Existential quantification

Existential statements are of the form

there exists an individual x in the universe of discourse for which the property $P(x)$ holds

or, in other words,

for some individual x in the universe of discourse, the property $P(x)$ holds

or, in symbols,

$$\exists x. P(x)$$
Example: The Pigeonhole Principle.

Let n be a positive integer. If $n + 1$ letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.
Theorem 21 (Intermediate value theorem) Let \(f \) be a real-valued continuous function on an interval \([a, b]\). For every \(y \) in between \(f(a) \) and \(f(b) \), there exists \(v \) in between \(a \) and \(b \) such that \(f(v) = y \).

Intuition:
The main proof strategy for existential statements:

To prove a goal of the form

$$\exists x. \ P(x)$$

find a \textit{witness} for the existential statement; that is, a value of \(x\), say \(w\), for which you think \(P(x)\) will be true, and show that indeed \(P(w)\), i.e. the predicate \(P(x)\) instantiated with the value \(w\), holds.
Proof pattern:
In order to prove

$$\exists x. P(x)$$

1. Write: Let $w = \ldots$ (the witness you decided on).
2. Provide a proof of $P(w)$.
Scratch work:

Before using the strategy

Assumptions

\[\exists x. P(x) \]

:**Goal**

After using the strategy

Assumptions

\[\vdots \]

Goals

\[P(w) \]

\[\vdots \]

\[w = \ldots \text{(the witness you decided on)} \]
Proposition 22 For every positive integer \(k \), there exist natural numbers \(i \) and \(j \) such that \(4 \cdot k = i^2 - j^2 \).

Proof:

WPD: For every positive integer \(k \).
\[4k = i^2 - j^2. \]

Assume \(k \) is an arbitrary positive integer.

RTD: Find \(w \) a nat, find \(v \) a nat.

RTD: \(4k = w^2 - v^2 \).
The use of existential statements:

To use an assumption of the form $\exists x. P(x)$, introduce a new variable x_0 into the proof to stand for some individual for which the property $P(x)$ holds. This means that you can now assume $P(x_0)$ true.
Theorem 24 For all integers \(l, m, n \), if \(l \mid m \) and \(m \mid n \) then \(l \mid n \).

Proof:

\[\forall \text{int. } l, m, n. \\
(l \mid m \land m \mid n) \Rightarrow l \mid n \]

Equivalent:

\[\forall \text{int. } l, m, n. \\
\left[(\exists i. \ i l = m) \land (\exists j. \ j m = n) \right] \Rightarrow (\exists k. \ kl = n) \]

Let \(l, m, n \) be int.

Assume \((\exists i. \ i l = m) \) and \((\exists j. \ j m = n) \)

\[\Rightarrow \exists k. \ kl = n \]

\[\Rightarrow \exists w. \ w \cdot l = n \]

By \(\circ \) consider \(u \) s.t. \(u \cdot l = m \)
By (2) consider \(v \) s.t. \(v : m = n \)

Note that \(u : l = m \) so \(u : l : v = v : m = n \)

Hence \(w = u : l \) satisfies \(w : l = n \). \(\square \)
Unique existence

The notation

\[\exists! \, x. \, P(x) \]

stands for

the *unique existence* of an \(x \) for which the property \(P(x) \) holds.

That is,

\[\exists x. \, P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Rightarrow y = z) \]
Disjunction

Disjunctive statements are of the form

\[P \lor Q \]

or, in other words,

either \(P \), \(Q \), or both hold

or, in symbols,

\[P \lor Q \]
The main proof strategy for disjunction:

To prove a goal of the form
\[P \lor Q \]
you may

1. try to prove \(P \) (if you succeed, then you are done); or
2. try to prove \(Q \) (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either \(P \) or \(Q \).
Proposition 25 For all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

Proof: \(\forall \text{int } n. \ (n^2 \equiv 0 \pmod{4}) \lor (n^2 \equiv 1 \pmod{4}) \)

Consider arbitrary n an integer.

1. We try to show $n^2 \equiv 0 \pmod{4}$ — we cannot!
2. We try to show $n^2 \equiv 1 \pmod{4}$ — we cannot!
3. We break the proof in cases, simply to establish either disjunct.

We look at two cases:

(i) n is even, that is of the form $2i$ for an int i.

So $n^2 = (2i)^2 = 4i^2$ and we are done.
\(n^2 \equiv 0 \pmod{4} \)

(ii) \(n \) is odd; That is, \(n = 2j + 1 \) for some \(j \).

So, \[n^2 = (2j + 1)^2 = 4j^2 + 4j + 1 \]

\[= 4(j^2 + j) + 1 \]

Hence, \(n^2 - 1 = 4(j^2 + j) \) and \(n^2 \equiv 1 \pmod{4} \).

That is, \(n^2 \equiv 1 \pmod{4} \). \(\Box \)
The use of disjunction:

To use a disjunctive assumption

\[P_1 \lor P_2 \]

to establish a goal \(Q \), consider the following two cases in turn: (i) assume \(P_1 \) to establish \(Q \), and (ii) assume \(P_2 \) to establish \(Q \).
Scratch work:

Before using the strategy

\[
\begin{align*}
\text{Assumptions} & \quad \text{Goal} \\
& \quad Q \\
& \quad \vdots \\
& \quad P_1 \lor P_2
\end{align*}
\]

After using the strategy

\[
\begin{align*}
\text{Assumptions} & \quad \text{Goal} & \quad \text{Assumptions} & \quad \text{Goal} \\
& \quad Q & \quad & \quad Q \\
& \quad \vdots & \quad & \quad \vdots \\
& \quad P_1 & \quad & \quad P_2
\end{align*}
\]
Proof pattern:
In order to prove Q from some assumptions amongst which there is

$$P_1 \lor P_2$$

write: We prove the following two cases in turn: (i) that assuming P_1, we have Q; and (ii) that assuming P_2, we have Q. Case (i): Assume P_1. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_2. and provide a proof of Q from it and the other assumptions.