
The Fibonacci heap is a fast implementation of the priority queue.

Abstract data type PriorityQueue

ADT PriorityQueue:
 # Holds a dynamic collection of items.
 # Each item has a value/payload v, and a key/priority k.

 # Extract the item with the smallest key
 Pair<Key,Value> popmin()

 # Add v to the queue, and give it key k
 push(Value v, Key k)

 # For a value already in the queue, give it a new (lower) key
 decreasekey(Value v, Key newk)

 # Sometimes we also include methods for:
 # merge two priority queues
 # delete a value
 # peek at the item with smallest key, without removing it

make V calls to popmin()•
make E calls to push() and/or decreasekey()•

Dijkstra's algorithm uses a priority queue to keep track of vertices to visit. On a graph with V vertices and E edges, Dijkstra's
algorithm might

Since E can be O(V2), we want an implementation of PriorityQueue with very fast push() and decreasekey(). The
Fibonacci Heap was developed by Fredman and Tarjan in 1984, specifically to speed up Dijkstra's algorithm.

(The code for Dijkstra's algorithm in Section 5.5 also needs to test whether a value is already in the PriorityQueue. We'll
assume that this piece of information is stored with each value, so it can be accessed in O(1) time. We won't include this test
in the ADT.)

Other implementations of PriorityQueue
We've seen two other implementations of PriorityQueue so far: the binary heap, and the binomial heap. If there are n items in
the PriorityQueue, these implementations have the following running times.

binary heap binomial heap Fibonacci heap*

peekmin O(1) O(log n) O(1)

popmin O(log n) O(log n) O(log n)

push O(log n) O(log n) O(1)

decreasekey O(log n) O(log n) O(1)

delete O(log n) O(log n) O(log n)

merge O(n) O(log n) O(1)

Recall: a binary heap is an almost-full binary tree (i.e. every level except possibly the bottom is full), and it satisfies the heap
property (each node's key is ≤ its children), so it's easy to find the minimum of the entire heap.

6 Advanced data structures
6.1 Fibonacci heap

 Adv. Data Page 1

Recall: a binomial heap is a collection of binomial trees, each satisfying the heap property, and each of different order. A
binomial tree of order k contains 2k nodes, has depth log2(k), and has a root node with k children.

Why not something simpler, a doubly linked list? If we really want push() and decreasekey() to be fast, we could just
store all the items in a doubly linked list, and also keep a pointer minitem to the item with the smallest key.

just attach the new item to the front of the list, and if k<minitem.key then update minitem;
this takes O(1) time

push(v, k):

update v's key, and if newk<minitem.key then update minitem;
this takes O(1) time

decreasekey(v, newk):

we can remove minitem in O(1) time, but to find the new minitem we have to traverse the entire list which takes
O(n) time.

popmin():

The binary heap and binomial heap do cleanup after every push() or decreasekey(), so that the data structure is
kept in a compact shape, and the next popmin() can be done quickly.

•

The linked list implementation does hardly any cleanup after push() and decreasekey(), so those operations are
fast, but popmin() is very slow.

•

General idea

Can we get the best of both worlds?

The general idea behind the Fibonacci heap is that we should be lazy while we're doing push() and decreasekey(), only
doing O(1) work, and just accumulating a collection of unsorted items; and we'll only do cleanup (into something resembling a
binomial heap) on calls to popmin().

If we're accumulating mess that will have to be cleaned up anyway, why not just cleanup as we go? The heart of the answer
lies in our analysis of heapsort in Section 2.12. We saw that it takes time O(n log n) to add n items to a binary heap one by
one, but only O(n) to heapify them in a batch. Doing cleanup in batches is the big idea behind the Fibonacci heap.

 Adv. Data Page 2

one, but only O(n) to heapify them in a batch. Doing cleanup in batches is the big idea behind the Fibonacci heap.

* It turns out that we need creative accounting to properly account for "allow some mess to build up, and cleanup from time
to time in batches". So far our complexity analyses have looked at worst-case performance on each individual operation. But
with the Fibonacci heap, it's reasonable to say that the cleanup cost should be amortized across the operations that made the
mess. Complexity analysis will be left to Section 6.3.

