
Do two line segments intersect? This is a simple question, and a good starting point for many more interesting questions in
computational geometry.

Let's start with a simpler problem. Is the point q above or below the dotted line? The answer doesn't need anything more
than basic school maths.

We should really write out equations for all cases (which quadrant is p in? which quadrant is q in?), and we quickly get
tangled up. Or, we could use slightly cleverer maths, namely dot products, to get to a cleaner answer:

pT⋅q > 0: q is on the left, as you travel along the dotted line in direction 0→p

pT⋅q = 0: q is on the line itself

pT⋅q < 0: q is on the right

Let pT=(-py,px). If we rotate the vector 0→p by 90° anticlockwise, we get 0→pT. Now the sign of pT⋅q, i.e. of -pyqx+pxqy, tells
us which side of the dotted line q is on. The dotted line is called the extension of 0→p.

If t and u are both on the same side of the extension of r→s, i.e. if (s-r)T⋅(t-r) and (s-r)T⋅(u-r) have the same sign, then
the two line segments don't intersect.

1.

Otherwise, if r and s are both on the same side of the extension of t→u, then the two line segments don't intersect.2.
Otherwise, they do intersect.3.

This gives us all the tests we need to decide if two line segments r–s and t–u intersect.

7 Geometrical algorithms
7.1 Segment intersection

 Geometry Page 1

Well-written code should test all the boundary cases, e.g. when r=s or when t or u lie on the the extension of r→s. It is
however a venial sin to test equality of floating point numbers, because of the vagaries of finite-precision arithmetic, and
so the question "How should my segment-intersection code deal with boundary cases?" depends on "What do I know
about my dataset and what will my segment-intersection code be used for?" The example sheet asks you to consider a
case in detail.

 Geometry Page 2

q = 1 p1 + ... + n pn

Given a collection of points p1, ..., pn, a convex combination is any vector

where the coefficients i are all ≥ 0 and sum to 1. The convex hull of a collection of points is the set of all convex
combinations.

Convex hulls are used for example for collision detection: first test whether the convex hulls of two objects collide, and if
they do then run an exact but slower test of whether the objects themselves collide.

Here is an algorithm to compute the convex hull of a collection of points P. It is due to Jarvis (1973), and discovered
independently by Chand and Kapur (1970). (Formally, this algorithm finds the corner points of the convex hull, i.e. the
points p∈P such that p ∉ convexhull(P\{p}). But in this part of the course we shall use intuition rather than definitions.)

Algorithm
The algorithm builds up a list of points iteratively. Given the points that have been added so far, draw a line between the
last two points that were added (call them p and q). Then for every other point r∈P find the angle θ(r) that q→r makes with
the extended p→q line; pick the point with the smallest angle and add it to the list. If two points have the same smallest
angle, use the one that's furthest from p. Stop when we return to the start point.

7.2 Jarvis's march

 Geometry Page 3

How do we get the first two points to start the iteration? Start with the point q0 with the lowest y-coordinate, and if there
are several then pick the one that has the largest x-coordinate. This is guaranteed to be a corner point of the convex hull.
For the second point, use the same minimum-angle method as above, but measuring angles with respect to a horizontal
(left→right) reference line.

This is very much like selection sort: repeatedly find the item that goes in the next slot. In fact, most convex hull algorithms
resemble some sorting algorithm.

Performance note

θ(r1) is smaller than θ(r2) ⟺ r2 is on the left of the extended line q→r1

The algorithm involves "find the point r with the smallest angle θ(r)". We could use trigonometry to compute θ—but there
is a trick to make this faster. (Faster in the sense of "games get more frames per second", but no difference in the big-O
sense.) If all the points we're comparing are on the same side of dotted line, as they are at all steps of Jarvis's march, then

and we've seen how to compute this true/false value with just some multiplications and additions.

Analysis
At each step of the iteration, we search for the point r∈P with the smallest angle θ(r), thus the algorithm takes O(n h)
where n is the number of points in P and h is the number of points in the convex hull. (As wtih Ford-Fulkerson, running time
depends on the content of the data, not just the size.)

 Geometry Page 4

Here is another algorithm for computing the convex hull, due to Ronald Graham (1972).

Algorithm
Find the point r0 with the lowest y-coordinate, and if there are several then pick the one that has the largest x-coordinate.
This is guaranteed to be a corner point of the convex hull. Next, sort all other points r by the angle that r0→r makes with
the horizontal (left→right) line, lowest angle to highest. Call them r1 … rn-1.

Then, build up a list of points by adding in r1 … rn-1 in order, and backtracking when necessary:

1
2
3
4
5

h = [r0, r1]
for each ri in the sorted list of points, i≥2:
 if ri isn't on the left of the extension of the final segment of h:
 repeatedly delete points from the end of h until this is no longer the case
 append ri to h

This code doesn't deal correctly with some boundary cases. Question 5 on the example sheet asks you to spot the
problems.

Here is how the algorithm proceeds. The plots show it iterating over the ri (one row per step of the iteration) and
backtracking (side-by-side plots show steps in backtracking).

7.3 Graham's scan

 Geometry Page 5

Performance note
The algorithm involves "sort points r by the angle of the r0→r line". We don't actually need to compute angles in order to
sort by angle: all that a sorting algorithm needs is a way to test "does p have a smaller angle than q?", and the trick from
Section 7.2 will work here.

Analysis
The initial sort takes time O(n log n). Every point ri is added to the list once, and it can be removed at most once, so the
loop is O(n).

 Geometry Page 6

