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Topic 1

Introduction
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What is this course about?

• General area.

Formal methods: Mathematical techniques for the

specification, development, and verification of software

and hardware systems.

• Specific area.

Formal semantics: Mathematical theories for ascribing

meanings to computer languages.
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Why do we care?
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Why do we care?

• Rigour.

. . . specification of programming languages

. . . justification of program transformations
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Why do we care?

• Rigour.

. . . specification of programming languages

. . . justification of program transformations

• Insight.

. . . generalisations of notions computability

. . . higher-order functions

. . . data structures

4



• Feedback into language design.

. . . continuations

. . . monads
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• Feedback into language design.

. . . continuations

. . . monads

• Reasoning principles.

. . . Scott induction

. . . Logical relations

. . . Co-induction
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Styles of formal semantics

Operational.

Axiomatic.

Denotational.
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Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps

of computation they can take during program execution.

Axiomatic.

Denotational.
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Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps

of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational.
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Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps

of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational.

Concerned with giving mathematical models of programming

languages. Meanings for program phrases defined abstractly

as elements of some suitable mathematical structure.
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Basic idea of denotational semantics

Syntax
[[−]]
−→ Semantics

P 7→ [[P ]]
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Basic idea of denotational semantics
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P 7→ [[P ]]

Concerns:

• Abstract models (i.e. implementation/machine independent).

 Lectures 2, 3 and 4.
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Basic idea of denotational semantics

Syntax
[[−]]
−→ Semantics

Recursive program 7→ Partial recursive function

Boolean circuit 7→ Boolean function

P 7→ [[P ]]

Concerns:

• Abstract models (i.e. implementation/machine independent).

 Lectures 2, 3 and 4.

• Compositionality.

 Lectures 5 and 6.

• Relationship to computation (e.g. operational semantics).

 Lectures 7 and 8.
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Characteristic features of a

denotational semantics

• Each phrase (= part of a program), P , is given a denotation,

[[P ]] — a mathematical object representing the contribution of

P to the meaning of any complete program in which it occurs.

• The denotation of a phrase is determined just by the

denotations of its subphrases (one says that the semantics is

compositional).
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Basic example of denotational semantics (I)

IMP− syntax

Arithmetic expressions

A ∈ Aexp ::= n | L | A+A | . . .
where n ranges over integers and

L over a specified set of locations L

Boolean expressions

B ∈ Bexp ::= true | false | A = A | . . .

| ¬B | . . .

Commands

C ∈ Comm ::= skip | L := A | C;C

| if B then C else C
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Basic example of denotational semantics (II)

Semantic functions

A : Aexp → (State → Z)

where

Z = { . . . ,−1, 0, 1, . . . }

State = (L → Z)
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Basic example of denotational semantics (II)

Semantic functions

A : Aexp → (State → Z)

B : Bexp → (State → B)

where

Z = { . . . ,−1, 0, 1, . . . }

B = { true, false }

State = (L → Z)
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Basic example of denotational semantics (II)

Semantic functions

A : Aexp → (State → Z)

B : Bexp → (State → B)

C : Comm → (State ⇀ State)

where

Z = { . . . ,−1, 0, 1, . . . }

B = { true, false }

State = (L → Z)
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Basic example of denotational semantics (III)

Semantic function A

A[[n]] = λs ∈ State. n

A[[L]] = λs ∈ State. s(L)

A[[A1 +A2]] = λs ∈ State.A[[A1]](s) +A[[A2]](s)
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Basic example of denotational semantics (IV)

Semantic function B

B[[true]] = λs ∈ State. true

B[[false]] = λs ∈ State. false

B[[A1 = A2]] = λs ∈ State. eq
(
A[[A1]](s),A[[A2]](s)

)

where eq(a, a′) =

{

true if a = a′

false if a 6= a′

12



Basic example of denotational semantics (V)

Semantic function C

[[skip]] = λs ∈ State. s

NB: From now on the names of semantic functions are omitted!
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A simple example of compositionality

Given partial functions [[C]], [[C ′]] : State ⇀ State and a

function [[B]] : State →{true, false}, we can define

[[if B then C else C ′]] =

λs ∈ State. if
(
[[B]](s), [[C]](s), [[C ′]](s)

)

where

if (b, x, x′) =

{

x if b = true

x′ if b = false
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Basic example of denotational semantics (VI)

Semantic function C

[[L := A]] = λs ∈ State. λℓ ∈ L. if
(
ℓ = L, [[A]](s), s(ℓ)

)
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Denotational semantics of sequential composition

Denotation of sequential composition C;C ′ of two commands

[[C;C ′]] = [[C ′]] ◦ [[C]] = λs ∈ State. [[C ′]]
(
[[C]](s)

)

given by composition of the partial functions from states to states

[[C]], [[C ′]] : State ⇀ State which are the denotations of the

commands.
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Denotational semantics of sequential composition

Denotation of sequential composition C;C ′ of two commands

[[C;C ′]] = [[C ′]] ◦ [[C]] = λs ∈ State. [[C ′]]
(
[[C]](s)

)

given by composition of the partial functions from states to states

[[C]], [[C ′]] : State ⇀ State which are the denotations of the

commands.

Cf. operational semantics of sequential composition:

C, s ⇓ s′ C ′, s′ ⇓ s′′

C;C ′, s ⇓ s′′
.

16



[[while B do C]]
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Fixed point property of

[[while B do C]]

[[while B do C]] = f[[B]],[[C]]([[while B do C]])

where, for each b : State →{true, false} and

c : State ⇀ State , we define

fb,c : (State ⇀ State) → (State ⇀ State)
as

fb,c = λw ∈ (State⇀State). λs ∈ State. if
(
b(s), w(c(s)), s

)
.
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Fixed point property of

[[while B do C]]

[[while B do C]] = f[[B]],[[C]]([[while B do C]])

where, for each b : State →{true, false} and

c : State ⇀ State , we define

fb,c : (State ⇀ State) → (State ⇀ State)
as

fb,c = λw ∈ (State⇀State). λs ∈ State. if
(
b(s), w(c(s)), s

)
.