Implementation
Simple version: without decreasekey()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Maintain a list of heaps, i.e. their root elements
roots = []

Maintain a pointer to the smallest root
minroot = null

def push(Value v, Key k):
 create a new heap n consisting of a single node (k,v)
 add n to the list of roots
 update minroot if n.key < minroot.key

def popmin():
 take note of minroot.value and minroot.key
 delete the minroot node, and promote all its children to be roots
 # cleanup the roots
 while there are two roots with the same degree:
 merge those two roots, by making the smaller root a child of the larger
 update minroot to point to the root with the smallest key
 return the value and key we noted in line 13

typical state0.

popmin() deletes minroot, and promotes its children to the root list1.

1b. merge two trees of degree 0

1c. merge two trees of degree 1

1d. merge two trees of degree 0, and update minroot

The cleanup rule in lines 16–17 says to merge roots with the same degree, by making one root a child of the other. If both of
them are roots of binomial trees of order k, then the merged tree will be a binomial tree of order k+1. The push() rule in line
8 will only ever create binomial trees of order 0. Therefore, at all times, we have a collection of binomial trees; and after

 Adv. Data Page 3

8 will only ever create binomial trees of order 0. Therefore, at all times, we have a collection of binomial trees; and after
cleanup we have a binomial heap.

Full version: with decreasekey()
If we can decrease the key of an item in-place (i.e. if its parent is still ≤ the new key), then that's all that decreasekey()
needs to do. If however the node's new key is smaller than its parent, we need to do something to maintain the heap. We've
already discussed why it's a reasonable idea to just cut such a node out of its tree and dump it into the root list, to be cleaned
up in the next call to popmin().

There is however one extra twist. If we just cut out nodes and dump them in the root list, we might end up with trees that are
shallow and wide.

To make popmin() reasonably fast, we need to keep the maximum degree small. We managed this in a binomial heap: a
binomial tree of order k has 2k nodes, from which one can prove that a binomial heap with n items has maximum degree
O(log n). This suggests that decreasekey() should do some pruning along the way, to make sure that the trees end up with a
good number of descendants i.e. without too many childless nodes. They won't be perfect binomial trees, but they won't be
too far off.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Every node will store a flag, p.loser = True / False
Root nodes always have p.loser = False
Nodes are marked loser=True when they loose one child
If a loser node p looses its second child, cut out p and make it a root.

def decreasekey(Value v, Key newk):
 let n be the node where this value is stored
 n.key = newk
 if n still satisfies the heap condition: return
 while True:
 p = n.parent
 remove n from p.children
 insert n into the list of roots, updating minroot if necessary
 n.loser = False
 if p.loser = True:
 n = p
 else:
 if p is not a root: p.loser = True
 break

def popmin():
 mark all of minroot's children as loser = False
 then do the same as in the "simple version"

typical state0.

decrease 5 to 31.

 Adv. Data Page 4

decrease again to 02. 2b. move 0 to maintain heap; 2 is a loser

decrease 7 to 13. 3b. move 1 to maintain heap 3c. move the loser 2 to root

To delete a value v, just call decreasekey(v,-∞) then popmin(). This takes O(log n) time.•
To merge two Fibonacci heaps, just join their root lists. This takes O(1) time.•
To peek at the smallest element without deleting it, just inspect minitem. This takes O(1) time.•

Other operations

Nuts and bolts of the implementation
All problems in computer science can be solved by adding a layer of indirection; and all of the steps we've described (cutting
nodes out of their tree, promoting nodes to the root list, merging trees) can be achieved in O(1) time by keeping enough
pointers around. We can use a circular doubly-linked list for the root list; and the same for a sibling list; and we'll let each
node point to its parent; and each parent will point to one of its children.

