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What is this course about?

» Examining the power of an abstract machine

What can this box of tricks do?



What is this course about?

» Examining the power of an abstract machine
» Domains of discourse: automata and formal languages

Automaton is the box of tricks, language recognition is
what it can do.



What is this course about?

» Examining the power of an abstract machine
» Domains of discourse: automata and formal languages
» Formalisms to describe languages and automata

Very useful for future courses.



What is this course about?

v

Examining the power of an abstract machine

v

Domains of discourse: automata and formal languages

v

Formalisms to describe languages and automata

v

Proving a particular case: relationship between regular
languages and finite automata

Perhaps the simplest result about power of a machine.
Finite Automata are simply a formalisation of finite state
machines you looked at in Digital Electronics.



A word about formalisms to describe
languages

» Classically (i.e. when | was young) this would be done
using production-based grammars.

eg. S— NV
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A word about formalisms to describe
languages

» Classically (i.e. when | was young) this would be done
using production-based grammars.

» Here will we use rule induction

Excuse to introduce rule induction now, useful in other
things



Syllabus for this part of the course

v

Inductive definitions using rules
and proofs by rule induction.

v

Regular expressions and pattern matching.

Finite automata and regular languages:
Kleene's theorem.

v

The Pumping Lemma.

v

Mmathematics Nneeded £or computer science




Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity
Theory, Semantics of Programming Languages

Part Il Natural Language Processing, Optimising Compilers,
Denotational Semantics, Temporal Logic and Model
Checking

N.B. we do not cover the important topic of context-free grammars, which prior to 2013/14 was
part of the CST IA course Regular Languages and Finite Automata that has been subsumed into

this course.

see course wek pace £or relevant Tripos Questions



Formal Languages



An alphabet is specified by giving a finite set, X, whose
elements are called symbols. For us, any set qualifies as a
possible alphabet, so long as it is finite.

Examples:

» {0,1,2,3,4,5,6,7,8,9}, 10-element set of decimal digits.

» {a,b,c,...,x,y,2z}, 26-element set of lower-case characters of
the English language.

» {S|SC{0,1,2,3,4,5,6,7,8,9}}, 210-element set of all
subsets of the alphabet of decimal digits.

Non-example:

» N ={0,1,2,3,... }, set of all non-negative whole numbers is
not an alphabet, because it is infinite.



Strings over an alphabet

A string of length n (for n = 0,1,2,...) over an
alphabet X is just an ordered n-tuple of elements of X,
written without punctuation.

2.* denotes set of all strings over X of any finite length.

. notation for the
Examples. string of length 0

» If 2 = {a,b,c}, then ¢, a, ab, aac, and bbac are
strings over X of lengths zero, one, two, three and four
respectively.

» If £ = {a}, then I* contains ¢, a, aa, aaa, aaaa,
etc.

l In general, a™ denotes the string of length n just containing a symbols




Strings over an alphabet

A string of length n (for n = 0,1,2,...) over an
alphabet X is just an ordered n-tuple of elements of X,
written without punctuation.

2.* denotes set of all strings over X of any finite length.

Examples:

» If 2 = {a,b,c}, then ¢, a, ab, aac, and bbac are
strings over X of lengths zero, one, two, three and four
respectively.

» If £ = {a}, then Z* contains ¢, a, aa, aaa, aaaa,
etc.

» If Z = @ (the empty set), then what is X*?



Strings over an alphabet

A string of length n (for n = 0,1,2,...) over an
alphabet X is just an ordered n-tuple of elements of X,
written without punctuation.

2.* denotes set of all strings over X of any finite length.

Examples:

» If 2 = {a,b,c}, then ¢, a, ab, aac, and bbac are
strings over X of lengths zero, one, two, three and four
respectively.

» If £ = {a}, then Z* contains ¢, a, aa, aaa, aaaa,
etc.

» If L = @ (the empty set), then * = {e}.



Concatenation of strings

The concatenation of two strings u and v is the string uv

obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If X ={a,b,c,...,z} and u,v,w € L* are u = ab, v = ra and
w = cad, then
vu = raab
uu = abab
wv = cadra
uowuv = abracadabra



Concatenation of strings

The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:
If X ={a,b,c,...,z} and u,v,w € L* are u = ab, v = ra and
w = cad, then

vu = raab

uu = abab

wv = cadra

uwowuv = abracadabra

NB.  (uWw = uvw = ulvw) (any uvw )
Ue = u =eu

The lenath Of a8 strina u € L* is denoted |ul.



Formal languages

An extensional view of what constitutes a formal language is that it is
completely determined by the set of ‘words in the dictionary’:

Given an alphabet X, we call any subset of Z* a (formal)
language over the alphabet X.

We will use inductive definitions to describe languages in terms of
grammatical rules for generating subsets of X*.



Inductive Definitions



Axioms and rules

for inductively defining a subset of a given set U

» axioms | —— | are specified by giving an element a of U

hl h2 e o o hn
c

are specified by giving a finite subset {hy, ha,..., h,} of U (the

hypotheses of the rule) and an element ¢ of U (the conclusion

of the rule)

» rules




Axioms and rules

for inductively defining a subset of a given set U

» axioms | —— | are specified by giving an element a of U
a

which means that a is In the surset we are
defining
hihy, -+ h,

c

» rules

are specified by giving a finite subset {hy, ha,..., h,} of U (the
hypotheses of the rule) and an element ¢ of U (the conclusion
of the rule)

which means that ¢ is in the sugset we are

defining i+ all of hy, hy, ..., h, are



Derivations

Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element # € U is in the subset is by definition:

a finite rooted tree with vertexes labelled by elements of U
and such that:

» the root of the tree is u (the conclusion of the whole
derivation),

» each vertex of the tree is the conclusion of a rule
whose hypotheses are the children of the node,

» each leaf of the tree is an axiom.

we'll draw with leaves at top, root at rottom



Example

U= {a,b}*
axiom: ——

€

u u u v
rules: (for all u,v € U)
aub bua uo
Example derivations:
3 € F3
P ab ba ab
ab aabb baab
abaabb abaabb




Example

U = {a,b}* The universal set from which
we are specifying a surset.

axiom: ——
e
u u u v
rules: (for all u,v € U)
aub bua uo
Example derivations:
e e e
€ ab ba ab
ab aabb baab

abaabb abaabb




Example

U = {a,b}* K is the set of all finite
strinas containing a's < b'’s.
axiom: ——
€
u u u v
rules: (for all u,v € U)
aub bua uo
Example derivations:
£ P £
€ ab ba ab
ab aabb baab

abaabb abaabb




Example

U= {ab}*
Now the axioms and rules to define the
surset :

axiom: ——

e

u u u v
rules: (for all u,v € U)
aub bua uo
Example derivations:
£ e £
P ab ba ab
ab aabb baab

abaahh abaahh



Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u € U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 14

» abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

» abaab is not in that subset (there is no derivation with that
conclusion — why?)

(In fact u € {a,b}* is in the subset iff it contains the same number of a and b symbols.)



rules or templates?

(for allu,v € D

uo

is really a template for a (potentially) infinite
set of rules



Example: transitive closure

Given a binary relation R C X X X on a set X, its
transitive closure R™ is the smallest (for subset
inclusion) binary relation on X which contains R and which
is transitive (vx,y,z € X. (x,y) € Rt & (y,z) € RT = (x,z) € RT).

