L2

Definition. A register machine is specified by:
» finitely many registers Ry, Ry, ..., Ry
(each capable of storing a natural number);

» a program consisting of a finite list of instructions of
the form label : body, where fori = 0,1,2,..., the
(i + 1)™ instruction has label L;.

nstruction body takes one of three forms:

add 1 to contents of register R and

+ /
RT=1 jump to instruction labelled L’

if contents of R is > 0, then subtract
R~ —L',L” 1 from it and jump to L’, else jump to
L//

HALT stop executing instructions

21

L3

Coding programs as numbers

34

Turing/Church solution of the Entscheidungsproblem uses

t
d

ne idea that (formal descriptions of) algorithms can be the
ata on which algorithms act.

0 realize this idea with Register Machines we have to be

able to code RM programs as numbers. (In general, such
codings are often called Godel numberings.)

L3

35

"Effective’ numerital codes

M Pigram miHal cantents ’F"" Al sondonds

'\ C{' Kl)---; RYL\‘) | R0
Prog, | (:‘in---, 1:\] L g\/[.(:ﬁ hatts)

Definition. f € IN"~IN is (register machine)
computable if there is a register machine M with at least
n + 1 registers Ry, Ry, ..., R, (and maybe more)

such that for all (x1,...,x,) € N" and all y € IN,

the computation of M starting with Ry = 0,
R1 = x1, ..., Ry = x, and all other registers set

to 0, halts with Ry = y

if and only if f(x1,...,%x,) = v.

N.B. there may be many different M that compute the same partial
functionf.

L2

29

"Effective’ numerital codes

PY'O% : [ih'") 1\;} — \2,
A
ode || docsde ij;mwm[
o " - ﬂég
< ong 3 [1\)""1“j> <__ ,) C_"1 [)).,'J
O‘ﬂmw\'»” Aem?iawj:vm
c—> .
1S R (ompninble

Numerical coding of pairs

'{O.l,l)B)wA}‘l

[{xy) = 2%(2y+1)
For %,y € IN, define { (x,y) (2 2"(25 +1) —1 J

w\--l/\aw\/\ sl s e/glw\} o
e Y"IS\/\\‘W\M\A ii\e 10}}4 M{V\\!HU\/\

L3 36

Numerical coding of pairs

A Ax L
For x,y € IN, define {x,y) N 2*(2y +1)
(x,y) = 2*°(2y+1) —1
eyl o+ 2 ... {n,Y) o | 2
0 l 5 S 0O 0O Z2 ¢
2 6 e .. | | § 9
2 Y 12 0. 7 >0 19

L3

36

Numerical coding of pairs

2*(2y + 1)

ZAY
For x,y € IN, define { (xy)
2 2(2y+1) —1

(x,Y)

>¢ Os
So —~—

Ob{x,y) | = |Ob
0b(x,y) | = |Oby |0

<
_

0---0
1...1

(Notation: Obx = x in binary.) e s

E.g. 27 = 0b11011 = (0,13) = (2,3)

36

Numerical coding of pairs

A Ax L
om0 £ 2008
So
0b{x,y) | = |Oby|1|0---0
Ob(x,y) | = |Oby |0 |1---1

(—, —) gives a bijection (one-one correspondence)
between IN X IN and IN.

{—, —) gives a bijection between IN X IN and
{neN|n#0}

36

L3

Numerical coding of lists

list N £ set of all finite lists of natural numbers, using ML
notation for lists:

> empty list: []

» list-cons: x:: £ € listIN (given x € N and £ € list IN)

» [, X, 00, %] = xpn(xon(ceexgnf]eer))

37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ I_[]_I 4L 0
Txu 7 2 (x,707) =2%(2-TL741)

Thus I_[xl/ X2yooo rxn]_l — <<x1/ <<x21 ©ee <<xnl O>> e >> >>

L3 37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ I_[]_I ey 0
xnl 2 (6, T00) =220+ 1)

For example:
"B]"="3:[]7=(3,0) =2°(2-0+1) =8 = 0b1000

"[1,3]7 = (1,7 [3]") = (1,8) = 34 = 0b100010

"2,1,3] "= (2,7[1,3] ") = (2,34) = 276 = 00100010100

L3 37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ I_[]_I ey 0
xnl 2 (6, T00) =220+ 1)

- 3
For example: i

T3] 7="3:[]"= (3,0) =23(2-0+1) =8 = 01000

>

"[1,3]7 = (1,7[3]") = (1,8) = 34 = 06100010

"2,1,3] "= (2,7[1,3] ") = (2,34) = 276 = 00100010100

L/V'Q\N\,.,\}
31 2

L3 37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list E

{ I_[]_I 4L 0
Txu 7 2 (x,707) =2%(2-TL741)

Ob' [x1,x2,...,%,]'|{=|1]{0---0{/1{0---0}.{1[0---0
N~ v~ A~
X

L3 37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ l‘[]‘l L 0
Txu 7 2 (x,707) =2%(2-TL741)

|

o
(-
(e
ol
<
S
o
(@
(e

Ob" [x1, X2, ..., Xy,]

Hence £ — " £ ' gives a bijection from list IN to IN.

