The halting problem
Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \quad R_1 = e \quad R_2 = \lceil [a_1, \ldots, a_n] \rceil$$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.
Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \quad R_1 = e \quad R_2 = \lceil [a_1, \ldots, a_n] \rceil$$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem. No such register machine H can exist.
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- Let H' be obtained from H by replacing $\text{START} \rightarrow$ by

 $\text{START} \rightarrow [Z := R_1] \rightarrow \text{push} Z \rightarrow \text{to} R_2$

 (where Z is a register not mentioned in H’s program).

- Let C be obtained from H' by replacing each HALT (and each erroneous halt) by $\overset{R_0^-}{\rightarrow} \overset{R_0^+}{\rightarrow}$.

- Let $c \in \mathbb{N}$ be the index of C’s program.
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if

H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if H started with $R_1 = c, R_2 = \lceil [c] \rceil$ halts with $R_0 = 0$ if & only if $\text{prog}(c)$ started with $R_1 = c$ does not halt
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if
- H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if
- H started with $R_1 = c, R_2 = \lceil \neg c \rceil$ halts with $R_0 = 0$ if & only if
- $\text{prog}(c)$ started with $R_1 = c$ does not halt if & only if
- C started with $R_1 = c$ does not halt
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if
- H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if
- H started with $R_1 = c, R_2 = \lbrack c \rbrack$ halts with $R_0 = 0$ if & only if
- $\text{prog}(c)$ started with $R_1 = c$ does not halt if & only if
- C started with $R_1 = c$ does not halt — contradiction!
Computable functions

Recall:

Definition. \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) is (register machine) computable if there is a register machine \(M \) with at least \(n + 1 \) registers \(R_0, R_1, \ldots, R_n \) (and maybe more) such that for all \((x_1, \ldots, x_n) \in \mathbb{N}^n\) and all \(y \in \mathbb{N}\),

the computation of \(M \) starting with \(R_0 = 0 \), \(R_1 = x_1, \ldots, R_n = x_n \) and all other registers set to 0, halts with \(R_0 = y \)

if and only if \(f(x_1, \ldots, x_n) = y \).

Note that the same RM \(M \) could be used to compute a unary function \((n = 1)\), or a binary function \((n = 2)\), etc. From now on we will concentrate on the unary case…
Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \rightarrow \mathbb{N}$ be the unary partial function computed by the RM with program $\text{prog}(e)$. So for all $x, y \in \mathbb{N}$:

$$\varphi_e(x) = y$$

holds iff the computation of $\text{prog}(e)$ started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

$$e \mapsto \varphi_e$$

defines an onto function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N}.
Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \rightarrow \mathbb{N}$ be the unary partial function computed by the RM with program $\text{prog}(e)$. So for all $x, y \in \mathbb{N}$:

$\varphi_e(x) = y$ holds iff the computation of $\text{prog}(e)$ started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus $e \mapsto \varphi_e$ defines an onto function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N}.

So $\mathbb{N} \rightarrow \mathbb{N}$ (uncountable, by Cantor) contains uncomputable functions.
An uncomputable function

Let $f \in \mathbb{N} \rightarrow \mathbb{N}$ be the partial function with graph
$$\{(x, 0) \mid \varphi_x(x) \uparrow\}.$$
Thus $f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ \text{undefined} & \text{if } \varphi_x(x) \downarrow \end{cases}$
An uncomputable function

Let \(f \in \mathbb{N} \rightarrow \mathbb{N} \) be the partial function with graph \(\{ (x, 0) \mid \varphi_x(x) \uparrow \} \).

Thus \(f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ \text{undefined} & \text{if } \varphi_x(x) \downarrow \end{cases} \)

\(f \) is not computable, because if it were, then \(f = \varphi_e \) for some \(e \in \mathbb{N} \) and hence

- if \(\varphi_e(e) \uparrow \), then \(f(e) = 0 \) (by def. of \(f \)); so \(\varphi_e(e) = 0 \) (since \(f = \varphi_e \)), hence \(\varphi_e(e) \downarrow \)

- if \(\varphi_e(e) \downarrow \), then \(f(e) \downarrow \) (since \(f = \varphi_e \)); so \(\varphi_e(e) \uparrow \) (by def. of \(f \))

—contradiction! So \(f \) cannot be computable.
Recall from Lecture 1:

Entscheidungsproblem means “decision problem”. Given

- a set S whose elements are finite data structures of some kind
 (e.g. formulas of first-order arithmetic)
- a property P of elements of S
 (e.g. property of a formula that it has a proof)

the associated decision problem is:

find an algorithm which terminates with result 0 or 1 when fed an element $s \in S$ and yields result 1 when fed s if and only if s has property P.
(Un)decidable sets of numbers

Given a subset $S \subseteq \mathbb{N}$, its characteristic function $\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$ is given by:

$$\chi_S(x) \triangleq \begin{cases}
1 & \text{if } x \in S \\
0 & \text{if } x \notin S.
\end{cases}$$
(Un)decidable sets of numbers

Definition. \(S \subseteq \mathbb{N} \) is called (register machine) **decidable** if its characteristic function \(\chi_S \in \mathbb{N} \to \mathbb{N} \) is a register machine computable function. Otherwise it is called **undecidable**.

