L2

Definition. A register machine is specified by:
» finitely many registers Ry, Ry, ..., Ry
(each capable of storing a natural number);

» a program consisting of a finite list of instructions of
the form label : body, where fori = 0,1,2,..., the
(i + 1)™ instruction has label L;.

nstruction body takes one of three forms:

add 1 to contents of register R and

+ /
RT=1 jump to instruction labelled L’

if contents of R is > 0, then subtract
R~ —L',L” 1 from it and jump to L’, else jump to
L//

HALT stop executing instructions
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Coding programs as numbers
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Turing/Church solution of the Entscheidungsproblem uses

t
d

ne idea that (formal descriptions of ) algorithms can be the
ata on which algorithms act.

0 realize this idea with Register Machines we have to be

able to code RM programs as numbers. (In general, such
codings are often called Godel numberings.)

L3
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"Effective’ numerital codes
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Definition. f € IN"~IN is (register machine)
computable if there is a register machine M with at least
n + 1 registers Ry, Ry, ..., R, (and maybe more)

such that for all (x1,...,x,) € N" and all y € IN,

the computation of M starting with Ry = 0,
R1 = x1, ..., Ry = x, and all other registers set

to 0, halts with Ry = y

if and only if f(x1,...,%x,) = v.

N.B. there may be many different M that compute the same partial
functionf.

L2
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"Effective’ numerital codes
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Numerical coding of pairs

'{O.l,l)B)wA}‘l

[ {xy) = 2%(2y+1)
For %,y € IN, define { (x,y) (2 2"(25 +1) —1 J
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Numerical coding of pairs

A Ax L
For x,y € IN, define {x,y) N 2*(2y +1)
(x,y) = 2*°(2y+1) —1
eyl o+ 2 ... {n,Y) o | 2
0 l 5 S 0O 0O Z2 ¢
2 6 e .. | | § 9
2 Y 12 0. 7 >0 19
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Numerical coding of pairs

2*(2y + 1)

ZAY
For x,y € IN, define { (xy)
2 2(2y+1) —1

(x,Y)

>¢ Os
So —~—

Ob{x,y) | = |Ob
0b(x,y) | = |Oby |0

<
_

0---0
1...1

(Notation: Obx = x in binary.) e s

E.g. 27 = 0b11011 = (0,13) = (2,3)
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Numerical coding of pairs

A Ax L
om0 £ 2008
So
0b{x,y) | = |Oby|1|0---0
Ob(x,y) | = |Oby |0 |1---1

(—, —) gives a bijection (one-one correspondence)
between IN X IN and IN.

{—, —) gives a bijection between IN X IN and
{neN|n#0}
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Numerical coding of lists

list N £ set of all finite lists of natural numbers, using ML
notation for lists:

> empty list: []

» list-cons: x:: £ € listIN (given x € N and £ € list IN)

» [, X, 00, %] = xpn(xon(ceexgnf]eer))
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Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ I_[]_I 4L 0
Txu 7 2 (x,707) =2%(2-TL741)

Thus I_[xl/ X2yooo rxn]_l — <<x1/ <<x21 ©ee <<xnl O>> e >> >>

L3 37




Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ I_[]_I ey 0
xnl 2 (6, T00) =220+ 1)

For example:
"B]"="3:[]7=(3,0) =2°(2-0+1) =8 = 0b1000

"[1,3]7 = (1,7 [3]") = (1,8) = 34 = 0b100010

"2,1,3] "= (2,7[1,3] ") = (2,34) = 276 = 00100010100

L3 37




Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ I_[]_I ey 0
xnl 2 (6, T00) =220+ 1)

- 3
For example: i

T3] 7="3:[]"= (3,0) =23(2-0+1) =8 = 01000

>

"[1,3]7 = (1,7[3]") = (1,8) = 34 = 06100010

"2,1,3] "= (2,7[1,3] ") = (2,34) = 276 = 00100010100

L/V'Q\N\,.,\}
31 2

L3 37




Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list E

{ I_[]_I 4L 0
Txu 7 2 (x,707) =2%(2-TL741)

Ob' [x1,x2,...,%,]'|{=|1]{0---0{/1{0---0}.{1[0---0
N~ v~ A~
X
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Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define" £ ' € IN by induction on the
length of the list £

