
A great many algorithmic questions are about entities and the connections between them. Graphs are how we describe them. A
graph is a set of vertices (or nodes, or locations) and edges (or connections, or links) between them.

Example
Leonard Euler in Königsberg, 1736, posed the question "Can I go for a stroll around the city on a route that crosses each bridge
exactly once?" He proved the answer was "No". His innovation was to turn this into a precise mathematical question about a
simple discrete object—a graph.

Example
OpenStreetMap represents its map as XML, with nodes and ways.

<osm version="0.6" generator="Overpass API">
 <node id="687022827" lat="52.2082725" lon="0.1379459" user="François Guerraz"/>
 <node id="687022823" lat="52.2080972" lon="0.1377715" user="bigalxyz123"/>
 <node id="687022775" lat="52.2080032" lon="0.1376761" user="bigalxyz123">
 <tag k="direction" v="clockwise"/>
 <tag k="highway" v="mini_roundabout"/>
 </node>
 <way id="3030266" user="urViator">
 <nd ref="687022827"/>
 <nd ref="687022823"/>
 <nd ref="687022775"/>
 <tag k="cycleway" v="lane"/>
 <tag k="highway" v="primary"/>
 <tag k="name" v="East Road"/>
 <tag k="oneway" v="yes"/>
 </way>
...
</osm>

In some parts of the city, this data is very fine-grained. The more vertices
and edges there are, the more space it takes to store the data, and the slower
the algorithms run. Later in this course we will discuss geometric algorithms
which could be used to simplify the graph while keeping its basic shape.

Example
It's up to you to decide what counts as a vertex and what counts as an edge.

5. Graphs
5.1. Notation and representation

 Graphs Page 1

Definitions

The graph is referred to as G=(V,E) where V is the set of vertices and E the set of edges. Write (v1,v2)∊E to refer to an
edge.

•

Sometimes the vertices or the edges have associated weights or other labels, as in the OpenStreetMap example.•
The graph may be directed in which case (v1,v2) means an edge from v1 to v2, also written v1→v2. Or it may be undirected
in which case (v1,v2) is treated the same as (v2,v1).

•

We will not allow multiple edges between the same pair of vertices, unless stated otherwise. We will allow edges from a
vertex back to itself, unless stated otherwise.

•

A path is a sequence of vertices connected by edges. A path from a vertex back to itself is a cycle. A graph is connected if
for every pair of vertices there is a path between them.

•

Graphs without cycles have special importance, and DAG stands for Directed Acyclic Graph. In a DAG, if v1→v2 we say that
v1 is the parent of v2, or equivalently v2 is the child of v1.

•

An undirected graph that has no cycles and is connected is called a tree. If it is not connected it is a forest.•

There are many different types of graph. Here are some common definitions.

Representation
Here are two standard ways to store graphs in computer code: as an array of adjacency lists, or as an adjacency matrix. The
former takes space O(V+E), and the latter takes space O(V2), so your choice should depend on the density of the graph,
density=E/V2. (Note: V and E are sets, so we should really write O(|V|+|E|) etc., but it is conventional to drop the |·|.)

 Graphs Page 2

A web crawler for a search engine: a vertex is a page, and an edge is a hyperlink. Follow all the links you can, and retrieve
every page, and add it to your search index.

•

Path finding. To find a path from one vertex v0 to some other vertex v1: start at v0 and traverse the graph, remembering your
path, stopping when you reach v1.

•

Component finding: assign each disconnected component of a graph a different colour.•

A common task is traversing a graph and doing some work at each vertex, e.g.

General idea

A Greek legend describes how Theseus navigated the labyrinth containing the half-human half-bull
Minotaur. His lover Ariadne gave him a ball of thread, and he tied one end at the entrance, and he
unwound the thread as he walked through the labyrinth seeking the Minotaur's lair.

With a couple of tweaks, this gives us an algorithm for traversing a graph. Keep exploring new edges whenever you find them. Mark
the vertices you've visited, so if you come across them again you don't retread your steps. Keep track of which vertices you' ve seen
but not completely explored, so you can come back to them.

Implementation
We could keep track of the vertices we're waiting to explore using a stack.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

def dfs(g, s):
 # Visit all the vertices reachable from s
 for v in g.vertices:
 v.seen = False
 toexplore = Stack([s])
 s.seen = True

 while not toexplore.is_empty():
 v = toexplore.popright()
 print "visiting", v
 for w in v.neighbours:
 if w.seen: continue
 toexplore.pushright(w)
 w.seen = True

dfs_stack

Or we could implement it using recursion, i.e. use the language's call stack rather than our own.