R is equal to the subset of X X X inductively defined by

axioms (for all (x,y) € R)

(%, y)

(xy)  (y,2) (
(%, 2)

rules for all x,y,z € X)



Example: reflexive-transitive closure

Given a binary relation R C X X X on a set X, its
reflexive-transitive closure R* is defined to be the
smallest binary relation on X which contains R, is both

transitive and reflexive (vx € X. (x,x) € R*).

R* is equal to the subset of X X X inductively defined by

(for all (x,y) € R) (for all x € X)

axioms

(%) (x,x)

rules (x,y)(x,z)(y,z) (for all x,y,z € X)



Example: reflexive-transitive closure

Given a binary relation R C X X X on a set X, its
reflexive-transitive closure R* is defined to be the
smallest binary relation on X which contains R, is both

transitive and reflexive (vx e X. (x,x) € R*).

R* is equal to the subset of X X X inductively defined by

(for all (x,y) € R) (for all x € X)

axioms

(%) (x,x)

rules (x,y)(x,z)(y,z) (for all x,y,z € X)

| we can use Rule Induction to prove this




Example: reflexive-transitive closure

Given a binary relation R C X X X on a set X, its
reflexive-transitive closure R* is defined to be the
smallest binary relation on X which contains R, is both

transitive and reflexive (vx e X. (x,x) € R*).

R* is equal to the subset of X X X inductively defined by

(for all (x,y) € R) (for all x € X)

axioms

(%) (x,x)

rules (x,y)(x,z)(y,z) (for all x,y,z € X)

we can use Rule Induction to prove this, since S C X X X
being closed under the axioms & rules is the same as it
containing R, being reflexive and being transitive.




Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u € U for which there is a
derivation with conclusion u.

Derivation is a finite (Iarelled) tree with u at
root, axiom at leaves and each vertex the
conclusion of a rule whose hypotheses are the
children of the vertex

(We usually draw the trees with the root at
the BOttom.)




Rule Induction

Theorem. The subset I C U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S C U is also closed under the
axioms and rules, then I C S.

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S C U is closed under the axioms and rules if

» for every axiom ——, it is the case that a € S
a

» for every rule % if h1,hy,..., h,, €S, then c € S.



E.a. for the axiom < rules

u u

v
4 Ib *
€ aub  bua uv for allu,v € {a,b}

the surset
{ue€{a b} | #a(u) = #(u)}

(where #,(u) is the numser of ’a’s
iN the string u)



E.a. for the axiom < rules

: - for all u,v € {a,b}*

€ aub bua uo

the surset
{ue€{a b} | #a(u) = #(u)}

is closed under the axiom = rules.



NPB. for a aiven set R of axioms = rules

{u e U |VS CU.(Sclosed under R) = u € S}

is closed under R (Why?) and sO is the smallest
such (with respect to sugset inclusion, )



NPB. for a aiven set R of axioms = rules

{u e U |VS CU.(Sclosed under R) = u € S}

is closed under R (Why?) and sO is the smallest
such (with respect to sugset inclusion, )

This set contains all items that are in every set
that Is closed under R



NPB. for a aiven set R of axioms = rules

{u e U |VS CU.(Sclosed under R) = u € S}

is closed under R (Why?) and sO is the smallest
such (with respect to sugset inclusion, )

This set contains all items that are in every set
that Is closed under R

Perhaps retter written as

N(VS C U.(S closed under R))

Is closed under R.



Theorem. The subset I C U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S C U is also closed under the
axioms and rules, then I C S.

"the least surset closed under the axioms <
rues”

Is sOMmetimes take as the definition of

"inductively defined sugset”



Proof of the Theorem [(Pace 2.3 of notes]

Closure part

» I is closed under each axiom ——
a

ReQause we ean construct a derivation
witnessinag a € 1 ...

...which is simply a tree with one node
containinG a



Closure part ()

hihy ...h,
c

» I Is closed under each rule r =
Because & hi hy...h, € I ...

we have n derivations £rom axioms to each
h; and so ...

we can just make these the n children to
our rule r to form a BiG tree ...

which Is a derivation witnessing ¢ € 1



Proof of the Theorem

sO we have closure under rules <= axioms

Now the "least such surset" part

We need to show, forevery S C U

(S closed under axioms and rules ) = I C S

That is, I is the least surset, in that any other
surset that is closed under the axioms < rules
contains I



Least Surset

So we need to show that every element of I is
contained in any set S C U which is closed under
the rules < axioms

Q: How can we characterise an element of 17
A: For each element of I there is a derivation
that witnesses Its memrership

So let’s do induction on the height of the
derivation (ie. the height of the tree)



Least Surset - Proo# By Induction

P(n) = “all derivations of heiaht n
have their conclusion in S"

Need to show:

» P(0) (consider these to re sinale (axiom)
Node derivations)

» V(k < n) P(k) = P(n+1)

since i P(n) is true for all n, then all
derivations have their condusion in S, and thus
every element of Iis in S.



Least Surset - Proo# By Induction

P(n) = “all derivations of heiaht n

have their conclusion in S"

> P(O)
trivially true since conclusion is an axiom
and S Is closed under axioms



Least Surset - Proo# By Induction

P(n) = “all derivations of heiaht n
have their conclusion in S"

> P(O)
trivially true since conclusion is an axiom
and S Is closed under axioms

» V(k < n) P(k) = P(n+1):



Least Surset - Proo# By Induction

P(n) = “all derivations of heiaht n
have their conclusion in S"

> P(O):
trivially true since conclusion is an axiom
and S is closed under axioms

» V(k <n)P(k) = P(n+1):
Suppose V(k < n) P(k) and that D is a
derivation of height n 4+ 1 with, say,
conclusion ¢



ey ey
T \




Ck

BB e By
L |

some rule c‘:

¢ I1s the result Of applying some rule to a set of
concalusions ¢ ... Ck



VY i

Cz kem:k—ts cr

sor\ne_ rule_ c‘:

But the derivations for the c; all have height
< n So the ¢; are all in S By assumption

and since S is closed under all axioms < rules,
cEeS

so V(k <n) P(k) = P(n+1)



Thus every element in I is in any S that is closed
under the axioms < rules that inductively
defined I

Thus I is the least surset that is closed under
those axioms < rules.



Rule Induction

Theorem. The subset I C U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S C U is also closed under the
axioms and rules, then I C S.

We use a similar approach as method of proof: given a property P(u)
of elements of U, to prove Vu € I. P(u) it suffices to show

» base cases: P(a) holds for each axiom ——
a

» induction steps: P(h1) & P(hy) & --- & P(h,) = P(c)
hl h2 oo hn
c

holds for each rule



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

€ aub bua uo




Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

u u uo

€ aub bua uo

Associated R.ule Induction:



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

u u uo

€ aub bua uo

Associated R.ule Induction:
> P(e)



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

u u uo

€ aub bua uo

Associated R.ule Induction:
> P(e)
» Yu € I.P(u) = P(aub)



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

u u uo

€ aub bua uo

Associated Rule Induction:
» P(€)
» Yu € I.P(u) = P(aub)
» Yu € I.P(u) = P(bua)



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

u u uo

€ aub bua uo

Associated Rule Induction:
» P(€)
» Yu € I.P(u) = P(aub)
» Yu € I.P(u) = P(bua)
» Yu,v € I. P(u) AP(v) = P(uv)



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

For u € {a,b}*, let P(u) be the property
u contains the same number of a and b symbols

We can prove Yu € I. P(u) by rule induction:

» base case: P(¢) is true (the number of as and bs is zero!)