Each node looks like this:

This Fibonacci heap:

 Adv. Data Page 5

is represented as:

 Adv. Data Page 6

Aggregate analysis

All push() does is update a handful of pointers associated with the new element, so its running time is O(1).•
popmin() first promotes minroot's children to be roots themselves, which takes time O(D) where D is the maximum
degree among all the roots in the heap. If we started with R roots, we now have D+R. Next, popmin() runs a cleanup
procedure. Here's a fuller version of how we might implement cleanup:

•

Consider the "simple version" of the Fibonacci Heap. This supports two operations, push() and popmin(). What are their
running times?

1
2
3
4
5
6
7
8

newroots = [null, null,] # empty array of length D+1
for each r in the list of roots:
 x = r
 while newroots[x.degree] is not null:
 x = merge(x, newroots[x.degree])
 newroots[x.degree] = null
 newroots[x.degree] = x
roots = list of non-null values in newroots

One way to analyse this is to say: the maximum number of iterations of lines 5–6 is D, and the for loop in line 2 has D + R
iterations (i.e. the number of roots we started with), so the total running time is O(D2 + R D).

A more sensible analysis is as follows. Every time line 5 is run, we merge two roots. We started with D + R roots, so the
maximum number of merges is D + R, so the total running time is O(D + R). This style of analysis is called aggregate analysis. It
just means "Work out the worst-case total cost of a sequence of operations".

We used aggregate analysis throughout our analyses of graph algorithms. For example, we said that depth-first search has
running time O(V + E), because it investigates each vertex and each edge at most once; a naive worst-case analysis would
have said "At every vertex we look at O(E) neighbours, and there are V vertices in total, so the total running time is O(V E)."

Accounting method
Some items, like fridges, are expensive to dispose of. If it costs £X for the item and £Y to dispose of, I could treat it as costing
£(X+Y): pay £X, put £Y in the bank, and I'll be sure I'll have enough money to dispose of it when the time comes. The same
accounting trick can be used for aggregate analysis of running time, as follows:

Suppose we start with a Fibonacci Heap in state 0, and it has just had cleanup run; and we then do N push()es followed by
1 popmin().

initial state 0

max degree D = 2
push() push() push()

N = 3 new roots
popmin()
≤ D+1+N roots cleaned up

push() has amortized cost O(1)•
popmin() has amortized cost O(D)•

Each push takes a constant number of elementary operations. If the maximum degree among all roots is D, then 0 had at
most D + 1 roots (we assumed 0 had just been cleaned up, so no two roots have the same degree), so popmin() has up to D
+ 1 + N roots to clean up, which takes up to O(D + N) elementary operations. The aggregate running time for this full
sequence of operations is therefore O(D + N). Let's use the accounting trick, and ascribe the +N part of this cost to each of the
N push operations: we'll declare:

worst-case aggregate true cost = N1 O(1) + N2 O(D)
worst-case aggregate true cost = O(N1 + N2 D).

What do we actually mean by amortized cost? We just mean that aggregate true cost is less than or equal to the aggregate
amortized costs. In other words, for any sequence of operations consisting of N1 push()es and N2 popmin()s,

6.2 Creative accounting

 Adv. Data Page 7

Why is this useful? Without this accounting trick, the only precise statement we can make about the running time of
popmin() is that it is O(R) where R is the number of roots, and R = O(n) where n is the total number of elements in the heap.
If we want to bound the running time of a sequence of operations, then the statement "popmin() is O(n)" does not give us
tight answers.

The potential method

c + Φ(') - Φ()

Some data structures have a natural way to measure "stored-up mess that has to be cleaned up eventually". Suppose there is
a function Φ, called the potential function, that maps possible states of the data structure to non-negative real numbers. This
gives us a systematic way to apply the accounting trick: let c be the true cost of an operation, let be the state of the data
structure just before, let ' be the state just after, and define the amortized cost of the operation to be

 0 ⟶c1 1 ⟶c2 2 ⟶c3 ⋯ ⟶ck k

In an aggregate analysis, for a sequence of operations

where the true costs are c1, …, ck,

= [-Φ(0) + c1 + Φ(0)] + [-Φ(1) + c2 + Φ(2)] + ⋯ + [-Φ(k-1) + ck + Φ(k)]
= c1 + ⋯ + ck + Φ(0) - Φ(k)
= total true cost - Φ(0) + Φ(k)

total amortized cost

It's convenient to set Φ=0 when the initially empty data structure is created, and we'll require that Φ≥0 for all possible
states. This guarantees that the total true cost of any sequence of operations is ≤ the total amortized cost.

