Scott Induction

TES

S chan closed

Vaed des => fales fract, ES

Saduiss. f:D-D Ddousin funt.

Logical operations:

- If $S, T \subseteq D$ are chain-closed subsets of D then $S \cup T$ and $S \cap T$ are chain-closed subsets of D.
- If $\{S_i\}_{i \in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i \in I} S_i$ is a chain-closed subset of D.
- If a property P(x, y) determines a chain-closed subset of $D \times E$, then the property $\forall x \in D$. P(x, y) determines a chain-closed subset of E.

 $U_{Sn} = D \setminus \{ 2 \}$ $n \in \mathbb{N}$ Sz= 1(2) 2 $f_{1} = f_{1}$ $f_{1} = f_{2}$ $f_{2} = f_{2}$

Example (III): Partial correctness

Let \mathcal{F} : *State* \rightarrow *State* be the denotation of while X > 0 do (Y := X * Y; X := X - 1). For all $x, y \ge 0$,

 $\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow \\ \implies \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto x] \cdot y].$

Recall that

$$\mathcal{F} = fix(f)$$

where $f: (State \rightarrow State) \rightarrow (State \rightarrow State)$ is given by
$$f(w) = \lambda(x, y) \in State. \begin{cases} (x, y) & \text{if } x \leq 0\\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$

and show that

$$w \in S \implies f(w) \in S$$
.

Topic 5

PCF

Types

$$\tau ::= nat \mid bool \mid \tau \to \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
$$\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$$
$$\mid x \mid \mathbf{if} \ M \ \mathbf{then} \ M \ \mathbf{else} \ M$$
$$\mid \mathbf{fn} \ x : \tau \cdot M \mid MM \mid \mathbf{fix}(M)$$

where $x \in \mathbb{V}$, an infinite set of variables.

Technicality: We identify expressions up to α -conversion of bound variables (created by the **fn** expression-former): by definition a PCF term is an α -equivalence class of expressions.

- Γ is a type environment, *i.e.* a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- M is a term
- au is a type.

Notation:

 $M: \tau \text{ means } M \text{ is closed and } \emptyset \vdash M: \tau \text{ holds.}$ $\operatorname{PCF}_{\tau} \stackrel{\operatorname{def}}{=} \{M \mid M: \tau\}.$

$$(:_{\mathrm{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathrm{fn}\, x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin dom(\Gamma)$$

(:app)
$$\frac{\Gamma \vdash M_1 : \tau \to \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 M_2 : \tau'}$$

(:_{fix})
$$\frac{\Gamma \vdash M : \tau \to \tau}{\Gamma \vdash \mathbf{fix}(M) : \tau}$$

• Primitive recursion.

Green
$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

F: $Z \rightarrow S$
G: $Z \rightarrow N s t \rightarrow S \rightarrow S$
define $H: Z \rightarrow N s t \rightarrow S$
I
fix (fnh. fn $X.$ fn $n.$ i) berown) the Fx
fix (fnh. fn $X.$ fn $n.$ i) berown) the Fx
solution (h $X.$ (pred h) (h $X.$ (pred h)))

Fry= if zero(Kry) the y ebe Fr(succy) Mx=Fro Partial recursive functions in PCF M=fnx.FxU

• Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases} F_{=} \quad \text{in a set of } f_{=} \quad \text{if } f_{=} \quad \text{$$

Minimisation.

Give
$$m(x) = \text{the least } y \ge 0 \text{ such that } k(x, y) = 0$$

 $K: Z \rightarrow n \Rightarrow n \Rightarrow t$
Define $M: Z \rightarrow n \Rightarrow t$

PCF evaluation relation

takes the form

$$M \Downarrow_{\tau} V$$

where

- au is a PCF type
- $M,V\in \mathrm{PCF}_{ au}$ are closed PCF terms of type au
- V is a value,

 $V ::= \mathbf{0} \mid \mathbf{succ}(V) \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{fn} \, x : \tau \, . \, M.$

$$(\Downarrow_{\text{val}}) \quad V \Downarrow_{\tau} V \quad (V \text{ a value of type})$$
$$(\Downarrow_{\text{cbn}}) \quad \frac{M_1 \Downarrow_{\tau \to \tau'} \text{ fn } x : \tau \cdot M'_1 \quad M'_1[M_2/x] \Downarrow_{\tau'} V}{M_1 M_2 \Downarrow_{\tau'} V}$$

$$(\Downarrow_{\mathrm{val}}) \quad V \Downarrow_{\tau} V \qquad (V \text{ a value of type } \tau)$$

$$(\Downarrow_{\text{cbn}}) \quad \frac{M_1 \Downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau \, . \, M_1' \qquad M_1' [M_2/x] \Downarrow_{\tau'} V}{M_1 \, M_2 \Downarrow_{\tau'} V}$$

$$(\Downarrow_{\text{fix}}) \quad \frac{M \operatorname{fix}(M) \Downarrow_{\tau} V}{\operatorname{fix}(M) \Downarrow_{\tau} V}$$

Is there a value V:Z s.t. $fin(fnx; \mathcal{T}, \mathbf{x}) \cup_{\mathcal{T}} \sqrt{?}$ $\int \frac{f_{11}(f_{11}x.x)}{f_{11}(f_{11}x.x)} = \int \frac{f_{11}(f_{11}x.x$ The less I such nonely 1 denstry non-ternhotis $(fn x.x) (fix (fn x.x)) \downarrow n$ fix (frx.x) Un

Contextual equivalence

Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the <u>observable results</u> of executing the program. Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \cong_{\mathrm{ctx}} M_2 : \tau$ is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts C for which $C[M_1]$ and $C[M_2]$ are closed terms of type γ , where $\gamma = nat \text{ or } \gamma = bool$, and for all values $V : \gamma$,

 $\mathcal{C}[M_1] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}[M_2] \Downarrow_{\gamma} V.$