◮ define non­deterministic finite automata
with ε­transitions

We are about to describe some different
types of finite automata.

The game plan is as follows:

◮ define (non­deterministic) finite automata
in general

◮ define deterministic finite automata (as a
special case)

◮ define non­deterministic finite automata
with ε­transitions

◮ show that from any non­deterministic
finite automaton with ε­transitions we
can mechanically produce an equivalent
deterministic finite automaton

Why?

◮ we are claiming that a deterministic finite
automata (DFA) is an embodiment of an
algorithm

Why?

◮ we are claiming that a deterministic finite
automata (DFA) is an embodiment of an
algorithm

◮ non­deterministic finite automata with
ε­transitions (NFAε’s) map on to our
problem (matching regular expressions)
more naturally . . .

Why?

◮ we are claiming that a deterministic finite
automata (DFA) is an embodiment of an
algorithm

◮ non­deterministic finite automata with
ε­transitions (NFAε’s) map on to our
problem (matching regular expressions)
more naturally . . .

◮ . . . so we will produced the NFAε’s we want
and then rely on the fact that for each
there is an equivalent DFA.

Example of a finite automaton

M , q0
a

b

q1

b

a q2

b

a q3

a

b

◮ set of states: {q0, q1, q2, q3}

◮ input alphabet: {a, b}

◮ transitions, labelled by input symbols: as indicated by the above
directed graph

◮ start state: q0

◮ accepting state(s): q3

Language accepted
by a finite automaton M

◮ Look at paths in the transition graph from the start
state to some accepting state.

◮ Each such path gives a string of input symbols, namely
the string of labels on each transition in the path.

◮ The set of all such strings is by definition the

language accepted by M, written L(M).

Notation: write q
u
−→∗ q′ to mean that in the automaton there is a

path from state q to state q′ whose labels form the string u.

(N.B. q
ε
−→∗ q′ means q = q′.)

Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

For example

◮ aaab ∈ L(M), because q0
aaab
−−→∗ q3

◮ abaa 6∈ L(M), because ∀q(q0
abaa
−−→∗ q ⇔ q = q2)

Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

Claim:
L(M) = L((a|b)∗aaa(a|b)∗)

set of all strings matching the

regular expression (a|b)∗aaa(a|b)∗

(qi (for i = 0, 1, 2) represents the state in the process of reading a string in which the last i
symbols read were all a’s)

Non-deterministic
finite automaton (NFA)

is by definition a 5-tuple M = (Q, Σ, ∆, s, F), where:

◮ Q is a finite set (of states)

◮ Σ is a finite set (the alphabet of input symbols)

◮ ∆ is a subset of Q × Σ × Q (the transition relation)

◮ s is an element of Q (the start state)

◮ F is a subset of Q (the accepting states)

Notation: write “q
a
−→ q′ in M” to mean (q, a, q′) ∈ ∆.

Why do we say this is non­deterministic?

∆, the transition relation specifies a set of
next states for a given current state and
given input symbol.

That set might have 0, 1 or more elements.

Example of an NFA

Input alphabet: {a, b}.

States, transitions, start state, and accepting states as shown:

q0

a

b

a q1
a q2

a q3

a

b

For example {q | q1
a
−→ q} = {q2}

{q | q1
b
−→ q} = ∅

{q | q0
a
−→ q} = {q0, q1}.

The language accepted by this automaton is the same as for our first automaton,
namely {u ∈ {a, b}∗ | u contains three consecutive a’s}.

So we define a deterministic finite automata
so that ∆ is restricted to specify exactly one
next state for any given state and input symbol

we do this by saying the relation ∆ has to be a
function δ from Q × Σ to Q

Deterministic finite automaton (DFA)
A deterministic finite automaton (DFA) is an NFA
M = (Q, Σ, ∆, s, F) with the property that for each state
q ∈ Q and each input symbol a ∈ ΣM, there is a unique

state q′ ∈ Q satisfying q
a
−→ q′.

In a DFA ∆ ⊆ Q × Σ × Q is the graph of a function Q × Σ → Q,
which we write as δ and call the next-state function.

Thus for each (state, input symbol)-pair (q, a), δ(q, a) is the unique
state that can be reached from q by a transition labelled a:

∀q′(q
a
−→ q′ ⇔ q′ = δ(q, a))

Example of a DFA...

with input alphabet {a, b}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

next-state function:

δ a b
q0 q1 q0

q1 q2 q0

q2 q3 q0

q3 q3 q3

but this is an NFA

with input alphabet {a, b, c}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

M is non-deterministic, because for example {q | q0
c
−→ q} = ∅.

so alphabet matters!

Now let’s make things a bit more interesting
(well complicated) . . .

We are going to introduce a new form of
transition, an ε­transition which allows us to
more from one state to another without
reading a symbol.

These (in general) introduce non­determinism
all by themselves.

An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

Notation: write “q
ε
−→ q′ in M” to mean (q, q′) ∈ T.

(N.B. for NFAεs, we always assume ε 6∈ Σ.)

Language accepted by an NFAε

M = (Q, Σ, ∆, s, F, T)

◮ Look at paths in the transition graph (including
ε-transitions) from start state to some accepting state.