So \(S \) is decidable iff there is a RM \(M \) with the property: for all \(x \in \mathbb{N} \), \(M \) started with \(R_0 = 0, R_1 = x \) and all other registers zeroed eventually halts with \(R_0 \) containing \(1 \) or \(0 \); and \(R_0 = 1 \) on halting iff \(x \in S \).
(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example. . .
Claim: $S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \}$ is undecidable.
Claim: $S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0}. From M_0’s program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

\[
\begin{align*}
&\text{let } e = R_1 \text{ and } \neg[a_1, \ldots, a_n] \equiv = R_2 \text{ in} \\
&\quad \quad R_1 ::= \neg(R_1 ::= a_1); \cdots; (R_n ::= a_n); \text{prog}(e) \neg; \\
&\quad \quad R_2 ::= 0; \\
&\quad \quad \text{run } M_0
\end{align*}
\]

Then by assumption on M_0, H decides the Halting Problem—contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.
Claim: \(S_1 \triangleq \{ e \mid \varphi_e \text{ a total function} \} \) is undecidable.
Claim: \(S_1 \triangleq \{ e \mid \varphi_e \text{ a total function} \} \) is undecidable.

Proof (sketch): Suppose \(M_1 \) is a RM computing \(\chi_{S_1} \). From \(M_1 \)'s program we can construct a RM \(M_0 \) to carry out:

\[
\text{let } e = R_1 \text{ in } R_1 ::= \neg R_1 ::= 0; \text{prog}(e) \triangledown \; \\
\text{run } M_1
\]

Then by assumption on \(M_1 \), \(M_0 \) decides membership of \(S_0 \) from previous example (i.e. computes \(\chi_{S_0} \))—contradiction. So no such \(M_1 \) exists, i.e. \(\chi_{S_1} \) is uncomputable, i.e. \(S_1 \) is undecidable.
Exercise 5 If $f: \mathbb{N} \rightarrow \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N}$ & $S_1 \subseteq \mathbb{N}$ satisfy

$$\forall e \in \mathbb{N} . \ e \in S_0 \Leftrightarrow f(e) \in S_1$$

then if S_1 is decidable, then so is S_0.
Exercise 5 If $f: \mathbb{N} \rightarrow \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N}$ and $S_1 \subseteq \mathbb{N}$ satisfy

$$\forall e \in \mathbb{N}. \ e \in S_0 \iff f(e) \in S_1$$

then if S_1 is decidable, then so is S_0.

For S_1 and S_2 as on Slides 57 & 58 we have:

$$e \in S_0 \iff \varphi_e(0) \downarrow$$

$$f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow$$
Exercise 5 If \(f : \mathbb{N} \to \mathbb{N} \) is a RM computable function, \(S_0 \subseteq \mathbb{N} \) & \(S_1 \subseteq \mathbb{N} \) satisfy

\[
\forall e \in \mathbb{N}. \; e \in S_0 \iff f(e) \in S_1
\]

then if \(S_1 \) is decidable, then so is \(S_0 \).

For \(S_1 \) & \(S_2 \) as on Slides 57 & 58 we have:

\[
e \in S_0 \iff \psi_e(0) \downarrow
\]

\[
f(e) \in S_1 \iff \forall x \in \mathbb{N}. \; \psi_{f(e)}(x) \downarrow
\]

So can apply the Exercise to deduce undecidability of \(S_1 \) from undecidability of \(S_0 \) by finding RM computable \(f : \mathbb{N} \to \mathbb{N} \) with

\[
\forall e, x. \; \psi_{f(e)}(x) = \psi_e(0)
\]
Exercise 5 If \(f: \mathbb{N} \to \mathbb{N} \) is a RM computable function, \(S_0 \subseteq \mathbb{N} \) & \(S_1 \subseteq \mathbb{N} \) satisfy

\[
\forall e \in \mathbb{N}. \ e \in S_0 \iff f(e) \in S_1
\]

then if \(S_1 \) is decidable, then so is \(S_0 \).

For \(S_1 \) & \(S_2 \) as on Slides 57 & 58 we have:

\[
e \in S_0 \iff \varphi_e(0) \downarrow
\]

\[
f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow
\]

So can apply the Exercise to deduce undecidability of \(S_1 \) from undecidability of \(S_0 \) by finding RM computable \(f: \mathbb{N} \to \mathbb{N} \) with

\[
\forall e, x. \ \varphi_{f(e)}(x) \equiv \varphi_e(0)
\]

"Kleene equivalence" (p 82): either LHS & RHS are undefined, or both are defined and equal