


Continuous functions of two arguments

Proposition. Let D, E, F be cpo’s. A function

f : (D × E)→ F is monotone if and only if it is monotone in

each argument separately:

∀d, d′ ∈ D, e ∈ E. d ⊑ d′ ⇒ f(d, e) ⊑ f(d′, e)

∀d ∈ D, e, e′ ∈ E. e ⊑ e′ ⇒ f(d, e) ⊑ f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains

in each argument separately:

f(
G

m≥0

dm , e) =
G

m≥0

f(dm, e)

f(d ,
G

n≥0

en) =
G

n≥0

f(d, en).
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• A couple of derived rules:

x ⊑ x′ y ⊑ y′

f(x, y) ⊑ f(x′, y′)
(f monotone)

f(
F

m xm,
F

n yn) =
F

k f(xk, yk)
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Function cpo’s and domains

Given cpo’s (D,⊑D) and (E,⊑E), the function cpo

(D →E,⊑) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f ⊑ f ′ def
⇔ ∀d ∈ D . f(d) ⊑E f ′(d).
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Function cpo’s and domains

Given cpo’s (D,⊑D) and (E,⊑E), the function cpo

(D →E,⊑) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f ⊑ f ′ def
⇔ ∀d ∈ D . f(d) ⊑E f ′(d).

• A derived rule:

f ⊑(D→E) g x ⊑D y

f(x) ⊑ g(y)
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Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

G

n≥0

fn = λd ∈ D.
G

n≥0

fn(d) .

If E is a domain, then so is D →E and ⊥D→E(d) = ⊥E , all

d ∈ D.
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Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

G

n≥0

fn = λd ∈ D.
G

n≥0

fn(d) .

• A derived rule:

�F

n fn
�
(
F

m xm) =
F

k fk(xk)

If E is a domain, then so is D →E and ⊥D→E(d) = ⊥E , all

d ∈ D.
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Continuity of composition

For cpo’s D,E, F , the composition function

◦ :
�
(E → F )× (D → E)

�
−→ (D → F )

defined by setting, for all f ∈ (D → E) and g ∈ (E → F ),

g ◦ f = λd ∈ D. g
�
f(d)

�

is continuous.
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Continuity of the fixpoint operator

Let D be a domain.

By Tarski’s Fixed Point Theorem we know that each

continuous function f ∈ (D →D) possesses a least

fixed point, fix (f) ∈ D.

Proposition. The function

fix : (D →D)→D

is continuous.
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Topic 4

Scott Induction
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Scott’s Fixed Point Induction Principle

Let f : D →D be a continuous function on a domain D.

For any admissible subset S ⊆ D, to prove that the least

fixed point of f is in S, i.e. that

fix (f) ∈ S ,

it suffices to prove

∀d ∈ D (d ∈ S ⇒ f(d) ∈ S) .
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Chain-closed and admissible subsets

Let D be a cpo. A subset S ⊆ D is called chain-closed iff

for all chains d0 ⊑ d1 ⊑ d2 ⊑ . . . in D

(∀n ≥ 0 . dn ∈ S) ⇒
� G

n≥0

dn

�

∈ S

If D is a domain, S ⊆ D is called admissible iff it is a

chain-closed subset of D and ⊥ ∈ S.
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Chain-closed and admissible subsets

Let D be a cpo. A subset S ⊆ D is called chain-closed iff

for all chains d0 ⊑ d1 ⊑ d2 ⊑ . . . in D

(∀n ≥ 0 . dn ∈ S) ⇒
� G

n≥0

dn

�

∈ S

If D is a domain, S ⊆ D is called admissible iff it is a

chain-closed subset of D and ⊥ ∈ S.

A property Φ(d) of elements d ∈ D is called chain-closed

(resp. admissible) iff {d ∈ D | Φ(d)} is a chain-closed

(resp. admissible) subset of D.
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Building chain-closed subsets (I)

Let D,E be cpos.

Basic relations:

• For every d ∈ D, the subset

↓(d)
def
= {x ∈ D | x ⊑ d }

of D is chain-closed.

• The subsets

{(x, y) ∈ D ×D | x ⊑ y}
and

{(x, y) ∈ D ×D | x = y}

of D ×D are chain-closed.
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Example (I): Least pre-fixed point property

Let D be a domain and let f : D → D be a continuous function.

∀d ∈ D. f(d) ⊑ d =⇒ fix (f) ⊑ d
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Example (I): Least pre-fixed point property

Let D be a domain and let f : D → D be a continuous function.

∀d ∈ D. f(d) ⊑ d =⇒ fix (f) ⊑ d

Proof by Scott induction.

Let d ∈ D be a pre-fixed point of f . Then,

x ∈↓(d) =⇒ x ⊑ d

=⇒ f(x) ⊑ f(d)

=⇒ f(x) ⊑ d

=⇒ f(x) ∈↓(d)

Hence,

fix (f) ∈↓(d) .
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Building chain-closed subsets (II)

Inverse image:

Let f : D → E be a continuous function.

If S is a chain-closed subset of E then the inverse image

f−1S = {x ∈ D | f(x) ∈ S}

is an chain-closed subset of D.
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Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .
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Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .

Proof by Scott induction.

Consider the admissible property Φ(x) ≡
�
f(x) ⊑ g(x)

�

of D.

Since

f(x) ⊑ g(x) ⇒ g(f(x)) ⊑ g(g(x)) ⇒ f(g(x)) ⊑ g(g(x))

we have that

f(fix (g)) ⊑ g(fix (g)) .
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