◮ Each such path gives a string in Σ
∗, namely the string

of non-ε labels that occur along the path.

◮ The set of all such strings is by definition the

language accepted by M, written L(M).

Notation: write q
u
⇒ q′ to mean that there is a path in M from state

q to state q′ whose non-ε labels form the string u ∈ Σ
∗.

An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

For this NFAε we have, e.g.: q0
aa
⇒ q2, q0

aa
⇒ q3 and q0

aa
⇒ q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)∗(aa|bb)(a|b)∗.

Sets of Languages Accepted by Finite
Automata

◮ every DFA is an NFA (with transition
mapping ∆ being a next­state function δ)

Sets of Languages Accepted by Finite
Automata

◮ every DFA is an NFA (with transition
mapping ∆ being a next­state function δ)

◮ every NFA is an NFAε (with empty
ε­transition relation)

Sets of Languages Accepted by Finite
Automata

◮ every DFA is an NFA (with transition
mapping ∆ being a next­state function δ)

◮ every NFA is an NFAε (with empty
ε­transition relation)

Sets of Languages Accepted by Finite
Automata

◮ every DFA is an NFA (with transition
mapping ∆ being a next­state function δ)

◮ every NFA is an NFAε (with empty
ε­transition relation)

clearly

L(DFA) ⊆ L(NFA) ⊆ L(NFA
ǫ)

Sets of Languages Accepted by Finite
Automata

◮ every DFA is an NFA (with transition
mapping ∆ being a next­state function δ)

◮ every NFA is an NFAε (with empty
ε­transition relation)

clearly

L(DFA) ⊆ L(NFA) ⊆ L(NFA
ǫ)

but

L(DFA) ⊂ L(NFA) ⊂ L(NFA
ǫ)???

NFAε accepts if there exists a path...

DFA: path is determined one symbol at a time

Let Q be the states of some NFAε. What if
we thought, one symbol at a time, about the
states we could be in, or more precisely the
subset of Q containing the states we could be
in

NFAε accepts if there exists a path...

DFA: path is determined one symbol at a time

Let Q be the states of some NFAε. What if
we thought, one symbol at a time, about the
states we could be in, or more precisely the
subset of Q containing the states we could be
in

Then we could construct a new DFA whose
states were taken from the powerset of Q
from the NFAε

Subset Construction

Given an NFAε M with states Q construct a
DFA PM whose states are subsets of the
states of M

Subset Construction

Given an NFAε M with states Q construct a
DFA PM whose states are subsets of the
states of M

the start state in PM would be a set
containing the start state of M together
with any states that can be reached by
ε­transitions from that state.

Subset Construction

Given an NFAε M with states Q construct a
DFA PM whose states are subsets of the
states of M

the start state in PM would be a set
containing the start state of M together
with any states that can be reached by
ε­transitions from that state.

accepting states in PM would be any subset
containing an accepting state of M

Subset Construction

Given an NFAε M with states Q construct a
DFA PM whose states are subsets of the
states of M

the start state in PM would be a set
containing the start state of M together
with any states that can be reached by
ε­transitions from that state.

accepting states in PM would be any subset
containing an accepting state of M

alphabet is the same as the alphabet of M

Subset Construction

Given an NFAε M with states Q construct a
DFA PM whose states are subsets of the
states of M

the start state in PM would be a set
containing the start state of M together
with any states that can be reached by
ε­transitions from that state.

accepting states in PM would be any subset
containing an accepting state of M

alphabet is the same as the alphabet of M

That just leaves δ

Example of the subset construction

M

q1

a

q0

ε

ε

a

q2

b

next-state function for PM
a b

∅ ∅ ∅

{q0} {q0, q1, q2} {q2}
{q1} {q1} ∅

{q2} ∅ {q2}
{q0, q1} {q0, q1, q2} {q2}
{q0, q2} {q0, q1, q2} {q2}
{q1, q2} {q1} {q2}

{q0, q1, q2} {q0, q1, q2} {q2}

A word about ∅ in the subset
construction

Potential for confusion

◮ The DFA has a state which corresponds to the empty
set of states in the NFAε which we have designated
as ∅.

◮ Once you enter this state we get stuck in it. Why?

◮ Could rewrite (next slide)

DFA State subset of NFAε a b
S1 ∅ S1 S1

S2 {q0} S8 S4

S3 {q1} S3 S1

S4 {q2} S2 S4

S5 {q0, q1} S8 S4

S6 {q0, q2} S8 S4

S7 {q1, q2} S3 S4

S8 {q0, q1, q2} S8 S4

Noting that S8 is the start state (why?) we could eliminate
states that can’t be reached (i.e. S2, S5, S6 and S7; and
thence S3) if we cared. Here we don’t. (Care that is).