L3 37

L3

Numerical coding of programs

Lo : body,

L1:bod
If P is the RM program ! _O Y1

L,:body,

then its numerical code is
P&’ "body, ",..., body,, "]

where the numerical code " body ' of an instruction body is
RS -L = (24,5)
defined by: ¢ "Ry —=L; Ly = (2i+1,(j,k))
THALTT = 0

38

Any x € IN decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT,
else (x > 0 and) let x = (y, z) in
if y = 21 is even, then
body(x) isR; — L,
else y = 2i+1is odd, let z = (j, k) in
body(x) isR; —Lj, L

So any e € IN decodes to a unique program prog(e),
called the register machine program with index e:

Lo : body(x)

where e = " [xg, ..., x,] "

prog(e) =

L, :body(x,)

L3 39

Example of prog(e)

— n19 18 __ — m
> 786432 = 219 4218 = 0b110...0 = "[18, 0]
18 "0”s

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, L"

» 0 = "HALT'

LO:Ra — Lo, Lo

So prog(786432) = L, :HALT

Example of prog(e)

» 786432 = 219 + 218 — 0b110...0 = "[18,0]"
N——

18 IIOIIS

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, L"

» 0 = "HALT'

So prog(786432) =

Lo: Ra — Lo, Lo
Li:HALT

N.B. jump to label with no
body (erroneous halt)

\J\H/\G\&' &AV\CH\W\ \S Covv\P\,J{A b\} o RN atlh
?\/09(7}&@422) as ks ?rogrmm 7

40

b = 0b10100\1010
='"[1,),0,2,)

1

L, ' RS L,

L B,
)PYD%(‘Gé()) = L, : HALT

L’Z : R‘—O—ﬁ LO)L’a
Ly RE L

(N er outts],)
NN \)w%’mﬂ qcv\\/\dfm'w\ does s OW\A?M-QO

Example of prog(e)

» 786432 = 219 + 218 — 0b110...0 = "[18,0]"
N——
18 “0”s

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, L"

» 0 = "HALT'

LO:R(; — Lo, Lo

So prog(786432) = CHALT
1+

N.B. In case ¢ = 0 we have 0 = "[] 7, so prog(0) is the program with
an empty list of instructions, which by convention we regard as a RM
that does nothing (i.e. that halts immediately).

L3

40

"Effective’ numerital codes

PY'O% : [ih'") 1\;} — \2,
A
ode || docsde ij;mwm[
o " - ﬂég
< ong 3 [1\)""1“j> <__ ,) C_"1 [)).,'J
O‘ﬂmw\'»” Aem?iawj:vm
c—> .
1S R (ompninble

L4

Universal register machine, U

41

Universal RM U carries out the following computation,
starting with Rg = 0, Ry = e (code of a program), R, = a
(code of a list of arguments) and all other registers zeroed:

» decode e as a RM program P
» decode a as a list of register values a4, ..., a,

» carry out the computation of the RM program P
starting with Rg = 0,Ry = a4,...,R, = a, (and any
other registers occurring in P set to 0).

L4 42

L4

Mnemonics for the registers of U and the role they play in
Its program:

R1 = P code of the RM to be simulated
Ro» = A code of current register contents of simulated RM

Rz = PC program counter—number of the current instruction
(counting from 0)

Rg = N code of the current instruction body
Rs = C type of the current instruction body

R¢ = R current value of the register to be incremented or
decremented by current instruction (if not HALT)

Ry = S, Rg = T and Rg = Z are auxiliary registers.

43

1

of list); goto |2

Overall structure of U’s program

copy PCth item of list in P to N (halting if PC > length

2

else (decode N as (v, z)); C::=1y; N:u= z; goto |3))

if N = 0 then copy Oth item of list in A to Ry and halt,

{at this point either C = 2i is even and current instruction is Rj — L,

or C = 2i +1is odd and current instruction is R, — L;, Ly where z = (j, k) }

3

copy ith item of list in A to R; goto |4

4

label; restore register values to A; goto |1

execute current instruction on R; update PC to next

L4

44

Overall structure of U’s program

1 | copy PCth item of list in P to N (halting if PC > length
of list); goto |2

2| if N = 0 then copy Oth item of list in A to Ry and halt,
else (decode N as (v, z)); C::=1y; N:u= z; goto |3))

{at this point either C = 2i is even and current instruction is Rj — L,
or C = 2i 4+ 1 is odd and current instruction is R;” — Lj, Ly where z = (j, k) }

3| copy ith item of list in A to R; goto |4

4| execute current instruction on R; update PC to next
label; restore register values to A; goto |1

To implement this, we need RMs for manipulating (codes of) lists of
numbers. . .

L4 44