Example

Φ() = number of roots in
To illustrate, let's look again at the Fibonacci Heap (simple version), and define the potential function

push() requires O(1) elementary operations, and it increases Φ by 1, so it has amortized cost O(1).•
popmin() first promotes its children to the root list, which takes O(D) elementary operations, and increases Φ by
O(D). It then runs cleanup, which involves merging a certain number of trees: every merge takes O(1) elementary
operations, and decreases Φ by 1. So cleanup has already been "paid for", and the total amortized cost is just O(D).

•

What are the amortized costs of push() and popmin(), with respect to this potential function?

We should really be more precise when we say "O(1) elementary operations are cancelled out by ΔΦ = -1". By O(1) we just
mean "a constant number of elementary operations", and we'll take 1 unit of Φ to be worth the largest of these constants.

The potential method has given us exactly the same amortized costs that we proposed for the accounting method.

 Adv. Data Page 8

Φ() = number of roots in + 2 (number of loser nodes in)
Let's derive the amortized costs in the "full version" Fibonacci Heap, using the potential function

Amortized cost of operations
push() takes O(1) elementary operations, and increases Φ by 1, so the amortized cost is O(1).

popmin() first promotes its children to the root list and marks them as not losers, which takes O(D) elementary operations
and increases Φ by O(D). It then runs cleanup, which involves merging some number of trees t, which takes O(t) work and
also decreases Φ by t. So the amortized cost is O(D).

decreasekey() takes O(1) elementary operations to decrease the key. If the node doesn't have to move, then Φ doesn't
change, so amortized cost = true cost = O(1).

Move A to the root list. True cost is O(1), and Φ increases by ≤ 1 (it increases by 1 if A wasn't a loser, and decreases
by 1 if it was.)

1.

Move some loser ancestors B, C to the root list. For each of these, the true cost is O(1), and Φ increases by 1 because
there's a new root, and decreases by 2 because the node gets marked as not a loser. Thus the amortized cost of this
part is zero, regardless of the number of loser ancestors.

2.

One ancestor D might have to be marked as a loser. True cost is O(1), and Φ increases by 2.3.

If the node A does have to move,

The total amortized cost is O(1). We can see now why the potential function had to be defined the way it was: so that the
amortized cost of step 2 does not depend on the number of loser ancestors.

Bounding the shape of the trees
The amortized cost of popmin() is O(D), where D is the maximum number of children in any of the trees. The peculiar
mechanism of decreasekey() was designed in order to keep D small. How small? The answer rests on a theorem, which
we will now prove (and which should remind you of Exercise 37).

Theorem. In the Fibonacci heap, if a node has d children, then the total number of nodes in the subtree rooted at that node
is at least Fd+2, the (d+2)nd Fibonacci number.

The exact value of the Fibonacci numbers doesn't matter. What matters is the following corollary, which is easy to prove,
given the mathematical fact that Fd grows exponentially: Fd+2 ≥ φd, where φ = (1+√5)/2 is the golden ratio. (See your answer
to Exercise 50, about the maximum degree in a binomial heap, for a similar proof.)

Corollary. In a Fibonacci heap with n items, D = O(log n).

6.3 Analysis of Fibonacci heap

 Adv. Data Page 9

Corollary. In a Fibonacci heap with n items, D = O(log n).

Proof of theorem.
First, some observations about the execution of the algorithm. Take any node x in a Fibonacci heap, and suppose it has d
children. Consider the evolution of the heap, up to the point in time T that x has these children. They were made x's children
in some order, say y1 then ... then yd. When yk was made a child of x, at time Tk say, x had ≥ k-1 children: y1 … yk-1, and
possibly some others that have since been cut out. By the rule for cleanup, lines 16–17 in popmin(), yk had the same
number of children as x at time Tk, namely ≥ k-1. Now, at time T, yk must have ≥ k-2 children: any fewer, and it would have
been cut out of the tree by lines 30-–35 of decreasekey().