{ l‘[]‘l L 0
Txu 7 2 (x,707) =2%(2-TL741)

|

o
(-
(e
ol
<
S
o
(@
(e

Ob" [x1, X2, ..., Xy,]

Hence £ — " £ ' gives a bijection from list IN to IN.
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Numerical coding of programs

Lo : body,

L1:bod
If P is the RM program ! _O Y1

L,:body,

then its numerical code is
P&’ "body, ",..., body,, "]

where the numerical code " body ' of an instruction body is
RS -L = (24,5)
defined by: ¢ "Ry —=L; Ly = (2i+1,(j,k))
THALTT = 0
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Any x € IN decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT,
else (x > 0 and) let x = (y, z) in
if y = 21 is even, then
body(x) isR; — L,
else y = 2i+1is odd, let z = (j, k) in
body(x) isR; —Lj, L

So any e € IN decodes to a unique program prog(e),
called the register machine program with index e:

Lo : body(x)

where e = " [xg, ..., x,] "

prog(e) =

L, :body(x,)

L3 39




Example of prog(e)

— n19 18 __ — m
> 786432 = 219 4218 = 0b110...0 = "[18, 0]
18 "0”s

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, L"

» 0 = "HALT'

LO:Ra — Lo, Lo

So prog(786432) = L, :HALT




Example of prog(e)

» 786432 = 219 + 218 — 0b110...0 = "[18,0]"
N——

18 IIOIIS

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, L"

» 0 = "HALT'

So prog(786432) =

Lo: Ra — Lo, Lo
Li:HALT

N.B. jump to label with no
body (erroneous halt)

\J\H/\G\&' &AV\CH\W\ \S Covv\P\,J{A b\} o RN atlh
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Example of prog(e)

» 786432 = 219 + 218 — 0b110...0 = "[18,0]"
N——
18 “0”s

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, L"

» 0 = "HALT'

LO:R(; — Lo, Lo

So prog(786432) = CHALT
1+

N.B. In case ¢ = 0 we have 0 = "[] 7, so prog(0) is the program with
an empty list of instructions, which by convention we regard as a RM
that does nothing (i.e. that halts immediately).

L3
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"Effective’ numerital codes
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L4

Universal register machine, U
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Universal RM U carries out the following computation,
starting with Rg = 0, Ry = e (code of a program), R, = a
(code of a list of arguments) and all other registers zeroed:

» decode e as a RM program P
» decode a as a list of register values a4, ..., a,

» carry out the computation of the RM program P
starting with Rg = 0,Ry = a4,...,R, = a, (and any
other registers occurring in P set to 0).

L4 42



L4

Mnemonics for the registers of U and the role they play in
Its program:

R1 = P code of the RM to be simulated
Ro» = A code of current register contents of simulated RM

Rz = PC program counter—number of the current instruction
(counting from 0)

Rg = N code of the current instruction body
Rs = C type of the current instruction body

R¢ = R current value of the register to be incremented or
decremented by current instruction (if not HALT)

Ry = S, Rg = T and Rg = Z are auxiliary registers.
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1

of list); goto |2

Overall structure of U’s program

copy PCth item of list in P to N (halting if PC > length

2

else (decode N as (v, z)); C::=1y; N:u= z; goto |3))

if N = 0 then copy Oth item of list in A to Ry and halt,

{at this point either C = 2i is even and current instruction is Rj — L,

or C = 2i +1is odd and current instruction is R, — L;, Ly where z = (j, k) }

3

copy ith item of list in A to R; goto |4

4

label; restore register values to A; goto |1

execute current instruction on R; update PC to next

L4
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Overall structure of U’s program

1 | copy PCth item of list in P to N (halting if PC > length
of list); goto |2

2| if N = 0 then copy Oth item of list in A to Ry and halt,
else (decode N as (v, z)); C::=1y; N:u= z; goto |3))

{at this point either C = 2i is even and current instruction is Rj — L,
or C = 2i 4+ 1 is odd and current instruction is R;” — Lj, Ly where z = (j, k) }

3| copy ith item of list in A to R; goto |4

4| execute current instruction on R; update PC to next
label; restore register values to A; goto |1

To implement this, we need RMs for manipulating (codes of) lists of
numbers. . .
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