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

For u € {a,b}*, let P(u) be the property
u contains the same number of a and b symbols
We can prove Yu € I. P(u) by rule induction:

» base case: P(¢) is true (the number of as and bs is zero!)

» induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).



Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

For u € {a,b}*, let P(u) be the property
u contains the same number of a and b symbols
We can prove Yu € I. P(u) by rule induction:

» base case: P(¢) is true (the number of as and bs is zero!)

» induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It's not so easy to show Vu € {a,b}*. P(u) = u € I — rule induction for I is not much help for
that.)



Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined By

u uo

a au buv




Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined By

IN this case R.ule Induction says:

i£ © P(a)

<0 Vu€el.P(u) = P(au)

< @ Yu,v € I.P(u) AP(v) = P(buv)
then Yu € 1. P(u)

for any predicate P(u)



Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined By

Asked to show

ucl=#,(u) > #,(u)

e, that there are more ’a’s than 'B’s in every
string In 1



Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined By

Asked tO show
ucl=#,(u) >#(u)

sO dO sO using R.ule Induction with
P(u) = #,(u) > #,(u)



Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined By

P(u) = #,(u) > #,(u)

(OY P(a) holds (1> 0



Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined By

P(u) = #,(u) > #,(u)

(O & P(u), then #,(au) =1+ #,(u)



Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined By

P(u) = #,(u) > #,(u)

(O & P(u), then #,(au) =1+ #,(u)
> #,(u) > #,(u) (Because P(u))
= #,(au)



Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined By

u uv
o) — — 2
a au buv

P(u) = #a(u) > #,(u)

O 1# P(u), then #,(au) =1+ #,(u)
> #,(u) > #,(u) (Because P(u))
= #p(au)
so P(au) holds as well, and thus P(u) = P(au)



Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined By

P(u) = #a(u) > #,(u)

(2 18 P(u) AP(v), then #,(buv) = #,(u) + $#,(v)
> ((#() +1) + ($5(0) +1))  (whyD
> #,(buv)
so P(buv)



Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined By

P(u) = #4(u) > #y(u)

i$© P(a) v

0o Vuel.P(u)= P(au) v

< @ Yu,0o € I.P(u) ANP(v) = P(buv) v
then Yu € 1. P(u)

so for all u € I, we have #,(u) > #,(u)



Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined By

P(u) = #4(u) > #y(u)

Hhouah h
a uch we ave‘v’uEI.P(u)

we dont have
Vu € {a,b}*.P(u) =>ucl

ea. P(aab) eut aab & I (Why?)



Decidina memeership of an inductively defined
surset can Be hard!



Decidina memeership of an inductively defined
surset can Be hard!

really, R.eally hard

ea. .



Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) it n>1 neven
f(3n+1) i n>1, nodd

Does this define a total function f:IN — IN?

(NoROdY kNOWS)



Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) it n>1 neven
f(3n+1) i n>1, nodd

Does this define a total function f:IN — IN?

(NoROdY kNOWS)

(I# it does then f is necessarily the
unary 1 function n +— 1)



Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) it n>1 neven
f(3n+1) i£n>1, nodd
Does this define a total function f:IN — IN?

(NoROdY kNOWS)

Can reformulate as a proelem arout inductively
defined sursets..



Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) it n>1 neven
f(3n+1) it n>1, nodd

Is the sueset I C IN inductively defined By

equal to the whole of IN?



Regular Expressions



Formal languages

An extensional view of what constitutes a formal language is that it is
completely determined by the set of ‘words in the dictionary’:

Given an alphabet X, we call any subset of Z* a (formal)
language over the alphabet X.




Concrete syntax: strings of symbols

» possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

» or that have no semantic content (e.g. syntax for comments).
For example, an ML expression:

let fun £ x =
if x > 100 them x — 10
else £ (£ ( x + 11 ) )
in £ 1 end

(*x v a 1l u e i s 9 9 =)



Abstract syntax: finite rooted trees

» vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) — in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

» label of the root gives the ‘outermost form' of the whole phrase

let
E.g. for the ML expression / \

on Slide 42: fun @
f/x \if f/ \1
>/ \_\@
X/ \100 x/ \10 f \@

/ N\
£+
/ N\

X 11



R_eaular Expressions

A reaular expression defines a pattern of
syveOols (and thus a lanGuace).

Important to distinauish retween the languace
a par-ticular recular expression defines and the
set Of possiBle regular expressions.

We arout to look at the second of these.



Regular expressions (concrete syntax)

over a given alphabet X.

Let X/ be the 6-element set {€,D, |,*, (,)} (assumed disjoint from X)

U= (zux’)*

axioms: —— E— —_—

a € @

| r r s r s r
rules: — —
(r) r|s rs r*

(where a € Z and r,s € U)




Some derivations of regular expressions
(assuming a,b € X)

b a b
a b* € a b ab
ab* €la b* | e ab*
€|ab* €|ab* €|ab*
b a b
b* ab
a (b*) | € a b (ab)
a(b*) €la b* (ab)*
(a(®*)) | (ela) (b*) | e ((ab)¥)
e|(a(b)) (ela)(b™) e|((ab)”)



Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X) consists of

» binary operators Union and Concat
» unary operator Star

» nullary operators (constants) Null, Empty and Sym
(one for each a € X).



Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet ) as an ML datatype declaration:

datatype ‘aRE = Union of (‘aRE) * ("aRE)
| Concat of ("aRE) * (‘aRE)
| Star of 'aRE
| Null

| Empty

| Sym of ’‘a

(the type 'aRE is parameterised by a type variable ‘a standing for the alphabet X)



Some abstract syntax trees of regular expressions
(assuming a,b € X)

1.
Union
Null Concat
/7
Sym, Stlar
Sym,,

2.
Concat
Union Star
Null  Sym, Sylmb

3.
Union
Null  Star
Corlcat

Sym,  Sym,

(cf. examples a few slides previous)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Sym,, Star(Sym,)))
2. Concat(Union(Null, Sym ), Star(Sym,,))
3. Union(Null, Star(Concat(Sym , Sym,)))



Relating concrete and abstract syntax

for regular expressions over an alphabet X, via an
inductively defined relation ~ between strings and trees:

a~ Sym, € ~ Null @ ~ Empty
r~ R r~ R s~ S
(r) ~R r|s ~ Union(R, S)
r~ R s~ S r~ R

rs ~ Concat(R,S) r* ~ Star(R)




For example:

e|(a(b*)) ~ Union(Null, Concat(Sym,, Star(Sym,)))
e|lab® ~ Union(Null, Concat(Sym,, Star(Sym,)))
e|lab® ~ Concat(Union(Null, Sym ), Star(Sym,,))

Thus ~ is a ‘many-many’ relation between strings and trees.

» Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ~ parse(r).

» Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying

pp(R) ~ R.

(See CST IB Compiler construction course.)




Operator precedence £or recular expressions

Star > Concat > Union

So
glab* stands for e|(a(b*))

Union (Null, Concat (Syw,, Star (SympOM



Associativity for reaular expressions

So

Concat < Union are left associative

abc stands for (ab)c

a|blc stands for (a|b)|c




From now on, we will rely on operator
Precedence (= associativity) conventions in the
conerete syntax Of regular expressions to
allow us tO Mmap unampriguously to their
aBstract syntax

associativity less important (in some sense)
than precedence Because the meaning
(semanttics) Of concatenation and union is
8lways asSOQIETIVE st not true of ail cperators, ea dision

sO abc has the same aBstract syntax as (ab)c,
But different arstract syntax from a(bc), But
all of these have the same semantics.