• Why does w = f[[B]],[[C]](w) have a solution?

• What if it has several solutions—which one do we take to be

[[while B do C]]?
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Approximating [[while B do C]]
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Approximating [[while B do C]]

f[[B]],[[C]]
n(⊥)

= λs ∈ State.






[[C]]k(s) if ∃ 0 ≤ k < n. [[B]]([[C]]k(s)) = false

and ∀ 0 ≤ i < k. [[B]]([[C]]i(s)) = true

↑ if ∀ 0 ≤ i < n. [[B]]([[C]]i(s)) = true
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D
def
= (State ⇀ State)

• Partial order ⊑ on D:

w ⊑ w′ iff for all s ∈ State , if w is defined at s then

so is w′ and moreover w(s) = w′(s).

iff the graph of w is included in the graph of w′.

• Least element ⊥ ∈ D w.r.t. ⊑:

⊥ = totally undefined partial function

= partial function with empty graph

(satisfies ⊥ ⊑ w, for all w ∈ D).
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Topic 2

Least Fixed Points

20



Thesis

All domains of computation are

partial orders with a least element.
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Thesis

All domains of computation are

partial orders with a least element.

All computable functions are

mononotic.
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Partially ordered sets

A binary relation ⊑ on a set D is a partial order iff it is

reflexive: ∀d ∈ D. d ⊑ d

transitive: ∀d, d′, d′′ ∈ D. d ⊑ d′ ⊑ d′′ ⇒ d ⊑ d′′

anti-symmetric: ∀d, d′ ∈ D. d ⊑ d′ ⊑ d ⇒ d = d′.

Such a pair (D,⊑) is called a partially ordered set, or poset.
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x ⊑ x

x ⊑ y y ⊑ z

x ⊑ z

x ⊑ y y ⊑ x

x = y
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Domain of partial functions, X ⇀Y
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Domain of partial functions, X ⇀Y

Underlying set: all partial functions, f , with domain of definition

dom(f) ⊆ X and taking values in Y .
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Domain of partial functions, X ⇀Y

Underlying set: all partial functions, f , with domain of definition

dom(f) ⊆ X and taking values in Y .

Partial order:

f ⊑ g iff dom(f) ⊆ dom(g) and

∀x ∈ dom(f). f(x) = g(x)

iff graph(f) ⊆ graph(g)

24



Monotonicity

• A function f : D →E between posets is monotone iff

∀d, d′ ∈ D. d ⊑ d′ ⇒ f(d) ⊑ f(d′).

x ⊑ y

f(x) ⊑ f(y)
(f monotone)
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Least Elements

Suppose that D is a poset and that S is a subset of D.

An element d ∈ S is the least element of S if it satisfies

∀x ∈ S. d ⊑ x .

• Note that because ⊑ is anti-symmetric, S has at most one

least element.

• Note also that a poset may not have least element.
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Pre-fixed points

Let D be a poset and f : D→D be a function.

An element d ∈ D is a pre-fixed point of f if it satisfies

f(d) ⊑ d.

The least pre-fixed point of f , if it exists, will be written

fix (f)

It is thus (uniquely) specified by the two properties:

f(fix (f)) ⊑ fix (f) (lfp1)

∀d ∈ D. f(d) ⊑ d ⇒ fix (f) ⊑ d. (lfp2)
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Proof principle

2. Let D be a poset and let f : D → D be a function with a

least pre-fixed point fix (f) ∈ D.

For all x ∈ D, to prove that fix (f) ⊑ x it is enough to

establish that f(x) ⊑ x.

28



Proof principle

2. Let D be a poset and let f : D → D be a function with a

least pre-fixed point fix (f) ∈ D.

For all x ∈ D, to prove that fix (f) ⊑ x it is enough to

establish that f(x) ⊑ x.

f(x) ⊑ x

fix (f) ⊑ x

28



Proof principle

1.

f(fix (f)) ⊑ fix (f)

2. Let D be a poset and let f : D → D be a function with a

least pre-fixed point fix (f) ∈ D.

For all x ∈ D, to prove that fix (f) ⊑ x it is enough to

establish that f(x) ⊑ x.

f(x) ⊑ x

fix (f) ⊑ x

28



Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a mononote function on a

partial order is necessarily a fixed point.
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Thesis⋆

All domains of computation are

complete partial orders with a least element.
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Thesis⋆

All domains of computation are

complete partial orders with a least element.

All computable functions are

continuous.

30



Cpo’s and domains

A chain complete poset, or cpo for short, is a poset (D,⊑) in

which all countable increasing chains d0 ⊑ d1 ⊑ d2 ⊑ . . . have

least upper bounds,
⊔

n≥0 dn:

∀m ≥ 0 . dm ⊑
⊔

n≥0

dn (lub1)

∀d ∈ D . (∀m ≥ 0 . dm ⊑ d) ⇒
⊔

n≥0

dn ⊑ d. (lub2)

A domain is a cpo that possesses a least element, ⊥:

∀d ∈ D .⊥ ⊑ d.
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⊥ ⊑ x

xi ⊑
⊔

n≥0 xn
(i ≥ 0 and 〈xn〉 a chain)

∀n ≥ 0 . xn ⊑ x
⊔

n≥0 xn ⊑ x
(〈xi〉 a chain)
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f ⊑ g iff dom(f) ⊆ dom(g) and

∀x ∈ dom(f). f(x) = g(x)

iff graph(f) ⊆ graph(g)

Lub of chain f0 ⊑ f1 ⊑ f2 ⊑ . . . is the partial function f with

dom(f) =
⋃

n≥0 dom(fn) and

f(x) =

{

fn(x) if x ∈ dom(fn), some n

undefined otherwise
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Domain of partial functions, X ⇀Y

Underlying set: all partial functions, f , with domain of definition

dom(f) ⊆ X and taking values in Y .

