Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there exists a number y such that x + y = 0.

Definition 42

- 1. A number x is said to admit an additive inverse whenever there exists a number y such that x + y = 0.
- 2. A number x is said to admit a multiplicative inverse whenever there exists a number y such that $x \cdot y = 1$.

Inversez, mher they east, are unique. Suppose y and 2 are inverses of a $\frac{R7D}{2} = \frac{1}{2}$ y=yxe = y # (2C # 2)= (y * z) * ? = e*2 = 2.

-- Proposition Uniqueness : -- Consider $(M: Set)(e:M)(*:M \rightarrow M \rightarrow M)$ -- a set M with an element e and a binary operation * such that (y*[x*z]=[y*x]*z : -- * is associative $\forall \{ y \times z : M \} \rightarrow (y \ast (x \ast z)) == ((y \ast x) \ast z)$ ([y*e]=y : -- e is right neutral $\forall \{ y : M \} \rightarrow y == (y * e))$ ([e*z]=z : -- e is left neutral $\forall \{ z : M \} \rightarrow (e^* z) == z \}$ (xyz:M) \rightarrow ((y * x) == e) -- y is a left inverse of x -- and \rightarrow (e == (x * z)) -- z is a right inverse of x \rightarrow (y == z) -- they are equal

```
Uniqueness M e _*_ y*[x*z]=[y*x]*z y=[y*e] [e*z]=z x y z [y*x]=e e=[x*z]
  = y
     =\langle y=[y*e] \rangle
   (y * e )
     =< e=[x*z] |in-ctx y*- >
   (y*(x*z))
 = ( y*[x*z]=[y*x]*z )
   ((y*x)*z)
     =< [y*x]=e |in-ctx -*z >
   (e*z)
     ={ [e*z]=z }
   z
     =
 where
 y*- : M → M
y*-a=y * a
 -*z : M → M
  -*z a = a * z
```

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for non-zero numbers yields two very interesting results:

(i) the *integers*

 \mathbb{Z} : ... - n, ..., -1, 0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to as a *commutative ring*, and

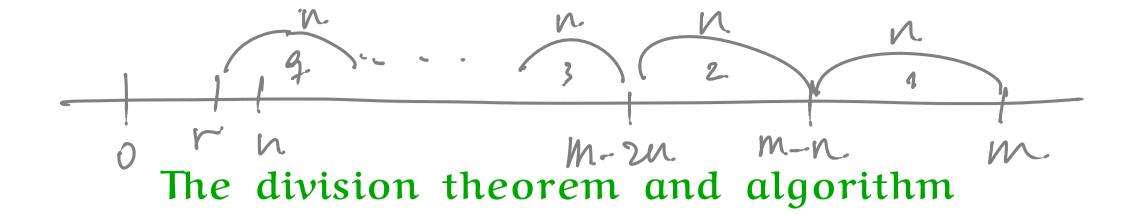
(ii) the <u>rationals</u> \mathbb{Q} which then form what in the mathematical jargon is referred to as a <u>field</u>.

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0, 0 \le r < n$, and m = q - n + r.

()
$$q_{20}, 0 \le r \le n$$

 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n$
 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n$
 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n$
 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n$
 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n$
 $q_{20}, 0 \le r \le n$
 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n$
 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n$
 $m = q \cdot n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le r \le n + r$
() $q_{20}, 0 \le$



Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

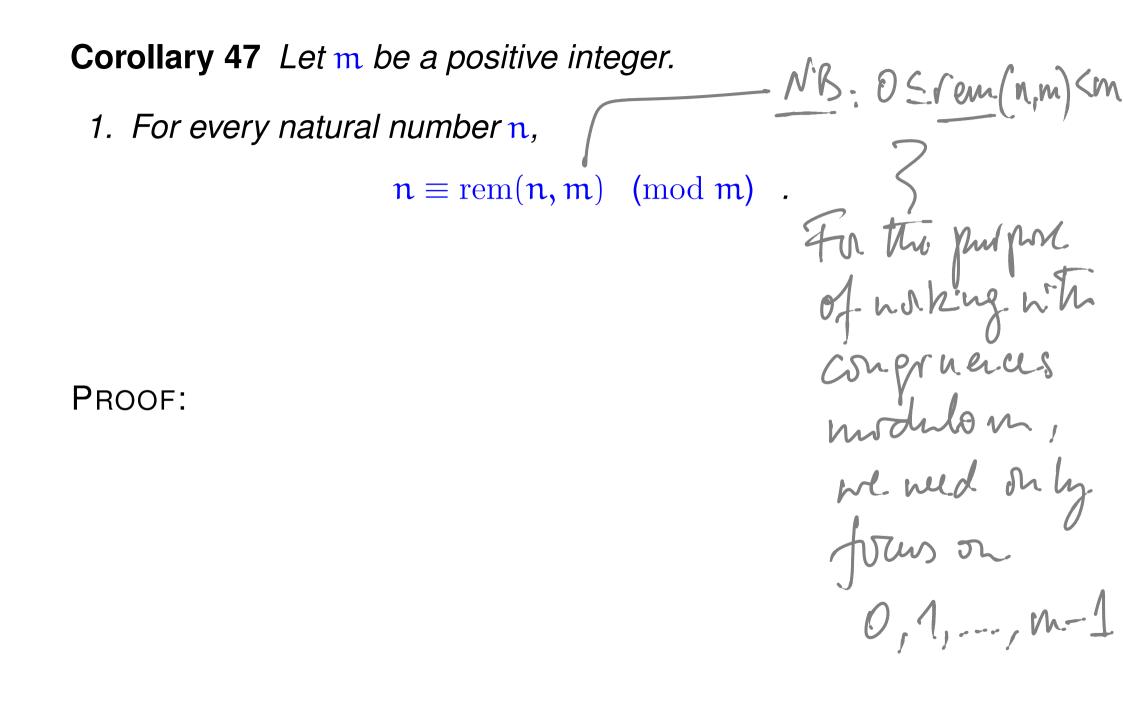
Definition 44 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

Theorem 45 For every natural number m and positive natural number n, the evaluation of divalg(m, n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

PROOF:

Proposition 46 Let m be a positive integer. For all natural numbers k and l,

$$k \equiv l \pmod{m} \iff \operatorname{rem}(k, m) = \operatorname{rem}(l, m)$$
PROOF: Let m be a positive integer.
Let k and d be not and mbers.
(=) Asseme rem(k,m) = rem(l,m).
Know $k = q \cdot m + rem(k,m)$ $l = q! \cdot m + rem(l,m)$
Consider $k - l = (q - q!) \cdot m$ hence $k \equiv l \pmod{m}$
(=) Exercise.



-162 ----

72m={0,1,---,m-13.

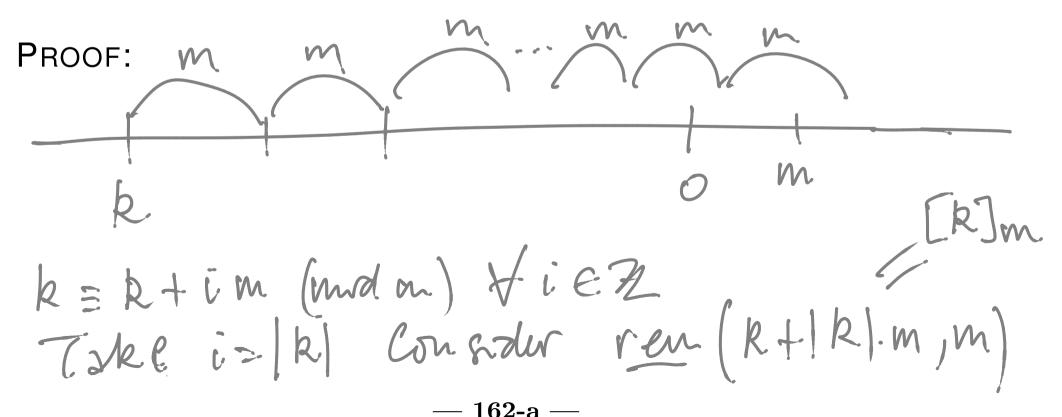
Corollary 47 Let m be a positive integer.

1. For every natural number n,

```
n \equiv \operatorname{rem}(n, m) \pmod{m} .
```

2. For every integer k there exists a unique integer $[k]_m$ such that

 $0 \leq [k]_{\mathfrak{m}} < \mathfrak{m}$ and $k \equiv [k]_{\mathfrak{m}} \pmod{\mathfrak{m}}$.



Modular arithmetic

For every positive integer m, the *integers modulo* m are:

\mathbb{Z}_m : 0, 1, ..., m-1.

with arithmetic operations of addition $+_{\mathfrak{m}}$ and multiplication $\cdot_{\mathfrak{m}}$ defined as follows

$$k +_{m} l = [k + l]_{m} = \operatorname{rem}(k + l, m) ,$$

$$k \cdot_{m} l = [k \cdot l]_{m} = \operatorname{rem}(k \cdot l, m)$$

for all $0 \leq k, l < m$.