N0 = 1 (a node with no children)
N1 = 2 (a node with one child and no grandchildren)
Nd = 1 + 1 + N0 + ⋯ + Nd-2 (the root node + y1's subtree + y2's subtree + ⋯ + yd's subtree)
Nd = Nd-1 + Nd-2 (by substituting in the expression for Nd-1)

Next, some mathematical observations. Let Nd be the minimum possible number of nodes in a subtree whose root has
degree d. Using what we have just observed about the number of x's grandchildren,

and these are the defining equation for the Fibonacci numbers, only offset by 2.
QED.

 Adv. Data Page 10

The DisjointSet data structure (also known as union-find or merge-find) is used to keep track of a dynamic collection of disjoint
sets. We used it in Kruskal's algorithm for finding a minimum spanning tree: each individual item was a vertex of a graph, and we
used sets to track which vertices we had joined together into tree fragments.

Abstract data type DisjointSet

ADT DisjointSet:
 # Holds a dynamic collection of disjoint sets

 # Return a handle to the set containing an item.
 # The handle must be stable, as long as the DisjointSet is not modified.
 Handle get_set_with(Item x)

 # Add a new set consisting of a single item (assuming it's not been added already)
 add_singleton(Item x)

 # Merge two sets into one
 merge(Handle x, Handle y)

The specification doesn't say what a handle is, only that the handles don't change unless the DisjointSet is modified (by either
add_singleton() or merge()). In practice, we might use a representative element from each set as the set's handle.

Implementation 1: flat forest

get_set_with() is just a single lookup.•
merge() needs to iterate through all the items in one or other set, and update its pointer. This takes O(n) time, where n is
the number of items in the DisjointSet.

•

To make get_set_with() fast, we could make each item point to its set's handle.

To be able iterate through the items, we could store each set as a linked list:

A smarter way to merge() is to keep track of the size of each set, and pick the smaller set to update. This is the weighted union
heuristic. It can be shown that the aggregate cost of any sequence of m operations on n elements (i.e. m operations, of which n
are add_singleton()) is O(m + n log n).

6.4 Disjoint sets

 Adv. Data Page 11

Implementation 2: deep forest

merge() attaches one root to the other, which only requires updating a single pointer•
get_set_with() needs to walk up the tree to find the root. This takes O(h) time, where h is the height of the tree.•

To make merge() faster, we could skip all the work of updating the items in a set, and just build a deeper tree.

To keep h small, we can use the same idea as with the flat forest: keep track of the rank of each root (i.e. the height of its tree),
and always attach the lower-rank root to the higher-rank. If the two roots had ranks r1 and r2 then the resulting rank is max(r1,r2)
if r1≠r2, and r1+1 if r1=r2. Call this the union by rank heuristic.

Implementation 3: lazy forest
We'd like the forest to be flat, so that get_set_with() is fast; but we'd like to let the forest get deep so that merge() can be
fast.

Implement merge() as in the deep forest.•
Whenever get_set_with(x) is called, walk up the tree to find the root; and then walk up the tree a second time and
make x and all the intermediate nodes be direct children of the root.

•

A smart idea is to flatten the forest lazily:

This is called the path compression heuristic. We won't adjust the stored ranks during path compression (and so rank won't be
the exact height of the tree, just an upper bound on the height.)

 n = 0 for n=0,1,2
 n = 1 for n=3
 n = 2 for n=4,5,6,7
 n = 3 for 8≤n≤2047
 n = 4 for 2048≤n≤1080, which is more than there are atoms in the observable universe

It can be shown that with the lazy forest the cost of m operations on n items is O(m n), where n is an integer-valued
monotonically increasing sequence (related to the Ackerman function) that grows extremely slowly:

For practical purposes, n may be ignored in the O notation, and therefore the amortized cost per operation is O(1).

 Adv. Data Page 12