Partial order:

f ⊑ g iff dom(f) ⊆ dom(g) and

∀x ∈ dom(f). f(x) = g(x)

iff graph(f) ⊆ graph(g)

Lub of chain f0 ⊑ f1 ⊑ f2 ⊑ . . . is the partial function f with

dom(f) =
⋃

n≥0 dom(fn) and

f(x) =

{

fn(x) if x ∈ dom(fn), some n

undefined otherwise

Least element ⊥ is the totally undefined partial function.
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Some properties of lubs of chains

Let D be a cpo.

1. For d ∈ D,
⊔

n d = d.

2. For every chain d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ . . . in D,

⊔

n

dn =
⊔

n

dN+n

for all N ∈ N.
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3. For every pair of chains d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ . . . and

e0 ⊑ e1 ⊑ . . . ⊑ en ⊑ . . . in D,

if dn ⊑ en for all n ∈ N then
⊔

n dn ⊑
⊔

n en.
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3. For every pair of chains d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ . . . and

e0 ⊑ e1 ⊑ . . . ⊑ en ⊑ . . . in D,

if dn ⊑ en for all n ∈ N then
⊔

n dn ⊑
⊔

n en.

∀n ≥ 0 . xn ⊑ yn
⊔

n xn ⊑
⊔

n yn
(〈xn〉 and 〈yn〉 chains)
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Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family

of elements dm,n ∈ D (m,n ≥ 0) satisfies

m ≤ m′ & n ≤ n′ ⇒ dm,n ⊑ dm′,n′ . (†)

Then ⊔

n≥0

d0,n ⊑
⊔

n≥0

d1,n ⊑
⊔

n≥0

d2,n ⊑ . . .

and ⊔

m≥0

dm,0 ⊑
⊔

m≥0

dm,1 ⊑
⊔

m≥0

dm,3 ⊑ . . .
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Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family

of elements dm,n ∈ D (m,n ≥ 0) satisfies

m ≤ m′ & n ≤ n′ ⇒ dm,n ⊑ dm′,n′ . (†)

Then ⊔

n≥0

d0,n ⊑
⊔

n≥0

d1,n ⊑
⊔

n≥0

d2,n ⊑ . . .

and ⊔

m≥0

dm,0 ⊑
⊔

m≥0

dm,1 ⊑
⊔

m≥0

dm,3 ⊑ . . .

Moreover

⊔

m≥0




⊔

n≥0

dm,n



 =
⊔

k≥0

dk,k =
⊔

n≥0




⊔

m≥0

dm,n



 .
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Continuity and strictness

• If D and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains

d0 ⊑ d1 ⊑ . . . in D, it is the case that

f(
⊔

n≥0

dn) =
⊔

n≥0

f(dn) in E.

37



Continuity and strictness

• If D and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains

d0 ⊑ d1 ⊑ . . . in D, it is the case that

f(
⊔

n≥0

dn) =
⊔

n≥0

f(dn) in E.

• If D and E have least elements, then the function f is strict

iff f(⊥) = ⊥.
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Tarski’s Fixed Point Theorem

Let f : D →D be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

fix (f) =
⊔

n≥0

fn(⊥).

• Moreover, fix (f) is a fixed point of f , i.e. satisfies

f
(
fix (f)

)
= fix (f), and hence is the least fixed point of f .
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[[while B do C]]

[[while B do C]]

= fix (f[[B]],[[C]])

=
⊔

n≥0 f[[B]],[[C]]
n(⊥)

= λs ∈ State.






[[C]]k(s) if k ≥ 0 is such that [[B]]([[C]]k(s)) = false

and [[B]]([[C]]i(s)) = true for all 0 ≤ i < k

undefined if [[B]]([[C]]i(s)) = true for all i ≥ 0
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Topic 3

Constructions on Domains
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Discrete cpo’s and flat domains

For any set X , the relation of equality

x ⊑ x′
def
⇔ x = x′ (x, x′ ∈ X)

makes (X,⊑) into a cpo, called the discrete cpo with underlying

set X .
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Discrete cpo’s and flat domains

For any set X , the relation of equality

x ⊑ x′
def
⇔ x = x′ (x, x′ ∈ X)

makes (X,⊑) into a cpo, called the discrete cpo with underlying

set X .

Let X⊥
def
= X ∪ {⊥}, where ⊥ is some element not in X . Then

d ⊑ d′
def
⇔ (d = d′) ∨ (d = ⊥) (d, d′ ∈ X⊥)

makes (X⊥,⊑) into a domain (with least element ⊥), called the

flat domain determined by X .

41



Binary product of cpo’s and domains

The product of two cpo’s (D1,⊑1) and (D2,⊑2) has underlying

set

D1 ×D2 = {(d1, d2) | d1 ∈ D1 & d2 ∈ D2}

and partial order ⊑ defined by

(d1, d2) ⊑ (d′1, d
′
2)

def
⇔ d1 ⊑1 d

′
1 & d2 ⊑2 d

′
2 .

(x1, x2) ⊑ (y1, y2)

x1 ⊑1 y1 x2 ⊑2 y2
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Lubs of chains are calculated componentwise:

⊔

n≥0

(d1,n, d2,n) = (
⊔

i≥0

d1,i,
⊔

j≥0

d2,j) .

If (D1,⊑1) and (D2,⊑2) are domains so is (D1 ×D2,⊑)
and ⊥D1×D2

= (⊥D1
,⊥D2

).
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Continuous functions of two arguments

Proposition. Let D, E, F be cpo’s. A function

f : (D × E)→ F is monotone if and only if it is monotone in

each argument separately:

∀d, d′ ∈ D, e ∈ E. d ⊑ d′ ⇒ f(d, e) ⊑ f(d′, e)

∀d ∈ D, e, e′ ∈ E. e ⊑ e′ ⇒ f(d, e) ⊑ f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains

in each argument separately:

f(
⊔

m≥0

dm , e) =
⊔

m≥0

f(dm, e)

f(d ,
⊔

n≥0

en) =
⊔

n≥0

f(d, en).
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• A couple of derived rules:

x ⊑ x′ y ⊑ y′

f(x, y) ⊑ f(x′, y′)
(f monotone)

f(
⊔

m xm,
⊔

n yn) =
⊔

k f(xk, yk)
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Function cpo’s and domains

Given cpo’s (D,⊑D) and (E,⊑E), the function cpo

(D →E,⊑) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f ⊑ f ′ def
⇔ ∀d ∈ D . f(d) ⊑E f ′(d).
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Function cpo’s and domains

Given cpo’s (D,⊑D) and (E,⊑E), the function cpo

(D →E,⊑) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f ⊑ f ′ def
⇔ ∀d ∈ D . f(d) ⊑E f ′(d).