Theorem. For each NFAε M = (Q, Σ, ∆, s, F, T) there
is a DFA PM = (P(Q), Σ, δ, s′, F′) accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

◮ set of states is the powerset P(Q) = {S | S ⊆ Q} of the set
Q of states of M

◮ same input alphabet Σ as for M

◮ next-state function maps each (S, a) ∈ P(Q)× Σ to

δ(S, a) , {q′ ∈ Q | ∃q ∈ S. q
a
⇒ q′ in M}

◮ start state is s′ , {q′ ∈ Q | s
ε
⇒ q′}

◮ subset of accepting sates is F′ , {S ∈ P(Q) | S ∩ F 6= ∅}

To prove the theorem we show that L(M) ⊆ L(PM) and L(PM) ⊆ L(M).

Consider a string a1a2 . . . an ∈ L(M), i.e. is
accepted by our NFAε M

Then we have

s
a1⇒ q1

a2⇒ . . .
an
⇒ qn ∈ F in M

Consider a string a1a2 . . . an ∈ L(M), i.e. is
accepted by our NFAε M

Then we have

s
a1⇒ q1

a2⇒ . . .
an
⇒ qn ∈ F in M

∈ ∈

S′ a1−→ S1=

δ(S′, a1)

Consider a string a1a2 . . . an ∈ L(M), i.e. is
accepted by our NFAε M

Then we have

s
a1⇒ q1

a2⇒ . . .
an
⇒ qn ∈ F in M

∈ ∈ ∈
S′ a1−→ S1

a2−→ . . .
an
−→ Sn in PM

Consider a string a1a2 . . . an ∈ L(M), i.e. is
accepted by our NFAε M

Then we have

s
a1⇒ q1

a2⇒ . . .
an
⇒ qn ∈ F in M

∈ ∈ ∈
S′ a1−→ S1

a2−→ . . .
an
−→ Sn in PM

Consider a string a1a2 . . . an ∈ L(M), i.e. is
accepted by our NFAε M

Then we have

s
a1⇒ q1

a2⇒ . . .
an
⇒ qn ∈ F in M

∈ ∈ ∈
S′ a1−→ S1

a2−→ . . .
an
−→ Sn ∈ F′ in PM

Consider a string a1a2 . . . an ∈ L(M), i.e. is
accepted by our NFAε M

Then we have

s
a1⇒ q1

a2⇒ . . .
an
⇒ qn ∈ F in M

∈ ∈ ∈
S′ a1−→ S1

a2−→ . . .
an
−→ Sn ∈ F′ in PM

so a1a2 . . . an ∈ L(PM)

Consider a string a1a2 . . . an ∈ L(M), i.e. is
accepted by our NFAε M

Then we have

s
a1⇒ q1

a2⇒ . . .
an
⇒ qn ∈ F in M

∈ ∈ ∈
S′ a1−→ S1

a2−→ . . .
an
−→ Sn ∈ F′ in PM

so a1a2 . . . an ∈ L(PM)

so L(M) ⊆ L(PM)

Consider a string a1a2 . . . an ∈ L(PM), i.e. is
accepted by our DFA PM

Then we have

S′ a1−→ S1

a2−→ . . . Sn−1

an
−→ Sn∈ F′ in PM

Consider a string a1a2 . . . an ∈ L(PM), i.e. is
accepted by our DFA PM

Then we have

S′ a1−→ S1

a2−→ . . . Sn−1

an
−→ Sn∈ F′ in PM

∈

qn ∈ F in M

Consider a string a1a2 . . . an ∈ L(PM), i.e. is
accepted by our DFA PM

Then we have

S′ a1−→ S1

a2−→ . . . Sn−1

an
−→ Sn∈ F′ in PM

∈ ∈ ∈ ∈

q0

a1⇒ q1

a2⇒ . . . qn−1

an
⇒ qn ∈ F in M

Consider a string a1a2 . . . an ∈ L(PM), i.e. is
accepted by our DFA PM

Then we have

S′ a1−→ S1

a2−→ . . . Sn−1

an
−→ Sn∈ F′ in PM

∈ ∈ ∈ ∈

q0

a1⇒ q1

a2⇒ . . . qn−1

an
⇒ qn ∈ F in M

⇒ε
s

Consider a string a1a2 . . . an ∈ L(PM), i.e. is
accepted by our DFA PM

Then we have

S′ a1−→ S1

a2−→ . . . Sn−1

an
−→ Sn∈ F′ in PM

∈ ∈ ∈ ∈

q0

a1⇒ q1

a2⇒ . . . qn−1

an
⇒ qn∈ F in M

⇒ε
s

Consider a string a1a2 . . . an ∈ L(PM), i.e. is
accepted by our DFA PM

Then we have

S′ a1−→ S1

a2−→ . . . Sn−1

an
−→ Sn∈ F′ in PM

∈ ∈ ∈ ∈

q0

a1⇒ q1

a2⇒ . . . qn−1

an
⇒ qn∈ F in M

⇒ε
s

so a1a2 . . . an ∈ L(M)

Consider a string a1a2 . . . an ∈ L(PM), i.e. is
accepted by our DFA PM

Then we have

S′ a1−→ S1

a2−→ . . . Sn−1

an
−→ Sn∈ F′ in PM

∈ ∈ ∈ ∈

q0

a1⇒ q1

a2⇒ . . . qn−1

an
⇒ qn∈ F in M

⇒ε
s

so a1a2 . . . an ∈ L(M)
so L(PM) ⊆ L(M)

So we have shown

L(M) ⊆ L(PM) and L(PM) ⊆ L(M)

so that
L(M) = L(PM)

where PM is specified by M through subset
construction.