Matching

Each regular expression r over an alphabet X determines a
language L(r) C X*. The strings u in L(#) are by
definition the ones that match r, where

v

u matches the regular expression a (where a € L) iff u = a

v

u matches the regular expression € iff u is the null string &
» no string matches the regular expression @
» u matches r|s iff it either matches r, or it matches s

» u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

» u matches r* iff either u = &, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.



Inductive definition of matching

U = X* X {regular expressions over L}

| abstract syntax trees |

axlior.ns: (a, a) (e,e) m
(u,1) (u,s)
(u,7[s) (u,7[s)
(v,7) (w, s) (u,1) (v, 7")
(vw, rs) (uo, ™)

(No axiom/rule involves the empty regular expression @ — why?)




Examples of matching
Assuming £ = {a, b}, then:

» a|b is matched by each symbol in &

v

b(a|b)* is matched by any string in * that starts with a ‘b’

v

((a|b)(a|b))* is matched by any string of even length in *

v

(a|b)*(a|b)* is matched by any string in £*

v

(e]a) (e|b)|bb is matched by just the strings €, a, b, ab, and bb

v

@b|a is just matched by a



Questions Computer Scientists ask

(a) Is there an alaorithm which, Given a string
u and a reagular expression r, computes
whether or not u matches r?

IN Other words, decides, £or any r, whether
u € L(r)
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Questions Computer Scientists ask

(a) Is there an alaorithm which, civen a string
u and a reagular expression r, computes
whether or not u matches r?

IN Other words, decides, £or any r, whether
u € L(r)

An alaorithm? what's an algorithm? | mean
what is it in 8 mathematical sense?

leads us tO define automata which "execute
algorithms"
Nnext chunk Of the course..
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expressions, have we missed out some
practically useful Nnotions of pattern?
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Questions Computer Scientists ask

(b) In formulating the definition of recular
expressions, have we missed out some
practically useful notions of pattern?

Mes and No

Mes recause there are convenient notations
like [a — z] tO mean a|b|c...|z and complement,
~ r, which Is defined tO match all strinas that r
does not. Look at the unix utility arep.

No Because such conveniences dont allow us to
define languaaes we cant already define

Why not include them in our Basic definition??

Because they aive us more rules to analyse!



Questions Computer Scientists ask

(c) Is there an algorithm which, aiven two
reaular expressions r and s, computes
whether or not they are equivalentt, in the
sense that L(r) and L(s) are equal sets?

We will answer this when we answer (3).
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(d) Is every languace (sugset of L*) of the
form L(r) $or some r?

Pretty clearly no.



Questions Computer Scientists ask

(d) Is every languace (sugset of L*) of the
form L(r) $or some r?

Pretty clearly no.
IN fact even simple languaces like a"b",Vn € IN

or well-Bracketed arithmetic expressions are
NOt regular



Questions Computer Scientists ask

(d) Is every languace (sugset of L*) of the
form L(r) $or some r?

Pretty clearly no.
IN fact even simple languaces like a"b",Vn € IN

or well-Bracketed arithmetic expressions are
NOt regular

we will derive and use the Puwvpina Lenma to
show this



(a)

Is there an algorithm which, given a string u and a
regular expression 7, computes whether or not u
matches r?

In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

Is there an algorithm which, given two regular
expressions 7 and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

s every language (subset of £*) of the form L(r) for
some 17



Finite Automata
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The @ame plan is as follows:
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» define (non-deterministic) finite automata
iN general

» define deterministic finite automeata (as a
special case)
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We are arout to descrire some different
types Of finite automata.

The aame plan is as follows:

» define (non-deterministic) finite automata
iN general

» define deterministic finite automeata (as a
special case)

» define non-deterministic finite automata
with e—transitions

» show that £rom any non-deterministic
finite automaton with e—transitions we
can mechanically produce an equivalent
deterministic finite automaton



Why?

» we are claiming that a deterministic finite
automata (DFA) is an emrodiment of an
algorithm
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Mmore naturally ...



Why?

» we are caiming that a deterministic finite
automata (DFA) is an emprodiment of an
alaorithm

» NnON-deterministic finite automata with
e—transitions (NFA®s) map on to our
proglem (matching reaular expressions)
Mmore naturally ...

» ...50 we will produced the NFA®s we want
and then rely on the fact that for each
there is an equivalent DFA.



Example of a finite automaton

a

@@/v

<
1>

b

set of states: {qo,g1,92, 93}
input alphabet: {a,b}

transitions, labelled by input symbols: as indicated by the above
directed graph

start state: qo

accepting state(s): g3



Language accepted
by a finite automaton M

» Look at paths in the transition graph from the start
state to some accepting state.

» Each such path gives a string of input symbols, namely
the string of labels on each transition in the path.

» The set of all such strings is by definition the
language accepted by M, written L(M).

Notation: write § —* g’ to mean that in the automaton there is a
path from state g to state g’ whose labels form the string u.

(N.B. g =* ¢’ means g = ¢'.)




Example of an accepted language

ME O

For example

» aaab € L(M), because qo aaab q3

» abaa & L(M), because Vq(qo M* g < q9=1q2)



Example of an accepted language

a

v @@

b

Claim:
L(M) = L((alb)*aaa(alb)*)
set of all strings matching the
regular expression (a|b)*aaa(a|b)*

(gi (for i = 0,1,2) represents the state in the process of reading a string in which the last i
symbols read were all a’s)



Non-deterministic
finite automaton (NFA)

is by definition a 5-tuple M = (Q, L, A, s, F), where:
» Q is a finite set (of states)
» L is a finite set (the alphabet of input symbols)
» A is a subset of Q X L X Q (the transition relation)
» s is an element of Q (the start state)
» F is a subset of Q (the accepting states)

Notation: write “g — g’ in M" to mean (g,a,4’) € A.



Why do we say this is non-deterministic?

A, the transition relation specifies a set of
next states £Or a aiven current state and
aiven iINput sywmrol.

That set might have O, | or more elementts.



Example of an NFA

Input alphabet: {a,b}.
States, transitions, start state, and accepting states as shown:

b b

For example {q | g1 = q} = {q2}
b
{alqn—q} =0
{a1490 = a} = {q0,m}.

The language accepted by this automaton is the same as for our first automaton,
namely {u € {a,b}* | u contains three consecutive a's}.



So we define a deterministic finite automata
sO that A is restricted tO specidy exactly one
Nnext state £or any aiven state and iNput syyeol

we do this BY saying the relation A has to Be a
function § from Q X X to Q



Deterministic finite automaton (DFA)

A deterministic finite automaton (DFA) is an NFA
M = (Q, X, A,s, F) with the property that for each state
q € Q and each input symbol a € Xy, there is a unique

state g’ € Q satisfying ¢ — ¢’.

Ina DFA A C Q X X X Q is the graph of a function Q X £ — Q,
which we write as ¢ and call the next-state function.

Thus for each (state, input symbol)-pair (g,4), d(g, a) is the unique
state that can be reached from g by a transition labelled a:

Vq'(g > q < 9 =6(q,a))



Example of a DFA...

|I>

with input alphabet {a, b}

b

N

next-state function:




but this is an NFA

with input alphabet {a,b, c}

a

e @@u

b

M is non-deterministic, because for example {q | g0 — q} = @.

sO alpharet matters!



Now let’s make thinas a BRIt more interesting
(well complicated) ...