• A derived rule:

f ⊑(D→E) g x ⊑D y

f(x) ⊑ g(y)
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Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

⊔

n≥0

fn = λd ∈ D.
⊔

n≥0

fn(d) .

If E is a domain, then so is D →E and ⊥D→E(d) = ⊥E , all

d ∈ D.
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Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

⊔

n≥0

fn = λd ∈ D.
⊔

n≥0

fn(d) .

• A derived rule:

(⊔

n fn
)
(
⊔

m xm) =
⊔

k fk(xk)

If E is a domain, then so is D →E and ⊥D→E(d) = ⊥E , all

d ∈ D.
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Continuity of composition

For cpo’s D,E, F , the composition function

◦ :
(
(E → F )× (D → E)

)
−→ (D → F )

defined by setting, for all f ∈ (D → E) and g ∈ (E → F ),

g ◦ f = λd ∈ D. g
(
f(d)

)

is continuous.
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Continuity of the fixpoint operator

Let D be a domain.

By Tarski’s Fixed Point Theorem we know that each

continuous function f ∈ (D →D) possesses a least

fixed point, fix (f) ∈ D.

Proposition. The function

fix : (D →D)→D

is continuous.
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Topic 4

Scott Induction
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Scott’s Fixed Point Induction Principle

Let f : D →D be a continuous function on a domain D.

For any admissible subset S ⊆ D, to prove that the least

fixed point of f is in S, i.e. that

fix (f) ∈ S ,

it suffices to prove

∀d ∈ D (d ∈ S ⇒ f(d) ∈ S) .
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Chain-closed and admissible subsets

Let D be a cpo. A subset S ⊆ D is called chain-closed iff

for all chains d0 ⊑ d1 ⊑ d2 ⊑ . . . in D

(∀n ≥ 0 . dn ∈ S) ⇒
( ⊔

n≥0

dn

)

∈ S

If D is a domain, S ⊆ D is called admissible iff it is a

chain-closed subset of D and ⊥ ∈ S.
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Chain-closed and admissible subsets

Let D be a cpo. A subset S ⊆ D is called chain-closed iff

for all chains d0 ⊑ d1 ⊑ d2 ⊑ . . . in D

(∀n ≥ 0 . dn ∈ S) ⇒
( ⊔

n≥0

dn

)

∈ S

If D is a domain, S ⊆ D is called admissible iff it is a

chain-closed subset of D and ⊥ ∈ S.

A property Φ(d) of elements d ∈ D is called chain-closed

(resp. admissible) iff {d ∈ D | Φ(d)} is a chain-closed

(resp. admissible) subset of D.
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Building chain-closed subsets (I)

Let D,E be cpos.

Basic relations:

• For every d ∈ D, the subset

↓(d)
def
= {x ∈ D | x ⊑ d }

of D is chain-closed.
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Building chain-closed subsets (I)

Let D,E be cpos.

Basic relations:

• For every d ∈ D, the subset

↓(d)
def
= {x ∈ D | x ⊑ d }

of D is chain-closed.

• The subsets

{(x, y) ∈ D ×D | x ⊑ y}
and

{(x, y) ∈ D ×D | x = y}

of D ×D are chain-closed.
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Example (I): Least pre-fixed point property

Let D be a domain and let f : D → D be a continuous function.

∀d ∈ D. f(d) ⊑ d =⇒ fix (f) ⊑ d
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Example (I): Least pre-fixed point property

Let D be a domain and let f : D → D be a continuous function.

∀d ∈ D. f(d) ⊑ d =⇒ fix (f) ⊑ d

Proof by Scott induction.

Let d ∈ D be a pre-fixed point of f . Then,

x ∈↓(d) =⇒ x ⊑ d

=⇒ f(x) ⊑ f(d)

=⇒ f(x) ⊑ d

=⇒ f(x) ∈↓(d)

Hence,

fix (f) ∈↓(d) .
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Building chain-closed subsets (II)

Inverse image:

Let f : D → E be a continuous function.

If S is a chain-closed subset of E then the inverse image

f−1S = {x ∈ D | f(x) ∈ S}

is an chain-closed subset of D.
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Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .
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Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .

Proof by Scott induction.

Consider the admissible property Φ(x) ≡
(
f(x) ⊑ g(x)

)

of D.

Since

f(x) ⊑ g(x) ⇒ g(f(x)) ⊑ g(g(x)) ⇒ f(g(x)) ⊑ g(g(x))

we have that

f(fix (g)) ⊑ g(fix (g)) .
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Building chain-closed subsets (III)

Logical operations:

• If S, T ⊆ D are chain-closed subsets of D then

S ∪ T and S ∩ T

are chain-closed subsets of D.

• If {Si }i∈I is a family of chain-closed subsets of D
indexed by a set I , then

⋂

i∈I Si is a chain-closed

subset of D.

• If a property P (x, y) determines a chain-closed subset of

D × E, then the property ∀x ∈ D. P (x, y) determines

a chain-closed subset of E.
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Example (III): Partial correctness

Let F : State ⇀ State be the denotation of

whileX > 0 do (Y := X ∗ Y ;X := X − 1) .

For all x, y ≥ 0,

F [X 7→ x, Y 7→ y] ↓

=⇒ F [X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→!x · y].
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Recall that

F = fix (f)

where f : (State ⇀ State) → (State ⇀ State) is given by

f(w) = λ(x, y) ∈ State.