Thus for every NFAε there is an equivalent
DFA

Theorem. For each NFAε M = (Q, Σ, ∆, s, F, T) there
is a DFA PM = (P(Q), Σ, δ, s′, F′) accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

◮ set of states is the powerset P(Q) = {S | S ⊆ Q} of the set
Q of states of M

◮ same input alphabet Σ as for M

◮ next-state function maps each (S, a) ∈ P(Q)× Σ to

δ(S, a) , {q′ ∈ Q | ∃q ∈ S. q
a
⇒ q′ in M}

◮ start state is s′ , {q′ ∈ Q | s
ε
⇒ q′}

◮ subset of accepting sates is F′ , {S ∈ P(Q) | S ∩ F 6= ∅}

To prove the theorem we show that L(M) ⊆ L(PM) and L(PM) ⊆ L(M).

At this point we should think of

◮ the set of all language {L(r)} defined by a
some regular expression r, each language
being the set of strings which match some
regular expression r

At this point we should think of

◮ the set of all language {L(r)} defined by a
some regular expression r, each language
being the set of strings which match some
regular expression r

◮ the set of all languages {L(M)} accepted by
some determinisitic finite automaton M

At this point we should think of

◮ the set of all language {L(r)} defined by a
some regular expression r, each language
being the set of strings which match some
regular expression r

We are about to show that these sets of
languages are equivalent

Kleene’s Theorem

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

The first part requires us to demonstrate
that for any regular expression r, we can
construct a DFA, M with L(M) = L(r)

We will do this by demonstrating that for any r
we can construct a NFAε M′ with L(M′) = L(r)
and rely on the subset construction theorem
to give us the DFA M .

We consider each axiom and rule that define
regular expressions

Kleene’s Theorem Part a (The Fun Part)

For any regular expression r we can build an
NFAε M such that L(r) = L(M)

We will work on induction on the depth of
abstract syntax trees

Recall: Regular expressions (abstract
syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

Recall: Regular expressions (abstract
syntax)

(concrete syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

Recall: Regular expressions (abstract
syntax)

(concrete syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat
r1|r2 r1r2

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

Recall: Regular expressions (abstract
syntax)

(concrete syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat
r1|r2 r1r2

◮ unary operator Star r∗

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

Recall: Regular expressions (abstract
syntax)

(concrete syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat
r1|r2 r1r2

◮ unary operator Star r∗

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ). ǫ ∅ a

(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &

u2 ∈ L(M2)}
Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &

u2 ∈ L(M2)}
Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(iv) Induction step for r∗: given NFAε M, construct an NFAε

Star(M) satisfying

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}
Thus L(r∗) = L(Star(M)) when L(r) = L(M).

NFAs for regular expressions a, ǫ, ∅

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings

Union(M1, M2)

s1 M1

q0

ε

ε
s2 M2

accepting states = union of accepting states of M1 and M2

For example,

if Ma = a

and Mb = b

then Union(Ma, Mb) =

a
ε

ε

b

In what follows, whenever we have to deal with
two machines, say M1 and M2 together, we
assume that their states are disjoint.

If they were not, we could just rename the
states of one machine to make this so.

Also assume that for r1 and r2 there are
machines M1 and M2 such that L(r1) = L(M1)
and L(r2) = L(M2)

Construction for Union(r1, r2)

Assume there are two machines M1 and M2

with L(r1) = L(M1) and L(r2) = L(M2)

Construction for Union(r1, r2)

Assume there are two machines M1 and M2

with L(r1) = L(M1) and L(r2) = L(M2)

States of new machine M = Union(M1, M2) are
all the states in M1 and all the states in M2

together with a new start state with
ε­transitions to each of the (old) start states
of M1 and M2.

Construction for Union(r1, r2)

Assume there are two machines M1 and M2

with L(r1) = L(M1) and L(r2) = L(M2)

States of new machine M = Union(M1, M2) are
all the states in M1 and all the states in M2

together with a new start state with
ε­transitions to each of the (old) start states
of M1 and M2.

Accept states of M are the all accept states in
M1 and all accept states in M2.

Construction for Union(r1, r2)

Assume there are two machines M1 and M2

with L(r1) = L(M1) and L(r2) = L(M2)

States of new machine M = Union(M1, M2) are
all the states in M1 and all the states in M2

together with a new start state with
ε­transitions to each of the (old) start states
of M1 and M2.

Accept states of M are the all accept states in
M1 and all accept states in M2.

The transitions of M are all transitions in M1

and M2 along with the two ε­transitions from
the new start state

M accepts any strings that M1 accepts:

if u ∈ L(M1) then s1
u
⇒ q1 where s1 is start

state and q1 an accept state of M1 respectively.

M accepts any strings that M1 accepts:

if u ∈ L(M1) then s1
u
⇒ q1 where s1 is start

state and q1 an accept state of M1 respectively.

but then in M, s
u
⇒ q1, where s is our new

start state since s
ε
−→ s1.

