Topic 7: Datacenters
What we will cover

• Characteristics of a datacenter environment
 – goals, constraints, workloads, etc.
• How and why DC networks are different (vs. WAN)
 – e.g., latency, geo, autonomy, ...
• How traditional solutions fare in this environment
 – e.g., IP, Ethernet, TCP, ARP, DHCP
• Not details of how datacenter networks operate
Disclaimer

• Material is emerging (not established) wisdom

• Material is incomplete
 – many details on how and why datacenter networks operate aren’t public
Why Datacenters?

Your <public-life, private-life, banks, government> live in my datacenter.

Security, Privacy, Control, Cost, Energy, (breaking) received wisdom; all this and more come together into sharp focus in datacenters.

Do I need to labor the point?
What goes into a datacenter (network)?

- Servers organized in racks
What goes into a datacenter (network)?

- Servers organized in racks
- Each rack has a ‘Top of Rack’ (ToR) switch
What goes into a datacenter (network)?

- Servers organized in racks
- Each rack has a `Top of Rack’ (ToR) switch
- An `aggregation fabric’ interconnects ToR switches
What goes into a datacenter (network)?

- Servers organized in racks
- Each rack has a ‘Top of Rack’ (ToR) switch
- An ‘aggregation fabric’ interconnects ToR switches
- Connected to the outside via ‘core’ switches
 - note: blurry line between aggregation and core
- With network redundancy of ~2x for robustness
Example 1

Brocade reference design
Example 2

Cisco reference design

~ 40-80 servers/rack
Observations on DC architecture

• Regular, well-defined arrangement
• Hierarchical structure with rack/aggr/core layers
• Mostly homogenous within a layer
• Supports communication between servers and between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANs
What’s new?
SCALE!
How big exactly?

- 1M servers [Microsoft]
 - less than google, more than amazon

- > $1B to build one site [Facebook]

- >$20M/month/site operational costs [Microsoft ’09]

But only $O(10-100)$ sites
What’s new?

• Scale
• Service model
 – user-facing, revenue generating services
 – multi-tenancy
 – jargon: SaaS, PaaS, DaaS, IaaS, ...
Implications

• Scale
 – need scalable solutions (duh)
 – improving efficiency, lowering cost is critical
 → `scale out’ solutions w/ commodity technologies

• Service model
 – performance means $$
 – virtualization for isolation and portability
Multi-Tier Applications

• Applications decomposed into tasks
 – Many separate components
 – Running in parallel on different machines
Componentization leads to different types of network traffic

- “North-South traffic”
 - Traffic between external clients and the datacenter
 - Handled by front-end (web) servers, mid-tier application servers, and back-end databases
 - Traffic patterns fairly stable, though diurnal variations
North-South Traffic

user requests from the Internet

You Live Here

Router

Front-End Proxy

Front-End Proxy

Web Server

Web Server

Web Server

Data Cache

Data Cache

Database

Database
Componentization leads to different types of network traffic

• “North-South traffic”
 – Traffic between external clients and the datacenter
 – Handled by front-end (web) servers, mid-tier application servers, and back-end databases
 – Traffic patterns fairly stable, though diurnal variations

• “East-West traffic”
 – Traffic between machines in the datacenter
 – Comm *within* “big data” computations (e.g. Map Reduce)
 – Traffic may shift on small timescales (e.g., minutes)
East-West Traffic

Distributed Storage Map Tasks Reduce Tasks Distributed Storage
East-West Traffic
Often doesn’t cross the network

Some fraction (typically 2/3) crosses the network

Distributed Storage

Always goes over the network

Map-Reduce

Distributed Storage
East-West vs North-South
What’s different about DC networks?

Characteristics

• Huge scale:
 – ~20,000 switches/routers
 – contrast: AT&T ~500 routers
What’s different about DC networks?

Characteristics

• Huge scale:
• Limited geographic scope:
 – High bandwidth: 10/40/100G
 – Contrast: Cable/aDSL/WiFi
 – Very low RTT: 10s of microseconds
 – Contrast: 100s of milliseconds in the WAN
What’s different about DC networks?

Characteristics

- Huge scale
- Limited geographic scope
- Single administrative domain
 - Can deviate from standards, invent your own, *etc.*
 - “Green field” deployment is still feasible
What’s different about DC networks?

Characteristics

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
 - can change (say) addressing, congestion control, *etc.*
 - can add mechanisms for security/policy/etc. at the endpoints (typically in the hypervisor)
What’s different about DC networks?

Characteristics

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
- Control over the *placement* of traffic source/sink
 - e.g., map-reduce scheduler chooses where tasks run
 - alters traffic pattern (what traffic crosses which links)
What’s different about DC networks?

Characteristics

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
- Control over the *placement* of traffic source/sink
- Regular/planned topologies (e.g., trees/fat-trees)

 — Contrast: ad-hoc WAN topologies (dictated by real-world geography and facilities)
What’s different about DC networks?

Characteristics

• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints
• Control over the placement of traffic source/sink
• Regular/planned topologies (e.g., trees/fat-trees)
• Limited heterogeneity
 – link speeds, technologies, latencies, ...
What’s different about DC networks?