{

(x, y) if x ≤ 0

w(x− 1, x · y) if x > 0
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Proof by Scott induction.

We consider the admissible subset of (State ⇀ State) given by

S =







w

∀x, y ≥ 0.

w[X 7→ x, Y 7→ y]↓

⇒ w[X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→!x · y]







and show that

w ∈ S =⇒ f(w) ∈ S .
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Topic 5

PCF
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PCF syntax

Types

τ ::= nat | bool | τ → τ
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PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)
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PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)
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PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

62



PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

| fnx : τ .M | M M | fix(M)

where x ∈ V, an infinite set of variables.
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PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

| fnx : τ .M | M M | fix(M)

where x ∈ V, an infinite set of variables.

Technicality: We identify expressions up to α-conversion of

bound variables (created by the fn expression-former): by

definition a PCF term is an α-equivalence class of expressions.
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PCF typing relation, Γ ⊢ M : τ

• Γ is a type environment, i.e. a finite partial function mapping

variables to types (whose domain of definition is denoted

dom(Γ))

• M is a term

• τ is a type.
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PCF typing relation, Γ ⊢ M : τ

• Γ is a type environment, i.e. a finite partial function mapping

variables to types (whose domain of definition is denoted

dom(Γ))

• M is a term

• τ is a type.

Notation:

M : τ means M is closed and ∅ ⊢ M : τ holds.

PCFτ
def
= {M | M : τ}.
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PCF typing relation (sample rules)

(:fn)
Γ[x 7→ τ ] ⊢ M : τ ′

Γ ⊢ fnx : τ .M : τ → τ ′
if x /∈ dom(Γ)
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PCF typing relation (sample rules)

(:fn)
Γ[x 7→ τ ] ⊢ M : τ ′

Γ ⊢ fnx : τ .M : τ → τ ′
if x /∈ dom(Γ)

(:app)
Γ ⊢ M1 : τ → τ ′ Γ ⊢ M2 : τ

Γ ⊢ M1 M2 : τ
′
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PCF typing relation (sample rules)

(:fn)
Γ[x 7→ τ ] ⊢ M : τ ′

Γ ⊢ fnx : τ .M : τ → τ ′
if x /∈ dom(Γ)

(:app)
Γ ⊢ M1 : τ → τ ′ Γ ⊢ M2 : τ

Γ ⊢ M1 M2 : τ
′

(:fix)
Γ ⊢ M : τ → τ

Γ ⊢ fix(M) : τ
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Partial recursive functions in PCF

• Primitive recursion.
{

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y))
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Partial recursive functions in PCF

• Primitive recursion.
{

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y))

• Minimisation.

m(x) = the least y ≥ 0 such that k(x, y) = 0
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PCF evaluation relation

takes the form

M ⇓τ V

where

• τ is a PCF type

• M,V ∈ PCFτ are closed PCF terms of type τ

• V is a value,

V ::= 0 | succ(V ) | true | false | fnx : τ .M .
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PCF evaluation (sample rules)

(⇓val) V ⇓τ V (V a value of type τ )
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PCF evaluation (sample rules)

(⇓val) V ⇓τ V (V a value of type τ )

(⇓cbn)
M1 ⇓τ→τ ′ fnx : τ .M ′

1 M ′
1[M2/x] ⇓τ ′ V

M1M2 ⇓τ ′ V

67



PCF evaluation (sample rules)

(⇓val) V ⇓τ V (V a value of type τ )

(⇓cbn)
M1 ⇓τ→τ ′ fnx : τ .M ′

1 M ′
1[M2/x] ⇓τ ′ V

M1M2 ⇓τ ′ V

(⇓fix)
M fix(M) ⇓τ V

fix(M) ⇓τ V
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Contextual equivalence

Two phrases of a programming language are contextually

equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.
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Contextual equivalence of PCF terms

Given PCF terms M1,M2, PCF type τ , and a type

environment Γ, the relation Γ ⊢ M1
∼=ctx M2 : τ

is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.
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PCF denotational semantics — aims
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PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].
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Denotations of open terms will be continuous functions.

70



PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].
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Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].
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PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

• Adequacy.

For τ = bool or nat , [[M ]] = [[V ]] ∈ [[τ ]] =⇒ M ⇓τ V .
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Theorem. For all types τ and closed terms M1,M2 ∈ PCFτ ,

if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then

M1
∼=ctx M2 : τ .
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Theorem. For all types τ and closed terms M1,M2 ∈ PCFτ ,

if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then

M1
∼=ctx M2 : τ .

Proof.

C[M1] ⇓nat V ⇒ [[C[M1]]] = [[V ]] (soundness)

⇒ [[C[M2]]] = [[V ]] (compositionality

on [[M1]] = [[M2]])

⇒ C[M2] ⇓nat V (adequacy)

and symmetrically.
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Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]]
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Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]]

? The proof principle is sound, but is it complete? That is,
is equality in the denotational model also a necessary
condition for contextual equivalence?

72



Topic 6

Denotational Semantics of PCF
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Denotational semantics of PCF

To every typing judgement

Γ ⊢ M : τ

we associate a continuous function

[[Γ ⊢ M ]] : [[Γ]] → [[τ ]]

between domains.
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Denotational semantics of PCF types

[[nat ]]
def
= N⊥ (flat domain)

[[bool ]]
def
= B⊥ (flat domain)

where N = {0, 1, 2, . . . } and B = {true, false}.
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Denotational semantics of PCF types

[[nat ]]
def
= N⊥ (flat domain)

[[bool ]]
def
= B⊥ (flat domain)

[[τ → τ ′]]
def
= [[τ ]]→ [[τ ′]] (function domain).

where N = {0, 1, 2, . . . } and B = {true, false}.