M accepts any strings that M1 accepts:

if u ∈ L(M1) then s1
u
⇒ q1 where s1 is start

state and q1 an accept state of M1 respectively.

but then in M, s
u
⇒ q1, where s is our new

start state since s
ε
−→ s1.

so u ∈ L(M). Similar argument for M
accepting any string that M2 accepts

M accepts any strings that M1 accepts:

if u ∈ L(M1) then s1
u
⇒ q1 where s1 is start

state and q1 an accept state of M1 respectively.

but then in M, s
u
⇒ q1, where s is our new

start state since s
ε
−→ s1.

so u ∈ L(M). Similar argument for M
accepting any string that M2 accepts

so (L(M1)∪ L(M2)) ⊆ L(Union(M1, M2))

Can M accept anything more?

Can M accept anything more?

The only way "out of" s, the start state of M,
is either to the start state of M1 or the start
state of M2

Can M accept anything more?

The only way "out of" s, the start state of M,
is either to the start state of M1 or the start
state of M2

So no, L(M) = (L(M1)∪ L(M2))

Concat(M1, M2)

s1 M1
ε s2 M2

accepting states are those of M2

For example,

if M1 =
a

ε

ε

ε

ε b

ε

and M2 =
a

then Concat(M1, M2) =
a

ε

a ε ε

ε

ε b

ε

Construction for M = Concat(M1, M2)

Make an ε­transition from every accept state
in M1 to the start state of M2.

Start state of M is the start state of M1;
accept states of M are the accept states of M2

Star(M)

q0
ε s M

ε

the only accepting state of Star(M) is q0

(N.B. doing without q0 by just looping back to s
and making that accepting won’t work – see exercises)

For example,

if M =

a
ε

ε

b

then Star(M) =
a

ε

ε

ε

ε b

ε

Construction for Star(r1), M = Star(M1)

Create a new state, say s which will be the
start state, and the only accepting state of M .

Construction for Star(r1), M = Star(M1)

Create a new state, say s which will be the
start state, and the only accepting state of M .

The transitions of M are all the transitions of
M1 together with an ε­transition from s to
the (old) start state of M1 and ε­transitions
from every (old) accepting state of M1 to s.

Construction for Star(r1), M = Star(M1)

Create a new state, say s which will be the
start state, and the only accepting state of M .

The transitions of M are all the transitions of
M1 together with an ε­transition from s to
the (old) start state of M1 and ε­transitions
from every (old) accepting state of M1 to s.

Clearly, M accepts ε since s, the start state, is
also an accepting state

Construction for Star(r1), M = Star(M1)

Create a new state, say s which will be the
start state, and the only accepting state of M .

The transitions of M are all the transitions of
M1 together with an ε­transition from s to
the (old) start state of M1 and ε­transitions
from every (old) accepting state of M1 to s.

Clearly, M accepts ε since s, the start state, is
also an accepting state

nonempty strings accepted by M have to be
formed of components, each of which is
accepted by M1

Construction for Star(r1), M = Star(M1)

Create a new state, say s which will be the
start state, and the only accepting state of M .

The transitions of M are all the transitions of
M1 together with an ε­transition from s to
the (old) start state of M1 and ε­transitions
from every (old) accepting state of M1 to s.

Clearly, M accepts ε since s, the start state, is
also an accepting state

nonempty strings accepted by M have to be
formed of components, each of which is
accepted by M1

so L(M) = L(r∗1)

(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &

u2 ∈ L(M2)}
Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(iv) Induction step for r∗: given NFAε M, construct an NFAε

Star(M) satisfying

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}
Thus L(r∗) = L(Star(M)) when L(r) = L(M).

Example

Regular expression (a|b)∗a

whose abstract syntax tree is

Concat

Star

Union

Syma Symb

Syma

is mapped to the NFAε Concat(Star(Union(Ma, Mb)), Ma) =

a

ε

a ε ε

ε

ε b

ε

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?

Decidability of matching

We now have a positive answer to question (a). Given
string u and regular expression r:

◮ construct an NFAε M satisfying L(M) = L(r);

◮ in PM (the DFA obtained by the subset construction) carry out
the sequence of transitions corresponding to u from the start
state to some state q (because PM is deterministic, there is a
unique such transition sequence);

◮ check whether q is accepting or not: if it is, then
u ∈ L(PM) = L(M) = L(r), so u matches r; otherwise
u /∈ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2n

states if M has n. This makes the method described above potentially inefficient – more efficient
algorithms exist that don’t construct the whole of PM.)

Exponential Blow­up

if NFAε M has n states then the DFA made by
subset construction, PM has 2n states, since its
states are the members of the powerset of M .

Minimisation of states in PM by:

Exponential Blow­up

if NFAε M has n states then the DFA made by
subset construction, PM has 2n states, since its
states are the members of the powerset of M .

Minimisation of states in PM by:

◮ removing all states which are not reachable
(by any string) from the start state.

Exponential Blow­up

if NFAε M has n states then the DFA made by
subset construction, PM has 2n states, since its
states are the members of the powerset of M .