We are aoOING to introduce a new £form of
transition, an e—transition which allows us to
More £rom one state to another without
readinGg a8 syMROl.

These (in general) introduce Nnon-determinism
all By themselves.



An NFA with e-transitions (NFA?)
M= (Q,%,A,s,FT)
is an NFA (Q, X, A, s, F) together with a subset
T C Q X Q, called the e-transition relation.

Example:

Notation: write “g — g’ in M" to mean (gq,4’) € T.
(N.B. for NFA%s, we always assume &€ & X.)



M= (Q,X,A,s,F,T)
» Look at paths in the transition graph (including
e-transitions) from start state to some accepting state.

» Each such path gives a string in £*, namely the string
of non-¢ labels that occur along the path.

» The set of all such strings is by definition the
language accepted by M, written L(M).

v

Notation: write g = g’ to mean that there is a path in M from state
g to state g’ whose non-¢ labels form the string u € L*.



An NFA with e-transitions (NFA?)
M= (Q,%,A,s,FT)
is an NFA (Q, X, A, s, F) together with a subset
T C Q X Q, called the e-transition relation.

Example:

For this NFA® we have, e.g.: qo = q2. 90 = q3 and qo = q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)*(aa|bb)(a|b)*.



Sets of Languaaes Accepted By Finite
Automata

» every DFA is an NFA (with transition
MaPPING A Reing a8 next-state function §)
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Sets of Languaaes Accepted By Finite
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» every DFA is an NFA (with transition
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Sets of Languaaes Accepted By Finite
Automata

» every DFA is an NFA (with transition
MaPPING A Reing 8 next-state function &)

» every NFA is an NFA? (with empty
e—transition relation)

clearly
L(DFA) C L(INFA) C L(INFA®)

BRUt
L(]DIFA) C L(INIFA) C L(INIFAG)???



NFA¢ accepts i there exists a path..
DFA: path is determined one syymeol at a time

Let QQ re the states of some NFA: What i£
we thouaht, one syymrol at a time, arout the
states we could Be In, Or more precisely the
supset Of QR containing the states we could re
iNn



NFA¢ accepts i there exists a path..
DFA: path is determined one syymeol at a time

Let QQ re the states of some NFA: What i£
we thouaht, one syymrol at a time, arout the
states we could Be In, Or more precisely the
supset Of QR containing the states we could re
iNn

Then we could construct a new DFEFA whose
states were taken from the powerset of R
from the NFAE



Surset Construction

Given an NFA? M with states Q construct a
DFA PM whose states are sursets of the
states of M



Surset Construction

Given an NFA? M with states Q construct a
DFA PM whose states are sursets of the
states of M

the start state iIn PM would Be 3 set
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Surset Construction

Given an NFA? M with states Q construct a
DFA PM whose states are sursets of the
states of M

the start state iIn PM would Be 3 set
contalning the start state of M together
with any states that can re reached ry
e—transitions from that state.

accepting states iIn PM would Be any sukset
contaiNninGg an accepting state of M

alpharet Is the same as the alpharet of M
That just leaves §



Example of the subset construction

next-state function for PM
a a b

(%) (%) (%)
@ {90}  |{90.9v. 92} {42}
y {g:1} {g1} @
{92} % {492}
{9091} {90, 91,92} {42}
{9092} | {90, 91,92} {42}

{qva} | {my  {a2}

b {90, 91,92} [ {q0, 91,92} {42}




A word about @ in the subset
construction
Potential for confusion

» The DFA has a state which corresponds to the empty
set of states in the NFA? which we have designated
as @.

» Once you enter this state we get stuck in it. Why?
» Could rewrite (next slide)



DFA State | subset of NFA® | a b
Sq %) S1
S, {qo} Ss S
S3 {q1} S3 S1
S4 {612} S> S
Ss {1701171} Ss S
Se {1101112} Ss S
Sy {qquz} Ss S4
Sg {90,91,92} |Ss Sa

Noting that Sg is the start state (why?) we could eliminate
states that can’t be reached (i.e. Sy, S5, S and Sy7; and
thence S3) if we cared. Here we don't. (Care that is).



Theorem. For each NFA* M = (Q, L, A, s, F, T) there
is a DFA PM = (P(Q),X%,d,s’, F") accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

» set of states is the powerset P(Q) = {S | S C Q} of the set
Q of states of M

» same input alphabet X as for M

» next-state function maps each (S,a) € P(Q) X L to
5(S,a)2{q €Q|3gE€S.q= 4 in M}

> start stateis s’ = {q' € Q| s = ¢’}
» subset of accepting sates is F/ 2 {S € P(Q) | SNF # @}

To prove the theorem we show that L(M) C L(PM) and L(PM) C L(M).



Consider a string aia;...a, € L(M), ie. is
accepted By our NFA¢ M

Then we have

s%qlg...gqn e€¢F inM



Consider a string aia;...a, € L(M), ie. is

accepted By our NFA¢ M

Then we have

Sg 71 %
m m

a1

S — Sq
I
5(5’, al)

= g, €F

in M
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) M M
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s s, B .S, in PM



Consider a string aia;...a, € L(M), ie. is
accepted By our NFA¢ M

Then we have

sgqlg...ganF in M
) M M

az Qan

s s, B ...y, in PM



Consider a string aia;...a, € L(M), ie. is
accepted By our NFA¢ M

Then we have

sgqlg...ganF in M
) M M

az

s s, & ... s €F inPM



Consider a string aia;...a, € L(M), ie. is
accepted By our NFA¢ M

Then we have
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) M M
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Consider a string aia;...a, € L(M), ie. is
accepted By our NFA¢ M

Then we have

sgqlg...ganF in M
) M M

s s, & ... s €F inPM

sO a143...a, € L(PM)
so L(M) C L(PM)
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Consider a string ajay...a, € L(PM), ie. is
accepted By our DFA PM

Then we have

a1 az

s s B ...S,.4 2 S,eF inPM
Iy
qg. € F inM



Consider a strina aja,...a, € L(PM),ie. is
accepted By our DFA PM

Then we have

az

s s & ...S,. 4 S,€F inPM

w W N\ W
qo = q1 = ... qn—1 = qg. € F inM



Consider a strina aja,...a, € L(PM),ie. is
accepted By our DFA PM

Then we have

az

s s B .S, S,€F inPM

) \ \y \

qo = q1 = ... qn—1 = gp € F InM
fre

s



Consider a strina aja,...a, € L(PM),ie. is
accepted By our DFA PM

Then we have

s s B ...S,.4 2 S,€F inPM

), W W W
o = ¢ 2 ... g1 = g.€F inM
e

S
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Consider a strina aja,...a, € L(PM),ie. is
accepted By our DFA PM

Then we have

s s B ...S,.4 2 S,€F inPM

), W W W
o = ¢ 2 ... g1 = g.€F inM
e

S

SO a1ay...a, € L(M)
so L(PM) C L(M)



So we have shown

L(M) C L(PM) and L(PM) C L(M)

sO that
L(M) = L(PM)

where PM is specified By M throuah sugset
construction

Thus for every NFA¢ there is an equivalent
DFA




Theorem. For each NFA* M = (Q, L, A, s, F, T) there
is a DFA PM = (P(Q),X%,d,s’, F") accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

» set of states is the powerset P(Q) = {S | S C Q} of the set
Q of states of M

» same input alphabet X as for M

» next-state function maps each (S,a) € P(Q) X L to
5(S,a)2{q €Q|3gE€S.q= 4 in M}

> start stateis s’ = {q' € Q| s = ¢’}
» subset of accepting sates is F/ 2 {S € P(Q) | SNF # @}

To prove the theorem we show that L(M) C L(PM) and L(PM) C L(M).
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» the set of all lanauaae {L(r)} defined By a
sOMme regular expression r, each languace
ReiNG the set of strings which match some
regular expression r



At this point we should think of
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At this point we should think of

» the set of all lanauaae {L(r)} defined By a
sOme reaular expression r, each lancuace
ReiNG the set of strings which match some
regular expression r

We are arout to show that these sets of
lanGuaGes are equivalent



Kleene’s Theorem



Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.
(a) For any regular expression 7, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression .




The first part reauires us to demonstrate
that for any regular expression r, we can
construct a DFA, M with L(M) = L(r)

We will do this By demonstrating that for any r
we can construct a NFA? M’ with L(M’) = L(r)
and rely on the sukset construction theorem
t0 aive us the DFA M.

\We consider each axiom and rule that define
recular expressions



Kleene's Theorem Part a (The Fun Part)

For any recular expression r we can Build an
NFA? M such that L(r) = L(M)

We will work on induction on the depth of
aBstract syntax trees




Recall: Regular expressions (abstract
syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet L) consists of

» binary operators Union and Concat

» unary operator Star

» nullary operators (constants) Null, Empty and Sym
(one for each a € X).
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Recall: Regular expressions (abstract
syntax)

(conerete syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet L) consists of

» binary operators Union and Concat
1’1|1’2 r112

» unary operator Star r*

» nullary operators (constants) Null, Empty and Sym
(one for each a € X). € @ a



(i) Base cases: show that {a}, {e} and @ are regular languages.

(ii) Induction step for r1|r2: given NFA®s My and M, construct
an NFA? Union(Mj, M) satisfying

L(Union(My1,M;)) = {u|u € L(M1) Vu € L(M,)}
Thus if L(r1) = L(M;1) and L(r2) = L(M,), then L(r1|r2) = L(Union(My, Mz)).
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(i) Base cases: show that {a}, {e} and @ are regular languages.

(ii) Induction step for r1|r2: given NFA®s My and M, construct
an NFA? Union(Mj, M) satisfying

L(Union(My1,M;)) = {u|u € L(M1) Vu € L(M,)}
Thus if L(r1) = L(My) and L(r2) = L(Ma), then L(r1|r2) = L(Union(Mi, M)).

(iii) Induction step for r1r2: given NFA®s M; and M, construct an
NFA% Concat(My, M>) satisfying
L(COi’lCtlt(Ml,Mz)) = {ulug | uy € L(Ml) &
uz € L(Mz2)}
Thus L(r1r2) = L(Concat(My, M3)) when L(r1) = L(My) and L(r2) = L(M_).

(iv) Induction step for r*: given NFA? M, construct an NFA®
Star(M) satisfying
‘L(Star(M)) = {wmuy...u, | n > 0 and each u; € L(M)}‘
Thus L(#*) = L(Star(M)) when L(r) = L(M).




NFAs for regular expressions a, €, @

@ = just accepts the one-symbol string a

just accepts the null string, ¢

accepts no strings




Union(My, M)

L
s@ M,

accepting states = union of accepting states of My and M;



For example,

M= O
and Mb: M

then Union(M,, M) =




N what follows, whenever we have to deal with
two machines, say M; and M, together, we
assume that their states are disjoint.

[£ they were Not, we could just rename the
states Of one machine tO make this so.

Also assume that for r; and r, there are
machines M; and M, such that L(r;) = L(My)
and L(1’2) = L(Mz)



Construction for Union(ry,12)

Assume there are two machines M; and M,
with L(r) = L(M;) and L(r,) = L(M>)
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Construction for Union(ry,12)

Assume there are two machines M; and M,
with L(r) = L(M;) and L(r,) = L(M>)

States of new machine M = Union(M;, M,) are
all the states in M; and all the states in M,
together with a8 new start state with
e—transitions to each of the (0ld) start states
of M; and M,.

Accept states of M are the all accept states in
M; and all accept states in M,.

The transitions of M are all transitions in M;
and M, along with the two e—transitions £rom
the Nnew start state



M accepts any strinas that M; accepts:

i$ u € L(M) then s = g1 Where s is start
state and g1 an accept state of M; respectively.
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M accepts any strinas that M; accepts:

i$ u € L(M) then s = g1 Where s is start
state and g1 an accept state of M; respectively.

But then in M, s = 71, Where s Is our new
start state since s — s;.

sO u € L(M). Siwilar araument for M
accepting any string that M, accepts

sO (L(M]) U L(Mz)) Q L(Ui’liOi’l(Ml,Mz))



Can M accept anythinag more?



Can M accept anythinag more?

The only way "out of" s, the start state of M,
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Can M accept anythinag more?

The only way "out of" s, the start state of M,
Is either to the start state of M; or the start
state of M,

So no, L(M) = (L(M;) U L(M,))



Concat(M;, M)

(0 M O M

accepting states are those of M




For example,

if M1 —

then Concat(My, M) =




Construction for M = Concat(My, M»)

Make an g—transition from every accept state
iIN M; to the start state of M,.

Start state of M is the start state of My,
accept states of M are the accept states of M,



Star(M)

@ m O

the only accepting state of Star(M) is qo

(N.B. doing without go by just looping back to s
and making that accepting won't work — see exercises)




For example,

if M =

then Star(M) =




Construction for Star(r;), M = Star(M,)

Create a new state, say s which will Be the
start state, and the only accepting state of M.
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Construction for Star(r;), M = Star(M,)

Create a new state, say s which will Be the
start state, and the only accepting state of M.

The transitions of M are all the transitions of
M, together with an e—transition £rom s to
the (old) start state of M; and e—transitions
from every (old) accepting state of M; to s.

Clearly, M accepts ¢ since s, the start state, is
alsO an accepting state

Nnonempty strinas accepted By M have tO re
formed of componentts, each of which is
accepted ry M,

so L(M) = L(ry)



(i) Base cases: show that {a}, {e} and @ are regular languages.

(ii) Induction step for r1|r2: given NFA®s My and M, construct
an NFA? Union(Mj, M) satisfying

L(Union(My1,M;)) = {u|u € L(M1) Vu € L(M,)}
Thus if L(r1) = L(My) and L(r2) = L(Ma), then L(r1|r2) = L(Union(Mi, M)).

(iii) Induction step for r1r2: given NFA®s M; and M, construct an
NFA% Concat(My, M>) satisfying
L(COi’lCtlt(Ml,Mz)) = {ulug | uy € L(Ml) &
uz € L(Mz2)}
Thus L(r1r2) = L(Concat(My, M3)) when L(r1) = L(My) and L(r2) = L(M_).

(iv) Induction step for r*: given NFA? M, construct an NFA®
Star(M) satisfying
‘L(Star(M)) = {wmuy...u, | n > 0 and each u; € L(M)}‘
Thus L(#*) = L(Star(M)) when L(r) = L(M).