75



Denotational semantics of PCF type environments

[[Γ]]
def
=

∏

x∈dom(Γ) [[Γ(x)]] (Γ-environments)
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Denotational semantics of PCF type environments

[[Γ]]
def
=

∏

x∈dom(Γ) [[Γ(x)]] (Γ-environments)

= the domain of partial functions ρ from variables

to domains such that dom(ρ) = dom(Γ) and

ρ(x) ∈ [[Γ(x)]] for all x ∈ dom(Γ)
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Denotational semantics of PCF type environments

[[Γ]]
def
=

∏

x∈dom(Γ) [[Γ(x)]] (Γ-environments)

= the domain of partial functions ρ from variables

to domains such that dom(ρ) = dom(Γ) and

ρ(x) ∈ [[Γ(x)]] for all x ∈ dom(Γ)

Example:

1. For the empty type environment ∅,

[[∅]] = {⊥}

where ⊥ denotes the unique partial function with

dom(⊥) = ∅.
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2. [[〈x 7→ τ〉]] =
(
{x } → [[τ ]]

)
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2. [[〈x 7→ τ〉]] =
(
{x } → [[τ ]]

)
∼= [[τ ]]
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2. [[〈x 7→ τ〉]] =
(
{x } → [[τ ]]

)
∼= [[τ ]]

3.

[[〈x1 7→ τ1, . . . , xn 7→ τn〉]]

∼=
(
{x1 } → [[τ1]]

)
× . . .×

(
{xn } → [[τn]]

)

∼= [[τ1]]× . . .× [[τn]]
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Denotational semantics of PCF terms, I

[[Γ ⊢ 0]](ρ)
def
= 0 ∈ [[nat ]]

[[Γ ⊢ true]](ρ)
def
= true ∈ [[bool ]]

[[Γ ⊢ false]](ρ)
def
= false ∈ [[bool ]]
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Denotational semantics of PCF terms, I

[[Γ ⊢ 0]](ρ)
def
= 0 ∈ [[nat ]]

[[Γ ⊢ true]](ρ)
def
= true ∈ [[bool ]]

[[Γ ⊢ false]](ρ)
def
= false ∈ [[bool ]]

[[Γ ⊢ x]](ρ)
def
= ρ(x) ∈ [[Γ(x)]]

(
x ∈ dom(Γ)

)
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Denotational semantics of PCF terms, II

[[Γ ⊢ succ(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ) + 1 if [[Γ ⊢ M ]](ρ) 6= ⊥

⊥ if [[Γ ⊢ M ]](ρ) = ⊥
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Denotational semantics of PCF terms, II

[[Γ ⊢ succ(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ) + 1 if [[Γ ⊢ M ]](ρ) 6= ⊥

⊥ if [[Γ ⊢ M ]](ρ) = ⊥

[[Γ ⊢ pred(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ)− 1 if [[Γ ⊢ M ]](ρ) > 0

⊥ if [[Γ ⊢ M ]](ρ) = 0,⊥
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Denotational semantics of PCF terms, II

[[Γ ⊢ succ(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ) + 1 if [[Γ ⊢ M ]](ρ) 6= ⊥

⊥ if [[Γ ⊢ M ]](ρ) = ⊥

[[Γ ⊢ pred(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ)− 1 if [[Γ ⊢ M ]](ρ) > 0

⊥ if [[Γ ⊢ M ]](ρ) = 0,⊥

[[Γ ⊢ zero(M)]](ρ)
def
=







true if [[Γ ⊢ M ]](ρ) = 0

false if [[Γ ⊢ M ]](ρ) > 0

⊥ if [[Γ ⊢ M ]](ρ) = ⊥
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Denotational semantics of PCF terms, III

[[Γ ⊢ if M1 then M2 else M3]](ρ)

def
=







[[Γ ⊢ M2]](ρ) if [[Γ ⊢ M1]](ρ) = true

[[Γ ⊢ M3]](ρ) if [[Γ ⊢ M1]](ρ) = false

⊥ if [[Γ ⊢ M1]](ρ) = ⊥
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Denotational semantics of PCF terms, III

[[Γ ⊢ if M1 then M2 else M3]](ρ)

def
=







[[Γ ⊢ M2]](ρ) if [[Γ ⊢ M1]](ρ) = true

[[Γ ⊢ M3]](ρ) if [[Γ ⊢ M1]](ρ) = false

⊥ if [[Γ ⊢ M1]](ρ) = ⊥

[[Γ ⊢ M1M2]](ρ)
def
=

(
[[Γ ⊢ M1]](ρ)

)
([[Γ ⊢ M2]](ρ))
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Denotational semantics of PCF terms, IV

[[Γ ⊢ fnx : τ .M ]](ρ)

def
= λd ∈ [[τ ]] . [[Γ[x 7→ τ ] ⊢ M ]](ρ[x 7→ d])

(
x /∈ dom(Γ)

)

NB: ρ[x 7→ d] ∈ [[Γ[x 7→ τ ]]] is the function mapping x to d ∈ [[τ ]]

and otherwise acting like ρ.
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Denotational semantics of PCF terms, V

[[Γ ⊢ fix(M)]](ρ)
def
= fix ([[Γ ⊢ M ]](ρ))

Recall that fix is the function assigning least fixed points to continuous

functions.
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Denotational semantics of PCF

Proposition. For all typing judgements Γ ⊢ M : τ , the

denotation

[[Γ ⊢ M ]] : [[Γ]] → [[τ ]]

is a well-defined continous function.
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Denotations of closed terms

For a closed term M ∈ PCFτ , we get

[[∅ ⊢ M ]] : [[∅]]→ [[τ ]]

and, since [[∅]] = {⊥}, we have

[[M ]]
def
=

[[
∅ ⊢ M

]]
(⊥) ∈ [[τ ]] (M ∈ PCFτ )
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Compositionality

Proposition. For all typing judgements Γ ⊢ M : τ and

Γ ⊢ M ′ : τ , and all contexts C[−] such that Γ′ ⊢ C[M ] : τ ′

and Γ′ ⊢ C[M ′] : τ ′,

if [[Γ ⊢ M ]] = [[Γ ⊢ M ′]] : [[Γ]] → [[τ ]]

then
[[
Γ′ ⊢ C[M ]

]]
=

[[
Γ′ ⊢ C[M ]

]]
: [[Γ′]] → [[τ ′]]
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Soundness

Proposition. For all closed terms M,V ∈ PCFτ ,

if M ⇓τ V then [[M ]] = [[V ]] ∈ [[τ ]] .
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Substitution property

Proposition. Suppose that Γ ⊢ M : τ and that

Γ[x 7→ τ ] ⊢ M ′ : τ ′, so that we also have Γ ⊢ M ′[M/x] : τ ′.