Minimisation of states in PM by:

◮ removing all states which are not reachable
(by any string) from the start state.

◮ merge all compatible states. Two states are
compatible if (i) they are both accepting or
both non­accepting; and (ii) their transition
functions are the same.

Exponential Blow­up

if NFAε M has n states then the DFA made by
subset construction, PM has 2n states, since its
states are the members of the powerset of M .

Minimisation of states in PM by:

◮ removing all states which are not reachable
(by any string) from the start state.

◮ merge all compatible states. Two states are
compatible if (i) they are both accepting or
both non­accepting; and (ii) their transition
functions are the same.

◮ Update transition functions to take
account of merged states. Repeat.

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

The not so fun side of Kleene’s Theorem

Example of a regular language

Recall the example DFA we used earlier:

M , q0
a

b

q1

b

a q2

b

a q3

a

b

In this case it’s not hard to see that L(M) = L(r) for

r = (a|b)∗aaa(a|b)∗

Example

M , 1

a0

b
a

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗

WRONG!
since baabaa ∈ L(M)
but baabaa 6∈ L(a∗|a∗b(ab)∗aaa∗)

We need an algorithm for constructing a suitable r for each M
(plus a proof that it is correct).

Lemma. Given an NFA M = (Q, Σ, ∆, s, F), for each
subset S ⊆ Q and each pair of states q, q′ ∈ Q, there is a
regular expression rS

q,q′ satisfying

L(rS
q,q′) = {u ∈ Σ

∗ | q
u
−→∗ q′ in M with all inter-

mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
q1, . . . , qk say, then L(M) = L(r) with r , r1| · · · |rk where

ri = r
Q
s,qi

(i = 1, . . . , k)

(in case k = 0, we take r to be the regular expression ∅).

Prove this Lemma by induction on # of
elements in S
Also take care to examine case where q = q′ !

Base case S = ∅

Given states q, q′ ∈ M, if

q
a
−→ q′

holds for just a = a1, a2, . . . , ak then can define

r∅

q,q′ ,

{
a = a1|a2| . . . |ak if q 6= q′

a = a1|a2| . . . |ak|ǫ if q = q′

Induction Step:

◮ S has n + 1 elements.

Induction Step:

◮ S has n + 1 elements.

◮ pick some q0 ∈ S

Induction Step:

◮ S has n + 1 elements.

◮ pick some q0 ∈ S

◮ consider S− = S \ {q0} (S without the state
q0)

Induction Step:

◮ S has n + 1 elements.

◮ pick some q0 ∈ S

◮ consider S− = S \ {q0} (S without the state
q0)

◮ can apply induction hypoth to S− since S− has
n elements

Induction Step:

◮ S has n + 1 elements.

◮ pick some q0 ∈ S

◮ consider S− = S \ {q0} (S without the state
q0)

◮ can apply induction hypoth to S− since S− has
n elements

Can we express rS
q,q′ in terms of things only

depending on S−?

What’s in rS
q,q′ ?

◮ we might be able to get from q to q′

through S avoiding q0, and

What’s in rS
q,q′ ?

◮ we might be able to get from q to q′

through S avoiding q0, and

◮ we might be able to get from q to q0, then
from q0 back to itself an arbitrary number
of times, then to q′

What’s in rS
q,q′ ?

◮ we might be able to get from q to q′

through S avoiding q0, and

◮ we might be able to get from q to q0, then
from q0 back to itself an arbitrary number
of times, then to q′

For the first of these we have rS−

q,q′ by

hypothesis. (If there is no path, this will be ∅)

What’s in rS
q,q′ ?

◮ we might be able to get from q to q′

through S avoiding q0, and

◮ we might be able to get from q to q0, then
from q0 back to itself an arbitrary number
of times, then to q′

For the first of these we have rS−

q,q′ by

hypothesis. (If there is no path, this will be ∅)

For the second we have rS−
q,q0

[rS−
q0,q0

]∗ rS−

q0,q′

rS
q,q′ = rS−

q,q′ | (rS−
q,q0

[rS−
q0,q0

]∗rS−

q0,q′)

q

rS−

q,q′

rS−
q,q0

q′

q0

rS−
q0,q0 rS−

q0,q′

all transitions in S− q0 excluded from S−

q and q′ can be in or out of S−

An Example

Demonstrates don’t always have to follow
induction to bitter end (but when in doubt...)

Construction works backwards to the
induction; we start with all the states and
remove one at a time.

We get to choose the state to remove in
each step.

Strategy: choose a state that disconnects the
automaton as much as possible

M , 1

a0

b
a

2

b

a

Looking for r
{0,1,2}
0,0

M , 1

a0

b
a

2

b

a

Looking for r
{0,1,2}
0,0

By direct inspection we have:

r
{0}
i,j 0 1 2

0

1 ∅ ε a
2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b
1

2

(we don’t need the unfilled entries in the tables)

We want r
{0,1,2}
0,0

We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}

We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

a∗ a∗b

We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [r
{0,2}
1,1]∗ r

{0,2}
1,0,)

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [r
{0,2}
1,1]∗ r

{0,2}
1,0,)

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2]∗ r

{0}
2,1)

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [r
{0,2}
1,1]∗ r

{0,2}
1,0,)

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2]∗ r

{0}
2,1)

= ε | (a [ε]∗ a∗b)

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [r
{0,2}
1,1]∗ r

{0,2}
1,0,)

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2]∗ r

{0}
2,1)

= ε | (a [ε]∗ a∗b)
= ε | (aa∗b)

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ r
{0,2}
1,0)

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2]∗ r

{0}
2,1)

= ε | (a [ε]∗ a∗b)
= ε | (aa∗b)

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ r
{0,2}
1,0)

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ r
{0,2}
1,0)

r
{0,2}
1,0 , r

{0}
1,0 | (r

{0}
1,2 [r

{0}
2,2]∗ r

{0}
2,0)

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ r
{0,2}
1,0)

r
{0,2}
1,0 , r

{0}
1,0 | (r

{0}
1,2 [r

{0}
2,2]∗ r

{0}
2,0)

= ∅ | a∗ (ǫ)∗ aa∗

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ r
{0,2}
1,0)

r
{0,2}
1,0 , r

{0}
1,0 | (r

{0}
1,2 [r

{0}
2,2]∗ r

{0}
2,0)

= ∅ | a∗ (ǫ)∗ aa∗

= aaa∗

We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ aaa∗)

r
{0,2}
1,0 , r

{0}
1,0 | (r

{0}
1,2 [r

{0}
2,2]∗ r

{0}
2,0)

= ∅ | a∗ (ǫ)∗ aa∗

= aaa∗

We want r
{0,1,2}
0,0

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ aaa∗)

We want r
{0,1,2}
0,0

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1]∗ r

{0,2}
1,0)

= a∗ | (a∗b [ε|(aa∗b)]∗ aaa∗)

Which might have a simpler form...

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?

Not(M)

Given DFA M = (Q, Σ, δ, s, F),
then Not(M) is the DFA with

◮ set of states = Q
◮ input alphabet = Σ

◮ next-state function = δ

◮ start state = s
◮ accepting states = {q ∈ Q | q 6∈ F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u ∈ Σ
∗ | u 6∈ L(M)}

So regular languages are closed under
complementation:

◮ given a regular expression r

L(∼ r) = {u ∈ Σ
∗|u /∈ L(r)}

So regular languages are closed under
complementation:

◮ given a regular expression r

◮ build DFA M such that L(M) = L(r) (Kleene
(a))

L(∼ r) = {u ∈ Σ
∗|u /∈ L(r)}

So regular languages are closed under
complementation:

◮ given a regular expression r

◮ build DFA M such that L(M) = L(r) (Kleene
(a))

◮ build Not(M) from M (just defined)

L(∼ r) = {u ∈ Σ
∗|u /∈ L(r)}

So regular languages are closed under
complementation:

◮ given a regular expression r

◮ build DFA M such that L(M) = L(r) (Kleene
(a))

◮ build Not(M) from M (just defined)

◮ find ∼ r such that L(∼ r) = L(Not(M))
(Kleene (b))

L(∼ r) = {u ∈ Σ
∗|u /∈ L(r)}

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2,

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2,
then L1 ∩ L2 = L(Not(PM)), PM subset-constructed from M,

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2,
then L1 ∩ L2 = L(Not(PM)), PM subset-constructed from M,
where M is the NFAε Union(Not(M1), Not(M2)). �

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2,
then L1 ∩ L2 = L(Not(PM)), PM subset-constructed from M,
where M is the NFAε Union(Not(M1), Not(M2)). �

[It is not hard to directly construct a DFA And(M1, M2) from M1 and M2 such that
L(And(M1, M2)) = L(M1)∩ L(M2) – see Exercise 4.7.]

Regular languages are
closed under intersection

Corollary: given regular expressions r1 and r2,there is a
regular expression, which we write as r1 & r2, such that

a string u matches r1 & r2 iff it matches both r1

and r2.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1)∩ L(r2). Then we can use
Kleene (b) to construct a regular expression r1 & r2 with
L(r1 & r2) = L(r1)∩ L(r2). �

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?

Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Answer: yes (Exercise 2.3)

How can we decide all such questions?

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r))∩ L(s) = ∅ = (Σ
∗ \ L(s))∩ L(r)

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r))∩ L(s) = ∅ = (Σ
∗ \ L(s))∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r))∩ L(s) = ∅ = (Σ
∗ \ L(s))∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r))∩ L(s) = ∅ = (Σ
∗ \ L(s))∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any DFA M, whether or not it accepts any string at all.

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r))∩ L(s) = ∅ = (Σ
∗ \ L(s))∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any DFA M, whether or not it accepts any string at all.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.

That gives us our answer to question (c)
(which is yes).

Now onto the last of our questions...

The Pumping Lemma

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?

Examples of languages that are
not regular

◮ The set of strings over {(,), a, b, . . . , z} in which the
parentheses ‘(’ and ‘)’ occur well-nested.

◮ The set of strings over {a, b, . . . , z} which are
palindromes, i.e. which read the same backwards as
forwards.