Example

Regular expression (a|b)*a Conc<t
Stlar ym,
whose abstract syntax tree is Union
Sym,  Sym,

is mapped to the NFA? Concat(Star(Union(M,, My)), M,) =




Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of £*) of the form L(r) for
some 17



Decidability of matching

We now have a positive answer to question (a). Given
string u and regular expression r:

» construct an NFA® M satisfying L(M) = L(r);

» in PM (the DFA obtained by the subset construction ) carry out
the sequence of transitions corresponding to u from the start
state to some state g (because PM is deterministic, there is a
unique such transition sequence);

» check whether g is accepting or not: if it is, then
u € L(PM) = L(M) = L(r), so u matches r; otherwise
u ¢ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2"
states if M has n. This makes the method described above potentially inefficient — more efficient
algorithms exist that don’t construct the whole of PM.)



Exponenttial Blow-up

i£ NFA? M has n states then the DFA made By
supset construction, PM has 2" states, since Its
states are the memerers of the powerset of M.

Minimisation of states in PM By:
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functions are the same.



Exponenttial Blow-up

i£ NFA? M has n states then the DFA made By
supset construction, PM has 2" states, since Its
states are the memrers of the powerset of M.

Minimisation of states in PM By:

» removing all states which are not reacharle
(By 8Ny string) from the start state.

» merae all compatirle states. Two states are
compatiele i£ (i) they are Both accepting or
BOth NnoN-accepting; and (ii) their transition
functions are the same.

» Update transition functions to take
account of meraed states. Repeat.



Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.
(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

v




Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.
(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

v

The Not sO fun side of Kleene’'s Theorem



Example of a regular language

Recall the example DFA we used earlier:

M2 (a0 ) (4a) " (a)

In this case it's not hard to see that L(M) = L(r) for

r = (a|b)*aaa(a|b)*



Example

L(M) = L(r) for which regular expression #?
Guess: ¥ = a*|a*b(ab)*aaa*

since  baabaa € L(M)
but  baabaa ¢ L(a*|a*b(ab)*aaa™)

We need an algorithm for constructing a suitable  for each M
(plus a proof that it is correct).

WRONG!



Lemma. Given an NFA M = (Q, X, A, s, F), for each
subset S C Q and each pair of states q,4" € Q, there is a

regular expression rs g satisfying

S . u . . .
L(r, ) ={u€X"| q — g’ in M with all inter-
mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
qg1,...,qx say, then L(M) = L(r) with ¥ = r1| - - - |r where

ri:rsQ,qi (i=1,...,k)

(in case k = 0, we take 7 to be the regular expression @).



Prove this Lemma By induction on =& of
elementts in S

Also take care to examine case where g =g’ |

Base case S =0
Given states q,94' € M, i$
q—q
holds for just a = ay, a,,...,ax then can define

o o | a=a|ay|...|lax $qF#4q
r-o = i /
9.9 a=a|a...larle #g=9q



Induction Step:

» S has n+ 1 elementts.



Induction Step:

» S has n+ 1 elementts.
» Pick sOme gp € S



Induction Step:

» S has n+ 1 elementts.

» Pick sOme gp € S
» consider ST = S\ {g0} (S without the state

q0)



Induction Step:

S has n + 1 elementts.

Pick some gy € S

consider S~ = S\ {g0} (S without the state
q0)

can apply induction hypoth to S~ since S~ has
n elements

v

v

v

v



Induction Step:

» S has n+ 1 elementts.

» Pick sOme gp € S
» consider ST = S\ {g0} (S without the state

q0)
» can apply induction hypoth to S~ since S~ has
n elements

Can we express r . IN terms of things only
depending on S~ 7
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throuch S avoiding g, and
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7
What’s in rqq ¢

» we might Be aBle 1O get from g to g’
throuch S avoiding g, and

> we might Be aBle to cet from g to gy, then
from gy Back to itself an areitrary numeer
of times, then to 4’

For the first of these we have 5 o BY
hypothesis. (I# there is No path, this will Be @)

For the second we have > [r

q.90 qo, ‘10] rl]()q



S __

S_
Tq,q rqq | ( q,qo [rqOIqO]* qoq)

Ts_
a9

all transitions in S— qo excluded from S~

g and g’ can Be in or out of S~



An Example

Demonstrates dont always have to follow
induction to Bitter end (Rut when in dougt..)

Construction works rackwards to the
iInduction; we start with all the states and
remove one at a time.

We get to choose the state to remove in
each step.

Strateay: choose a state that disconnects the
automaton as much as possisle



I

Looking for rél(())’l’z}




Looking for rél?)’l’z}

By direct inspection we have:

Ao 1 2 e 1 2
0 0 a* a*b
1 @ e a 1

2 |aa* a*b e 2

(we don’t need the unfilled entries in the tables)
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0,1,2
We want rg,o }

Remove | from O, |, 25

01,2 0,2 0,2 02}« {02
”é,o ba ré,o ' | (”g,l ' [”1{1 }] ”1{0 })

ES k 0,2 * 0,2
= a | (a*b [”1,1 }] ”1{,0, })



We want r{o 1.2}

Remove 2 from O, 25

0,1,2 0,2 0,2 0,2} 0,2
”é,o ba ré,o ' | (”{ } [”1{ 1 ] ”1;0 })
= a | (a*b [”112}] ”1(())2 )

o B S R O 5o ROy



We want r{o 1.2}

Remove 2 from O, 25

A B o e [rlj‘izl 22)
a* | (“*b [”11 ] )
EF I U NG 1 A )

e | (a [g° a'b)



We want r{012}

Remove L from O, 25

1, , ,2 02 0,2
A B o e [j ]* ;p
a* | (“*b [”11 ] )

o B S R O 5o ROy
e | (a [¢&F  a'b)

e | (aa*b)



We want r{012}

Remove L from O, 25

O B GG U 6 L)
a* | (a%b [e](aa"b)]* rf?f)

0,2 0 0 0

o B 2L (.o LA o1

e | (u [8] a*b)
e| (aa*b)



We wantt r{o 1,2}

012} A {02}

0,0 = oo

| (1,{02} [”1{02}] {02})
a* | (a*b [e|(aa*b)]* (02)

10



We want r{o 1.2}

Remove 2 from O, 25

e S I e
= @ | (@b [e|(aa"b)]" rig”)

o B A I €2 L oo

Ty, o})



We want r{o 1.2}

Remove 2 from O, 25

A A G e ?’2})
* * * 0,2
a | (a*b [e](aa*D)]* rig?)

0,2 0 *

YR U N VN S A )

@ | a* (e)* aa*



‘Vve\uard:r

{012}

FLennove.2.ﬁr0Ww£C),23

{0,1,2}
o0

0,2
rfo}

L

|I>

{02}
0,0

a*

{0}

10

@
aaa

*

(1,{0 2}
(a*b
(T{O}

a*

(P19
] (aa*b)]*

[r32]"
(€)*

o))
{bz)

T10

720})
aa*



‘Vve\uard:r

{012}

FLennove.2.£r0Ww£C),23
A

{0,1,2}
o0

0,2
rio}

A

|I>

a*

{0}

10

@
aaa

ES

(a*b

(T{O}

a

%

P9
(] (aa*b)]*

(19

(e)

{02})

aaa*)

rzo})
aa*



We want r{012}

{012} N {qz}
0,0 = Ty

4102}
o1

(a*b

{02}]*

e[ (aa™D)]"

{02})

aaa*)



We want r{o 1.2}

0,1,2 0,2 0,2 0,247 % 0,2
B BN €0 -G B (2 s RS

= a* |  (a*b [e|(aa*b)]* aaa™)

Which might have a simpler form..