Then,

[[
Γ ⊢ M ′[M/x]

]]
(ρ)

=
[[
Γ[x 7→ τ ] ⊢ M ′

]](
ρ
[
x 7→ [[Γ ⊢ M ]]

])

for all ρ ∈ [[Γ]].
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Substitution property

Proposition. Suppose that Γ ⊢ M : τ and that

Γ[x 7→ τ ] ⊢ M ′ : τ ′, so that we also have Γ ⊢ M ′[M/x] : τ ′.

Then,

[[
Γ ⊢ M ′[M/x]

]]
(ρ)

=
[[
Γ[x 7→ τ ] ⊢ M ′

]](
ρ
[
x 7→ [[Γ ⊢ M ]]

])

for all ρ ∈ [[Γ]].

In particular when Γ = ∅, [[〈x 7→ τ〉 ⊢ M ′]] : [[τ ]]→ [[τ ′]] and

[[
M ′[M/x]

]]
=

[[
〈x 7→ τ〉 ⊢ M ′

]]
([[M ]])
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Topic 7

Relating Denotational and Operational Semantics
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Adequacy

For any closed PCF terms M and V of ground type

γ ∈ {nat , bool} with V a value

[[M ]] = [[V ]] ∈ [[γ]] =⇒ M ⇓γ V .
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Adequacy

For any closed PCF terms M and V of ground type

γ ∈ {nat , bool} with V a value

[[M ]] = [[V ]] ∈ [[γ]] =⇒ M ⇓γ V .

NB. Adequacy does not hold at function types
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For any closed PCF terms M and V of ground type

γ ∈ {nat , bool} with V a value

[[M ]] = [[V ]] ∈ [[γ]] =⇒ M ⇓γ V .

NB. Adequacy does not hold at function types:

[[fn x : τ. (fn y : τ. y)x]] = [[fn x : τ. x]] : [[τ ]] → [[τ ]]
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Adequacy

For any closed PCF terms M and V of ground type

γ ∈ {nat , bool} with V a value

[[M ]] = [[V ]] ∈ [[γ]] =⇒ M ⇓γ V .

NB. Adequacy does not hold at function types:

[[fn x : τ. (fn y : τ. y)x]] = [[fn x : τ. x]] : [[τ ]] → [[τ ]]

but

fn x : τ. (fn y : τ. y)x 6 ⇓τ→τ fn x : τ. x
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Adequacy proof idea
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Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a

straightforward induction on the structure of terms.

◮ Consider M to be M1M2, fix(M ′).
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Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a

straightforward induction on the structure of terms.

◮ Consider M to be M1M2, fix(M ′).

2. So we proceed to prove a stronger statement that applies to

terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

[[M ]] ⊳τ M for all types τ and all M ∈ PCFτ

where the formal approximation relations

⊳τ ⊆ [[τ ]]× PCFτ

are logically chosen to allow a proof by induction.
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Requirements on the formal approximation relations, I

We want that, for γ ∈ {nat , bool},

[[M ]] ⊳γ M implies ∀V ([[M ]] = [[V ]] =⇒ M ⇓γ V )
︸ ︷︷ ︸

adequacy
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Definition of d ⊳γ M (d ∈ [[γ]],M ∈ PCFγ)

for γ ∈ {nat , bool}

n ⊳nat M
def
⇔

(
n ∈ N ⇒ M ⇓nat succ

n(0)
)

b ⊳bool M
def
⇔ (b = true ⇒ M ⇓bool true)

& (b = false ⇒ M ⇓bool false)
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Proof of: [[M ]] ⊳γ M implies adequacy

Case γ = nat .

[[M ]] = [[V ]]

=⇒ [[M ]] = [[succn(0)]] for some n ∈ N

=⇒ n = [[M ]] ⊳γ M

=⇒ M ⇓ succn(0) by definition of ⊳nat

Case γ = bool is similar.
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Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

◮ Consider the case M = M1 M2.

❀ logical definition
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Definition of

f ⊳τ→τ ′ M
(
f ∈ ([[τ ]] → [[τ ′]]),M ∈ PCFτ→τ ′

)
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Definition of

f ⊳τ→τ ′ M
(
f ∈ ([[τ ]] → [[τ ′]]),M ∈ PCFτ→τ ′

)

f ⊳τ→τ ′ M

def
⇔ ∀x ∈ [[τ ]], N ∈ PCFτ

(x ⊳τ N ⇒ f(x) ⊳τ ′ M N)
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Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

◮ Consider the case M = fix(M ′).

❀ admissibility property
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Admissibility property

Lemma. For all types τ and M ∈ PCFτ , the set

{ d ∈ [[τ ]] | d ⊳τ M }

is an admissible subset of [[τ ]].
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Further properties

Lemma. For all types τ , elements d, d′ ∈ [[τ ]], and terms

M,N, V ∈ PCFτ ,

1. If d ⊑ d′ and d′ ⊳τ M then d ⊳τ M .

2. If d ⊳τ M and ∀V (M ⇓τ V =⇒ N ⇓τ V )
then d ⊳τ N .
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Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

◮ Consider the case M = fnx : τ .M ′.