Goals

- Extreme bisection bandwidth requirements
 - recall: all that east-west traffic
 - target: any server can communicate at its full link speed
 - problem: server’s access link is 10Gbps!
Full Bisection Bandwidth

Traditional tree topologies “scale up”
- full bisection bandwidth is expensive
- typically, tree topologies “oversubscribed”
A “Scale Out” Design

- Build multi-stage `Fat Trees` out of k-port switches
 - k/2 ports up, k/2 down
 - Supports $k^3/4$ hosts:
 - 48 ports, 27,648 hosts

All links are the same speed (e.g. 10Gps)
Full Bisection Bandwidth Not Sufficient

- To realize full bisectional throughput, routing must spread traffic across paths
- Enter load-balanced routing
 - How? (1) Let the network split traffic/flows at random (e.g., ECMP protocol -- RFC 2991/2992)
 - How? (2) Centralized flow scheduling?
 - Many more research proposals
What’s different about DC networks?

Goals

- Extreme bisection bandwidth requirements
- Extreme latency requirements
 - real money on the line
 - current target: 1μs RTTs
 - how? cut-through switches making a comeback
 * reduces switching time
What’s different about DC networks?

Goals

• Extreme bisection bandwidth requirements
• Extreme latency requirements
 – real money on the line
 – current target: 1μs RTTs
 – how? cut-through switches making a comeback
 – how? avoid congestion
 • reduces queuing delay
What’s different about DC networks?

Goals

• Extreme bisection bandwidth requirements
• Extreme latency requirements
 – real money on the line
 – current target: 1μs RTTs
 – how? cut-through switches making a comeback (lec. 2!)
 – how? avoid congestion
 – how? fix TCP timers (e.g., default timeout is 500ms!)
 – how? fix/replace TCP to more rapidly fill the pipe
An example problem at scale - INCAST

- Synchronized mice collide.
 - Caused by Partition/Aggregate.

Worker 1
Worker 2
Worker 3
Worker 4

Aggregator

RTO_{min} = 300 ms

TCP timeout
The Incast Workload

Client sends requests to the Switch.

The Switch forwards the requests to the corresponding Storage Servers.

Data Block:
1. 1
2. 2
3. 3
4. 4

Server Request Unit (SRU):

Client now sends the next batch of requests.
Incast Workload Overfills Buffers

Synchronized Read

Client

Switch

Requests Received

Responses 1-3 completed

Link Idle!

Requests Sent

Response 4 dropped

Response 4 Resent

Server Request Unit (SRU)
Queue Buildup

- Big flows buildup queues.
 - Increased latency for short flows.

- Measurements in Bing cluster
 - For 90% packets: RTT < 1ms
 - For 10% packets: 1ms < RTT < 15ms
Link-Layer Flow Control

Common between switches but this is flow-control to the end host too...

• Another idea to reduce incast is to employ Link-Layer Flow Control.....

Recall: the Data-Link can use specially coded symbols in the coding to say “Stop” and “Start”
Link Layer Flow Control – The Dark side Head of Line Blocking....

Such HOL blocking does not even differentiate processes so this can occur between competing processes on a pair of machines – no datacenter required.

Waiting for no good reason....
Link Layer Flow Control
But its worse that you imagine….

Double down on trouble….

Did I mention this is Link-Layer!

That means no (IP) control traffic, no routing messages….

a whole system waiting for one machine

Incast is very unpleasant.

Reducing the impact of HOL in Link Layer Flow Control can be done through priority queues and *overtaking*….
What’s different about DC networks?

Goals

- Extreme bisection bandwidth requirements
- Extreme latency requirements
- **Predictable, deterministic** performance
 - “your packet will reach in Xms, or not at all”
 - “your VM will always see at least YGbps throughput”
 - Resurrecting ‘best effort’ vs. ‘Quality of Service’ debates
 - How is still an open question
What’s different about DC networks?

Goals

- Extreme bisection bandwidth requirements
- Extreme latency requirements
- *Predictable, deterministic* performance
- Differentiating between tenants is key
 - e.g., “No traffic between VMs of tenant A and tenant B”
 - “Tenant X cannot consume more than XGbps”
 - “Tenant Y’s traffic is low priority”
What’s different about DC networks?

Goals

- Extreme bisection bandwidth requirements
- Extreme latency requirements
- *Predictable, deterministic* performance
- Differentiating between tenants is key
- Scalability (of course)
 - Q: How’s that Ethernet spanning tree looking?
What’s different about DC networks?

Goals
- Extreme bisection bandwidth requirements
- Extreme latency requirements
- *Predictable, deterministic* performance
- Differentiating between tenants is key
- Scalability (of course)
- Cost/efficiency
 - focus on commodity solutions, ease of management
 - some debate over the importance in the network case
Summary

- new characteristics and goals
- some liberating, some constraining
- scalability is the baseline requirement
- more emphasis on performance
- less emphasis on heterogeneity
- less emphasis on interoperability
Computer Networking UROP

• Assessed Practicals for Computer Networking.
 – so supervisors can set/use work
 – so we can have a Computer Networking *tick*
 running over summer 2017

 Talk to me.

Part 2 projects for 17-18

• Fancy doing something at scale or speed?

 Talk to me.