Complexity Theory
Lecture 6

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2017

http://www.cl.cam.ac.uk/teaching/1617/Complexity/
Clique

Given a graph $G = (V, E)$, a subset $X \subseteq V$ of the vertices is called a clique, if for every $u, v \in X$, (u, v) is an edge.

As with IND, we can define a decision problem:

CLIQUE is defined as:

The set of pairs (G, K), where G is a graph, and K is an integer, such that G contains a clique with K or more vertices.
Clique 2

CLIQUE is in \textbf{NP} by the algorithm which \textit{guesses} a clique and then verifies it.

CLIQUE is \textbf{NP}-complete, since

\textbf{IND} \leq_p CLIQUE

by the reduction that maps the pair \((G, K)\) to \((\bar{G}, K)\), where \(\bar{G}\) is the complement graph of \(G\).
k-Colourability

A graph $G = (V, E)$ is k-colourable, if there is a function

$$\chi : V \to \{1, \ldots, k\}$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$\chi(u) \neq \chi(v)$$

This gives rise to a decision problem for each k.

2-colourability is in P.

For all $k > 2$, k-colourability is NP-complete.
3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x, we have two vertices x, \bar{x} which are connected in a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l_1, l_2 and l_3 we have a gadget.
With a further edge from a to b.
Hamiltonian Graphs

Recall the definition of HAM—the language of Hamiltonian graphs.

Given a graph $G = (V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle $\textit{exactly once}$.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.
Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.
Travelling Salesman

Recall the travelling salesman problem

Given

- \(V \) — a set of nodes.
- \(c : V \times V \to \mathbb{N} \) — a cost matrix.

Find an ordering \(v_1, \ldots, v_n \) of \(V \) for which the total cost:

\[
c(v_n, v_1) + \sum_{i=1}^{n-1} c(v_i, v_{i+1})
\]

is the smallest possible.
Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

$$(V, c : V \times V \rightarrow \mathbb{N}, t)$$

such that there is a tour of the set of vertices V, which under the cost matrix c, has cost t or less.
Reduction

There is a simple reduction from \textsc{HAM} to \textsc{TSP}, mapping a graph \((V, E)\) to the triple \((V, c : V \times V \to \mathbb{N}, n)\), where

\[
c(u, v) = \begin{cases}
1 & \text{if } (u, v) \in E \\
2 & \text{otherwise}
\end{cases}
\]

and \(n\) is the size of \(V\).