◮ {anbn | n ≥ 0}

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1 (i.e. v 6= ε)

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1 (i.e. v 6= ε)

◮ |u1v| ≤ ℓ

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1 (i.e. v 6= ε)

◮ |u1v| ≤ ℓ

◮ for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway],

u1vvu2 ∈ L, u1vvvu2 ∈ L, etc.)

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1 (i.e. v 6= ε)

◮ |u1v| ≤ ℓ

◮ for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway],

u1vvu2 ∈ L, u1vvvu2 ∈ L, etc.)

Note similarity to construction in Kleene (b)

Suppose L = L(M) for a DFA M = (Q, Σ, δ, s, F).
Taking ℓ to be the number of elements in Q, if n ≥ ℓ,
then in

s = q0

a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an
−→ qn ∈ F

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some
0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

s = q0
u1 ∗qi

v

∗
= qj

u2 ∗qn ∈ F

where

u1 , a1 . . . ai v , ai+1 . . . aj u2 , aj+1 . . . an

How to use the Pumping Lemma
to prove that a language L

is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

no matter how w is split into three, w = u1vu2,
with |u1v| ≤ ℓ and |v| ≥ 1, there is some n ≥ 0

for which u1vnu2 is not in L






(†)

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 =

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ =

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ = aℓ−sbℓ

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ = aℓ−sbℓ

But aℓ−sbℓ 6∈ L1

L1 = {anbn | n ≥ 0}

For each ℓ ≥ 1, take w = aℓbℓ ∈ L1

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1, then for
some r and s:

◮ u1 = ar

◮ v = as, with r + s ≤ ℓ and s ≥ 1

◮ u2 = al−r−sbℓ

so u1v0u2 = ar ǫ aℓ−r−sbℓ = aℓ−sbℓ

But aℓ−sbℓ 6∈ L1 , so, by the Pumping Lemma, L1 is
not a regular language

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 , {ap | p prime}

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1 . . .

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1 . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1 . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 =

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1 . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s =

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1 . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s = a(p−s)(s+1)

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1 . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s = a(p−s)(s+1)

but s ≥ 1 ⇒ s + 1 ≥ 2

and (p − s) > (2ℓ− ℓ) ≥ 1 ⇒ (p − s) ≥ 2

L3 = {ap | p prime}

For each ℓ ≥ 1 let w = ap ∈ L3, p prime & p > 2ℓ

If w = u1vu2 with |u1v| ≤ ℓ & |v| ≥ 1 . . .

then u1 = ar v = as u2 = ap−r−s

with s ≥ 1 & r + s ≤ ℓ

so u1vp−su2 = ar as(p−s) ap−r−s = a(p−s)(s+1)

but s ≥ 1 ⇒ s + 1 ≥ 2

and (p − s) > (2ℓ− ℓ) ≥ 1 ⇒ (p − s) ≥ 2

so a(p−s)(s+1) 6∈ L3

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 , {ap | p prime}
[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3 has length ≥ ℓ and
has property (†).]

Pumping Lemma property is necessary
for a language to be regular

It is not sufficient

Example of a non-regular language
with the pumping lemma property

L , {cmanbn | m ≥ 1 & n ≥ 0} ∪ {ambn | m, n ≥ 0}

satisfies the pumping lemma property with ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular – see Exercise 5.1.

L is not regular: (sketch)

.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

Take a c transition from the start state of M .
Make the state you reach the start state of
M′.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

Take a c transition from the start state of M .
Make the state you reach the start state of
M′.

Delete all transitions involving c (and remove c
from the alphabet). But don’t remove any
states and keep the same accept states.

L is not regular: (sketch)

If L is regular there is a DFA M with L = L(M).
Let’s build a new machine, M′ from it.

Take a c transition from the start state of M .
Make the state you reach the start state of
M′.

Delete all transitions involving c (and remove c
from the alphabet). But don’t remove any
states and keep the same accept states.

What language does M′ recognise?

The way ahead, in THEORY

◮ What does is mean for a function
to be computable?
[Ib Computation Theory]

The way ahead, in THEORY

◮ What does is mean for a function
to be computable?
[Ib Computation Theory]

◮ Are some computational tasks
intrinsiclaly unfeasible?
[Ib ComplexityTheory]

The way ahead, in THEORY

◮ What does is mean for a function
to be computable?
[Ib Computation Theory]

◮ Are some computational tasks
intrinsiclaly unfeasible?
[Ib ComplexityTheory]

◮ How do we specify and reason
about program behaviour?
[Ib Logic and Proof,
1b Semantics of PLs]

The way ahead, in FORMAL LANGUAGES

◮ Are there other useful language
classes?

The way ahead, in FORMAL LANGUAGES

◮ Are there other useful language
classes?

◮ Are there other useful automata
classes that have a correspondence
to them?

The way ahead, in FORMAL LANGUAGES

◮ Are there other useful language
classes?

◮ Are there other useful automata
classes that have a correspondence
to them?

◮ What if we ask the same questions
about them that we asked about
regular languages?

	Formal Languages
	Inductive Definitions
	Regular Expressions
	Finite Automata
	Kleene's Theorem
	The Pumping Lemma