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression 7, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of £*) of the form L(r) for
some 17



Not(M)

Given DFAM = (Q, %, 4,s, F),
then Not(M) is the DFA with

»

>

>

>

>

set of states = Q

input alphabet = X
next-state function = ¢
start state = s

accepting states = {qg € Q | q € F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) ={ucXZ* |u g L(M)}



So reaular languaces are closed under
complementation:

» Given a recular expression r

L(~r)={ueXudL(r)}
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» Build DFA M such that L(M) = L(r) (Kleene
(8

» Build Not(M) $rom M (just defined)

L(~r)={ueXudL(r)}




So reaular languaces are closed under
complementation:

» Given a recular expression r

» Build DFA M such that L(M) = L(r) (Kleene
(8

» Build Not(M) $rom M (just defined)

» £ind ~ r such that L(~ r) = L(Not(M))
(Kleene ()

L(~r)={ueXudL(r)}
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Regular languages are
closed under intersection

Theorem. If L; and L, are a regular languages over an
alphabet X, then their intersection
LinLy,={u€eX*|u€ L &u € Ly} is also regular.

Proof. Note that Ly N L, = X* \ ((Z* \ L1) U (Z* \ Lz))
(cf. de Morgan's Law: p& g = = (—p V 7q)).

Soif Ly = L(Mj) and L, = L(M,) for DFAs My and Mp,
then Ly N L, = L(Not(PM)), PM subset-constructed from M,
where M is the NFA Union(Not(M;), Not(M,)). O

[It is not hard to directly construct a DFA And(Mi, M) from My and M, such that
L(And(My, M>)) = L(M;y) N L(M;) — see Exercise 4.7.]



Regular languages are
closed under intersection

Corollary: given regular expressions r; and r;,there is a
regular expression, which we write as 77 & 75, such that

a string u matches r; & r, iff it matches both rq
and 7.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1) N L(r2). Then we can use
Kleene (b) to construct a regular expression 1 & r with

L(1’1 &:1‘2) = L(I’l) N L(Tz).



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression 7, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions 7 and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of £*) of the form L(r) for
some 17



Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b*a(b*a)* and (a|b)*a equivalent?



Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b*a(b*a)* and (a|b)*a equivalent?
Answer: yes (Exercise 2.3)

How can we decide all such questions?
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Note that L(r) = L(s)

iff L(r) C L(s) and L(s) C L(r)

iff (Z*\L(r))NL(s) =@ = (X*\L(s)) NL(r)
iff L((~r) &s) =@ = L((~s) &)

iff L(M) = @ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (~7) & s and (~s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any DFA M, whether or not it accepts any string at all.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.



That aives us our answer to Question (o)
(which is yes).

Now onto the last of our Questions..



The Pumping Lemma



(a)

(b)

Some questions

Is there an algorithm which, given a string u and a
regular expression 7, computes whether or not u
matches r?

In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

s every language (subset of X*) of the form L(r) for
some r?



Examples of languages that are
not regular

» The set of strings over {(,), a,b,...,z} in which the
parentheses ‘(" and ‘)’ occur well-nested.

» The set of strings over {a,b,...,z} which are
palindromes, i.e. which read the same backwards as
forwards.

» {a"b" | n >0}



The Pumping Lemma

For every regular language L, there is a number £ > 1
satisfying the pumping lemma property:
All w € L with |w| > £ can be expressed as a
concatenation of three strings, w = uyvu,, where uq, v
and u, satisfy:

> ol > 1 (e v#e)
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The Pumping Lemma

For every regular language L, there is a number £ > 1
satisfying the pumping lemma property:
All w € L with |w| > £ can be expressed as a
concatenation of three strings, w = uyvu,, where uq, v
and u, satisfy:
> ol > 1 (e v#e)
> |uo| < £
» forallm > 0, uy0"u, € L
(i.e. uquy € L, ugouy € L [but we knew that anyway],
ujoovuy € L, ugvovouy € L, etc.)

Note similarity to construction in Kleene ()



Suppose L = L(M) for a DFA M = (Q, L, ¥,s, F).
Taking £ to be the number of elements in Q, if n > £,
then in

5:g0£>412>42"'ﬂ>4£"'ﬂ>qn€1:

NV
£+1 states

qo,---,qe¢ can't all be distinct states. So g; = g;j for some
0 <i < j< £ Sothe above transition sequence looks like

where



How to use the Pumping Lemma
to prove that a language L
is not regular

For each £ > 1, find some w € L of length > £ so that

no matter how w is split into three, w = uyou,,
with |uyo| < £ and |v| > 1, there is some n > 0 3 (1)
for which uq9™u, is not in L



Examples

None of the following three languages are regular:

(i) L2 {a"b" | n > 0}
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Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € L,
I w = wou, with |uo| < €< |v| > 1, then for
some r and s:
»ugp=a’
»v=a°, withr+s<~fands>1
T al—r—sbﬂ
sO u1?'u, = a’'e at7"sbt = at—spt

But af—bf¢ L, , sO, By the Pumpina Lemma, L, is
NOt a8 regular lanGguace
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Examples

None of the following three languages are regular:

(i) Ly = {a"b" | n > 0}

[For each £ > 1, a’b® € Ly is of length > £ and has property (}).]

(i) L, = {w € {a,b}* | w a palindrome}

[For each £ > 1, atba® € Ly is of length > £ and has property (1).]

(i) Lz = {a? | p prime}
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L; = {a’ | p prime}

Foreach £ >1let w=a” € L3, p Prime = p > 24
I# w = wou, with |uo| < €< v >1...

thenuy =a" v=a° u, =af"°%
Withs>1sr+s</¥

SO o’ *uy = a’ as(P=s) gr—r—s —  4(p—s)(s+1)

BUt s >1=s+12>2
and (p—s)>(2—0)2>1=(p—s) >2

<o g(P—s)(s+1) Z Lj



Examples

None of the following three languages are regular:

(i) Ly = {a"b" | n > 0}

[For each £ > 1, a’b® € Ly is of length > £ and has property (}).]

(i) L, = {w € {a,b}* | w a palindrome}

[For each £ > 1, atba® € Ly is of length > £ and has property (1).]

(iii) Ly = {a” | p prime}
[For each £ > 1, we can find a prime p with p > 2£ and then a?” € L3 has length > € and
has property (7).]



Pumping Lemma property is necessary
£Or a languace to re regular

H is not sufficient



Example of a non-regular language
with the pumping lemma property

L= {c"a"b" |m>1&n>0}U{a™b" | m,n> 0}

satisfies the pumping lemma property with £ = 1.

[For any w € L of length > 1, can take uy = ¢, v = first letter of w,
up = rest of w.]

But L is not regular — see Exercise 5.1.
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L is nOt regular: (sketch)

I# L is reaular there is a DFA M with L = L(M).
Let’s Build 8 new machine, M’ from it.

Take a ¢ transition from the start state of M.
Make the state you reach the start state of
M’

Delete all transitions involving ¢ (and remove ¢
from the alpharet). But dont remove any
states and keep the same accept states.

What lanauaae does M’ recoanise?
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The way ahead, in THEOR. Y

» What does I1s mean £or a function
t0 Re computarle?
[ Iz Computation Theory ]

» Are some computational tasks
intrinsiclaly unfeasirle?
[ Iz ComplexityTheory 1

» How do we specify and reason
aBout proaram rehaviour?
[ I Loaic and Proo#,
B Semanttics of Pls ]
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The way ahead, iIn FORMAL LANGUAGE.

» Are there other useful languace
classes?

» Are there other useful automata
classes that have a correspondence
to them?

» What 1£ we ask the same Questions
arout them that we asked arout
reqular languages?
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