❀ substitutivity property for open terms
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Fundamental property

Theorem. For all Γ = 〈x1 7→ τ1, . . . , xn 7→ τn〉 and all

Γ ⊢ M : τ , if d1 ⊳τ1 M1, . . . , dn ⊳τn Mn then

[[Γ ⊢ M ]][x1 7→ d1, . . . , xn 7→ dn] ⊳τ M [M1/x1, . . . ,Mn/xn] .
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Fundamental property

Theorem. For all Γ = 〈x1 7→ τ1, . . . , xn 7→ τn〉 and all

Γ ⊢ M : τ , if d1 ⊳τ1 M1, . . . , dn ⊳τn Mn then

[[Γ ⊢ M ]][x1 7→ d1, . . . , xn 7→ dn] ⊳τ M [M1/x1, . . . ,Mn/xn] .

NB. The case Γ = ∅ reduces to

[[M ]] ⊳τ M

for all M ∈ PCFτ .
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Fundamental property of the relations⊳τ

Proposition. If Γ ⊢ M : τ is a valid PCF typing, then for all

Γ-environments ρ and all Γ-substitutions σ

ρ ⊳Γ σ ⇒ [[Γ ⊢ M ]](ρ) ⊳τ M [σ]

• ρ ⊳Γ σ means that ρ(x) ⊳Γ(x) σ(x) holds for each

x ∈ dom(Γ).

• M [σ] is the PCF term resulting from the simultaneous substitution

of σ(x) for x in M , each x ∈ dom(Γ).
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Contextual preorder between PCF terms

Given PCF terms M1,M2, PCF type τ , and a type environment

Γ, the relation Γ ⊢ M1 ≤ctx M2 : τ is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V ∈ PCFγ ,

C[M1] ⇓γ V =⇒ C[M2] ⇓γ V .
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Extensionality properties of ≤ctx

At a ground type γ ∈ {bool , nat},

M1 ≤ctx M2 : γ holds if and only if

∀V ∈ PCFγ (M1 ⇓γ V =⇒ M2 ⇓γ V ) .

At a function type τ → τ ′,
M1 ≤ctx M2 : τ → τ ′ holds if and only if

∀M ∈ PCFτ (M1M ≤ctx M2M : τ ′) .

103



Topic 8

Full Abstraction
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Proof principle

For all types τ and closed terms M1,M2 ∈ PCFτ ,

[[M1]] = [[M2]] in [[τ ]] =⇒ M1
∼=ctx M2 : τ .

Hence, to prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]] .
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Full abstraction

A denotational model is said to be fully abstract whenever denota-

tional equality characterises contextual equivalence.
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Full abstraction

A denotational model is said to be fully abstract whenever denota-

tional equality characterises contextual equivalence.

◮ The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms

with different denotations.
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Failure of full abstraction, idea

We will construct two closed terms

T1, T2 ∈ PCF(bool→(bool→bool))→bool

such that

T1
∼=ctx T2

and

[[T1]] 6= [[T2]]
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◮ We achieve T1
∼=ctx T2 by making sure that

∀M ∈ PCFbool→(bool→bool) (T1M 6 ⇓bool & T2M 6 ⇓bool )

108



◮ We achieve T1
∼=ctx T2 by making sure that

∀M ∈ PCFbool→(bool→bool) (T1M 6 ⇓bool & T2M 6 ⇓bool )

Hence,

[[T1]]([[M ]]) = ⊥ = [[T2]]([[M ]])

for all M ∈ PCFbool→(bool→bool).
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◮ We achieve T1
∼=ctx T2 by making sure that

∀M ∈ PCFbool→(bool→bool) (T1M 6 ⇓bool & T2M 6 ⇓bool )

Hence,

[[T1]]([[M ]]) = ⊥ = [[T2]]([[M ]])

for all M ∈ PCFbool→(bool→bool).

◮ We achieve [[T1]] 6= [[T2]] by making sure that

[[T1]](por) 6= [[T2]](por)

for some non-definable continuous function

por ∈ (B⊥ → (B⊥ → B⊥)) .
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Parallel-or function

is the unique continuous function por : B⊥ → (B⊥ →B⊥) such

that

por true ⊥ = true

por ⊥ true = true

por false false = false
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Parallel-or function

is the unique continuous function por : B⊥ → (B⊥ →B⊥) such

that

por true ⊥ = true

por ⊥ true = true

por false false = false

In which case, it necessarily follows by monotonicity that

por true true = true por false ⊥ = ⊥

por true false = true por ⊥ false = ⊥

por false true = true por ⊥ ⊥ = ⊥
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Undefinability of parallel-or

Proposition. There is no closed PCF term

P : bool → (bool → bool)

satisfying

[[P ]] = por : B⊥ → (B⊥ → B⊥) .
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Parallel-or test functions
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Parallel-or test functions

For i = 1, 2 define

Ti
def
= fn f : bool → (bool → bool) .

if (f true Ω) then

if (f Ω true) then

if (f false false) then Ω else Bi

else Ω

else Ω

where B1
def
= true, B2

def
= false,

and Ω
def
= fix(fnx : bool . x).
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Failure of full abstraction

Proposition.

T1
∼=ctx T2 : (bool → (bool → bool))→ bool

[[T1]] 6= [[T2]] ∈ (B⊥ → (B⊥ → B⊥))→ B⊥
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PCF+por

Expressions M ::= · · · | por(M,M)

Typing
Γ ⊢ M1 : bool Γ ⊢ M2 : bool

Γ ⊢ por(M1,M2) : bool

Evaluation

M1 ⇓bool true

por(M1,M2) ⇓bool true

M2 ⇓bool true

por(M1,M2) ⇓bool true

M1 ⇓bool false M2 ⇓bool false

por(M1,M2) ⇓bool false
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Plotkin’s full abstraction result

The denotational semantics of PCF+por is given by extending that

of PCF with the clause

[[Γ ⊢ por(M1,M2)]](ρ)
def
= por

(
[[Γ ⊢ M1]](ρ)

)(
[[Γ ⊢ M2]](ρ)

)

This denotational semantics is fully abstract for contextual

equivalence of PCF+por terms:

Γ ⊢ M1
∼=ctx M2 : τ ⇔ [[Γ ⊢ M1]] = [[Γ ⊢ M2]].
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