Implication

Theorems can usually be written in the form

\[
\text{if a collection of assumptions holds, then so does some conclusion}
\]

or, in other words,

\[
\text{a collection of assumptions implies some conclusion}
\]

or, in symbols,

\[
\text{a collection of hypotheses } \implies \text{ some conclusion}
\]

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.
Scratch work:

Before using the strategy

Assumptions Goal

\[P \implies Q \]

After using the strategy

Assumptions Goal

\[Q \]

\[P \]

\[\vdots \]
An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

Definition:

the *contrapositive* of ‘P implies Q’ is ‘not Q implies not P’
Proof pattern:

In order to prove that

\[P \implies Q \]

1. Write: *We prove the contrapositive; that is, ... and state the contrapositive.*

2. Write: *Assume ‘the negation of Q’.*

3. Show that ‘the negation of \(P \)’ logically follows.
Scratch work:

Before using the strategy

Assumptions Goal

\[P \implies Q \]

\[\vdots \]

After using the strategy

Assumptions Goal

not \(P \)

\[\vdots \]

not \(Q \)
Definition 9 A real number is:

- **rational** if it is of the form $\frac{m}{n}$ for a pair of integers m and n; otherwise it is **irrational**.

- **positive** if it is greater than 0, and **negative** if it is smaller than 0.

- **nonnegative** if it is greater than or equal 0, and **nonpositive** if it is smaller than or equal 0.

- **natural** if it is a nonnegative integer.

| $\{0, 1, 2, \ldots, n, \ldots\}$ | \mathbb{N} |
Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x}.

PROOF: Assume x is a positive real number.

x irrational $\Rightarrow \sqrt{x}$ irrational

Assume x is irrational. That is, x is not of the form m/n for m and n integers.

RTP: \sqrt{x} is irrational.

That is, \sqrt{x} is not of the form m/n for m and n integers.

We are stuck and need to restart.
Proof: We prove the statement by contrapositive.

That is, \(\sqrt{x} \) not rational \(\Rightarrow \) \(x \) not irrational

Equivalently, \(\sqrt{x} \) is rational \(\Rightarrow \) \(x \) rational.

Assume \(\sqrt{x} \) is rational, that is, of the form \(\frac{p}{q} \), for

\(p \) and \(q \) integers.

R2Q: \(x \) is of the form \(\frac{m}{n} \) for some integers \(m \) and \(n \)

\[\sqrt{x} = \frac{p}{q} \]

So \((\sqrt{x})^2 = \frac{p^2}{q^2} \)

Hence \(x = \frac{p^2}{q^2} \)

And we are done.
Logical Deduction
— Modus Ponens —

A main rule of logical deduction is that of Modus Ponens:

From the statements P and $P \implies Q$, the statement Q follows.

or, in other words,

If P and $P \implies Q$ hold then so does Q.

or, in symbols,

$$
\begin{array}{c}
P \\
P \implies Q
\end{array} \\
\hline
Q
$$
The use of implications:

To use an assumption of the form $P \implies Q$, aim at establishing P. Once this is done, by Modus Ponens, one can conclude Q and so further assume it.
Theorem 11 Let P_1, P_2, and P_3 be statements. If $P_1 \implies P_2$ and $P_2 \implies P_3$ then $P_1 \implies P_3$.

Proof:
Assume P_1, P_2, and P_3 are statements.

\[(P_1 \implies P_2 \text{ and } P_2 \implies P_3) \implies (P_1 \implies P_3) \]

1. Assume $P_1 \implies P_2$ and $P_2 \implies P_3$.

2. By MP from (1) and (2), we have P_2.

3. $P_1 \implies P_3$.

4. By MP from (2) and (1), we have P_3.

So required.
Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

Q implies P, and vice versa

or

P if, and only if, Q

P iff Q

or, in symbols,

P ⇔ Q
Proof pattern:
In order to prove that

\[P \iff Q \]

1. Write: \((\implies)\) and give a proof of \(P \implies Q\).
2. Write: \((\iff)\) and give a proof of \(Q \implies P\).
Proposition 12 Suppose that \(n \) is an integer. Then, \(n \) is even iff \(n^2 \) is even.

Proof:

Let \(n \) is an integer.

\[
\begin{align*}
(n \text{ is of the form } 2k) & \iff (n^2 \text{ is of the form } 2l \text{ for some integer } l) \\
(\Rightarrow) & \text{ Assume } n=2k \text{ for } k \text{ an integer}
\end{align*}
\]

Show \(n^2 = 2l \) for \(l \) an integer.

Then \(n^2 = (2k)^2 = 2 \cdot (2k^2) \)

and so \(n^2 \) is of the form \(2 \cdot l \) (for \(l \) an integer \(2k^2 \))

and we are done.
\[(\Longleftrightarrow) \quad (n^2 = 2 \cdot l \text{ for } l \text{ integer}) \Rightarrow (n = 2 \cdot k \text{ for } k \text{ integer}) \]

Assume \(n^2 = 2 \cdot l \text{ for } l \text{ integer} \)

Show \(n = 2 \cdot k \text{ for } k \text{ integer} \)

We prove the contrapositive:

\[(n = 2 \cdot k + 1 \text{ for } k \text{ integer}) \Rightarrow (n^2 = 2 \cdot l + 1 \text{ for } l \text{ integer}) \]

Assume \(n = 2 \cdot k + 1 \text{ (integer)} \)

Then \(n^2 = (2 \cdot k + 1)^2 = 2(2k^2 + 2k) + 1 \)

and hence \(n^2 \text{ is } 2 \cdot l + 1 \) (for \(l = 2k^2 + 2k \)).
Divisibility and congruence

Definition 13 Let d and n be integers. We say that d divides n, and write $d \mid n$, whenever there is an integer k such that $n = k \cdot d$.

Example 14 The statement $2 \mid 4$ is true, while $4 \mid 2$ is not.

Definition 15 Fix a positive integer m. For integers a and b, we say that a is congruent to b modulo m, and write $a \equiv b \pmod{m}$, whenever $m \mid (a - b)$.

Example 16
1. $18 \equiv 2 \pmod{4}$
2. $2 \equiv -2 \pmod{4}$
3. $18 \equiv -2 \pmod{4}$
\((a \equiv b \pmod{m} \text{ and } b \equiv c \pmod{m})\) \\
\implies (a \equiv c \pmod{m}) \quad ?
Proposition 17 For every integer n,

1. n is even if, and only if, $n \equiv 0 \pmod{2}$, and

2. n is odd if, and only if, $n \equiv 1 \pmod{2}$.

Proof: