Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be \textbf{NP}-complete.

Literally hundreds of naturally arising problems have been proved \textbf{NP}-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution within constraints, and the most effective way appears to be an exhaustive search of an exponential solution space.

We now examine three more \textbf{NP}-complete problems, whose significance lies in that they have been used to prove a large number of other problems \textbf{NP}-complete, through reductions.
3D Matching

The decision problem of 3D Matching is defined as:

Given three disjoint sets X, Y and Z, and a set of triples $M \subseteq X \times Y \times Z$, does M contain a matching? I.e. is there a subset $M' \subseteq M$, such that each element of X, Y and Z appears in exactly one triple of M'?

We can show that 3DM is NP-complete by a reduction from 3SAT.
Reduction

If a Boolean expression ϕ in $3CNF$ has n variables, and m clauses, we construct for each variable v the following gadget.
In addition, for every clause c, we have two elements x_c and y_c. If the literal v occurs in c, we include the triple

$$ (x_c, y_c, z_{vc}) $$

in M.

Similarly, if $\neg v$ occurs in c, we include the triple

$$ (x_c, y_c, \bar{z}_{vc}) $$

in M.

Finally, we include extra dummy elements in X and Y to make the numbers match up.
Exact Set Covering

Two other well known problems are proved \textit{NP}-complete by immediate reduction from \textit{3DM}.

\textit{Exact Cover by 3-Sets} is defined by:

Given a set U with $3n$ elements, and a collection $S = \{S_1, \ldots, S_m\}$ of three-element subsets of U, is there a sub-collection containing exactly n of these sets whose union is all of U?

The reduction from \textit{3DM} simply takes $U = X \cup Y \cup Z$, and S to be the collection of three-element subsets resulting from M.
Set Covering

More generally, we have the \textit{Set Covering} problem:

Given a set U, a collection of $S = \{S_1, \ldots, S_m\}$ subsets of U and an integer budget B, is there a collection of B sets in S whose union is U?
Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems **NP-complete**.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i.

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?
Reduction

The proof that \textsc{Knapsack} is \textsc{NP}-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U = \{1, \ldots, 3n\}$ and a collection of 3-element subsets of U, $S = \{S_1, \ldots, S_m\}$.

We map this to an instance of \textsc{Knapsack} with m elements each corresponding to one of the S_i, and having weight and value

$$\sum_{j \in S_i} (m + 1)^{-1}$$

and set the target weight and value both to

$$\sum_{j=0}^{3n-1} (m + 1)^j$$
Scheduling

Some examples of the kinds of scheduling tasks that have been proved \(\text{NP} \)-complete include:

Timetable Design

Given a set \(H \) of *work periods*, a set \(W \) of *workers* each with an associated subset of \(H \) (available periods), a set \(T \) of *tasks* and an assignment \(r : W \times T \rightarrow \mathbb{N} \) of *required work*, is there a mapping \(f : W \times T \times H \rightarrow \{0, 1\} \) which completes all tasks?
Scheduling

Sequencing with Deadlines

Given a set T of tasks and for each task a length $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set T of tasks, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?
Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

• It’s a single instance, does asymptotic complexity matter?

• What’s the critical size? Is scalability important?

• Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?

• Will an approximate solution suffice? Are performance guarantees required?

• Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?