Modeling Dato Types a, A types

dxp type

X-1/ type

D, E dondis

DxE donsin

(D→E) dondin.

Proposition. Let D, E, F be cpo's. A function $f: (D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

 $\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$ $\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$f(\bigsqcup_{m \ge 0} d_m, e) = \bigsqcup_{m \ge 0} f(d_m, e)$$
$$f(d, \bigsqcup_{n \ge 0} e_n) = \bigsqcup_{n \ge 0} f(d, e_n).$$

by Def. f: DxE-17monstrue $(d, e) \leq (d', e') \Rightarrow f(d, e) \leq f(d', e')$ cont. $f(\Box_n(d_n,e_n)) = \bigsqcup_n f(d_n,e_n)$

• A couple of derived rules:

$$\frac{x \sqsubseteq x' \quad y \sqsubseteq y'}{f(x,y) \sqsubseteq f(x',y')} \quad (f \text{ monotone})$$

 $f(\bigsqcup_m x_m, \bigsqcup_n y_n) = \bigsqcup_k f(x_k, y_k)$

Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \rightarrow E, \sqsubseteq)$ has underlying set $(D \to E) \stackrel{\text{def}}{=} \{ f \mid f : D \to E \text{ is a$ *continuous* $function} \}$ and partial order: $f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D \, . \, f(d) \sqsubseteq_E f'(d)$. has lubs of contable chains $\Sigma \sqcup fn \quad in(D \rightarrow E)$ $(n \in N)$ $(\bigcup_n f_n)(d) = \bigcup(f_n(d))$ 46

Check Unfn is • montone: d.Ed'

· Un for preserves lubs. cont. Un Uk fn (dk) || lemma $\Box_i f_i(d_i)$

Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

 $(D \to E) \stackrel{\text{def}}{=} \{ f \mid f : D \to E \text{ is a$ *continuous* $function} \}$

and partial order: $f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D \, . \, f(d) \sqsubseteq_E f'(d)$.

• A derived rule:

$$\frac{f \sqsubseteq_{(D \to E)} g \qquad x \sqsubseteq_D y}{f(x) \sqsubseteq g(y)}$$

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$\bigsqcup_{n\geq 0} f_n = \lambda d \in D. \bigsqcup_{n\geq 0} f_n(d) .$$

$$\int (D \rightarrow E) = \lambda deD. \ LE$$

If E is a domain, then so is $D \to E$ and $\perp_{D \to E} (d) = \perp_E$, all $d \in D$.

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$\bigsqcup_{n\geq 0} f_n = \lambda d \in D. \bigsqcup_{n\geq 0} f_n(d) .$$

• A derived rule:

$$\left(\bigsqcup_{n} f_{n}\right)\left(\bigsqcup_{m} x_{m}\right) = \bigsqcup_{k} f_{k}(x_{k})$$

If E is a domain, then so is $D \to E$ and $\perp_{D \to E} (d) = \perp_E$, all $d \in D$.

 $ML: f_n(g,f) \Rightarrow f_nd \Rightarrow g(f(d))$

Continuity of composition

For cpo's D, E, F, the composition function

$$\circ: \left((E \to F) \times (D \to E) \right) \longrightarrow (D \to F)$$

defined by setting, for all $f \in (D \to E)$ and $g \in (E \to F)$,

$$g \circ f = \lambda d \in D. g(f(d))$$

is continuous.

Continuity of the fixpoint operator

Let D be a domain.

By Tarski's Fixed Point Theorem we know that each continuous function $f \in (D \to D)$ possesses a least fixed point, $\underline{fix(f) \in D}$. Proposition. The function $fix: (D \to D) \to D$ for $f_1 = \bigcup_n f_n^n(L)$

is continuous.

• fix is monstone: $f = q \xrightarrow{?} fix(f) = fix(g)$ Assump 15g Vf(Areg) Eg(Freg) Efreg. f(fixg) 5 fixg $fr(f) \leq fr(g)$

• fix is cont. $f_{\underline{n}}(\underline{u}_{n}f_{\underline{n}}) = \underline{u}_{n} \quad R_{\underline{n}}(f_{\underline{n}})$ $\bigcup_{n} \bigcup_{k} f_{n}(f_{n}(f_{n}) = \bigcup_{i} f_{i}(f_{n}))$ Un fn (Ur fr fr) $(\bigcup_{n,m})(\bigcup_{k}f_{m}(f_{k})) \subseteq \bigcup_{k}f_{m}(f_{k})$ fix (Unp) I Un fix (fn)

fn E UR fr (frx mon) fre(fn) I fre (Ur fre) Yn $\Box_n f_{\mathcal{M}}(f_n) \equiv f_{\mathcal{M}}(\Box_n f_n)$

Topic 4

Scott Induction

NW
Scott's Fixed Point Induction Principle
Let
$$f: D \rightarrow D$$
 be a continuous function on a domain D .
For any admissible subset $S \subseteq D$, to prove that the least
fixed point of f is in S , *i.e.* that
 $fix(f) \in S$,
it suffices to prove
 $\forall d \in D \ (d \in S \Rightarrow f(d) \in S)$
 $\forall d \in S \Rightarrow f(d) \in S$
 $\forall d \in S \Rightarrow f(d) \in S$

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$\left(\text{NRE} \right) \qquad (\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n \ge 0} d_n \right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n\ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called *chain-closed* (resp. *admissible*) iff $\{d \in D \mid \Phi(d)\}$ is a *chain-closed* (resp. *admissible*) subset of D. Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

• The subsets

and $\begin{cases} (x,y) \in D \times D \mid x \sqsubseteq y \\ \\ \{(x,y) \in D \times D \mid x = y \} \end{cases}$

of $D \times D$ are chain-closed.

Let D be a domain and let $f: D \rightarrow D$ be a continuous function.

 $\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$ for $f_{x} \leq f_{x} \leq d$ non. $f_{x} \leq f_{x} \leq d$ $\chi \leq J(d) \Rightarrow f(\chi) \in J(d)$

 $fix(f) 5d \iff fix(f) \in V(d)$

Let D be a domain and let $f: D \to D$ be a continuous function. $\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$

Proof by Scott induction.

Let $d \in D$ be a pre-fixed point of f. Then,

$$\begin{array}{rcl} x \in \downarrow(d) & \Longrightarrow & x \sqsubseteq d \\ & \Longrightarrow & f(x) \sqsubseteq f(d) \\ & \Longrightarrow & f(x) \sqsubseteq d \\ & \implies & f(x) \in \downarrow(d) \end{array}$$

Hence,

 $fix(f) \in {\downarrow}(d)$.

Building chain-closed subsets (II)

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$

is an chain-closed subset of D.

Example (II)

6.

Exercit: $fg5gf \wedge f(1)5g(1)$ $\implies \bigcup_{n} f^{n} G I \subseteq \bigcup_{n} g^{n} (I)$

Let D be a domain and let $f, g : D \to D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\perp) \sqsubseteq g(\perp) \implies fix(f) \sqsubseteq fix(g)$$
.

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$ of D.

Since

 $f(x)\sqsubseteq g(x)\Rightarrow g(f(x))\sqsubseteq g(g(x))\Rightarrow f(g(x))\sqsubseteq g(g(x))$

we have that

$$f(fix(g)) \sqsubseteq g(fix(g))$$
.