1
2
3
4
5
6
7
8
9
10
11
12

def dfs(g, s):
 # Visit all the vertices reachable from s
 for v in g.vertices:
 v.visited = False
 visit(s)

def visit(v):
 v.visited = True
 print "visiting", v
 for w in v.neighbours:
 if w.visited: continue
 visit(w)

dfs_recurse

We can tweak the dfs_recurse code to find a path between a pair of nodes. All it takes is a few extra lines (labelled +) to k eep track
of the path so far.

1
2
3
4
5 +
6
7 +
8 +
9 +
10 +
11
12

def dfs(g, s, t):
 # Find a path from s to t, assuming one exists
 for v in g.vertices:
 v.visited = False
 s.come_from = None
 visit(s)
 path = [t] # a list with one element
 while path[0].come_from is not None:
 path.prepend(path[0].come_from)
 return path

def visit(v):

5.2. Depth first search

 Graphs Page 3

12
13
14
15
16 +
17

def visit(v):
 v.visited = True
 for w in v.neighbours:
 if w.visited: continue
 w.come_from = v
 visit(w)

dfs_recurse_path

If the graph is disconnected, and we have access to the full list of vertices, we can repeatedly restart the search to ensure we visit
all vertices.

1
2
3
4
5
6
7
8

def dfs(g):
 # visit all vertices
 for v in g.vertices:
 v.visited = False
 for v in g.vertices:
 if v.visited: continue
 print "starting dfs from", v
 visit(v)

dfs_recurse_all

Analysis
In dfs_recurse, line 4 is executed for every vertex, lines 8--9 are executed at most once per vertex, and line 11 is executed for every
edge out of each vertex that is visited. Thus the total running time is (V+E).

 Graphs Page 4

Represent movies by vertices. Write v1→v2 to mean "The user has said she prefers v1 to v2". Is there a way to turn these
pairwise preferences into a complete ranking, so that whenever v1→v2 then rank(v1)<rank(v2)? (Remember, rank=1 means
top-ranked.)

•

Deep learning systems like TensorFlow involve writing out the learning task as a collection of computational steps, each of
which depends on the answers of some of the preceding steps. Write v1→v2 to mean "Step v2 depends on the output of v1."
In what order should the steps be run?

•

A directed graph can be used to represent ordering or preferences. We might then like to find a total ordering (also known as a
linear ordering or complete ranking) that's compatible. For example,

Examples
It's easy to see that the total order might not be unique:

Does there exist a total order? If the graph has cycles, then no.

General idea
Depth-first search reaches a vertex v, then visits all its children and everything reachable from them. We want v to appear earlier
in the ordering than its children and descendants. This suggests two possibilities: either (a) we assign the rank as soon as we visit a
vertex (just after line 7 in dfs_recurse) and we increment the rank counter; or (b) we assign the rank when we leave a vertex (just
after line 12) and we decrement the rank counter. With a tree, both possibilities work fine. With a general DAG, it's easy to find
examples where (a) doesn't work.

5.3. Topological sort

 Graphs Page 5

Problem statement
Given a directed acyclic graph (DAG), return a total ordering of all its vertices such that if v1→v2 then v1 appears before v2 in the
ordering.

Implementation
This algorithm is due to Knuth. It is based on dfs_recurse_all, with some extra lines (labelled +). These extra lines build up a linked
list for the rankings, as the algorithm visits and leaves each vertex. There are also some commented lines which aren't part of the
algorithm itself, but which are helpful for arguing that the algorithm is correct. They're a bit like assert statements: they're there
for our understanding of the algorithm, not for its execution.

1
2
3
4
5 +
6
7
8
9 +
10
11
12
13
14
15
16
17 +
18

def toposort(g):
 for v in g.vertices:
 v.visited = False
 # v.colour = 'white'
 totalorder = [] # an empty list
 for v in g.vertices:
 if v.visited: continue
 visit(v, totalorder)
 return totalorder

def visit(v, totalorder):
 v.visited = True
 # v.colour = 'grey'
 for w in v.neighbours:
 if w.visited: continue
 visit(w, totalorder)
 totalorder.prepend(v)
 # v.colour = 'black'

toposort

Analysis
We haven't changed the running time from that of dfs_recurse_all, which is (V+E).

Theorem: The toposort algorithm terminates and returns totalorder which solves the problem statement.

If v2 is black, then it must already have been prepended to totalorder in line 17, and v1 hasn't yet been prepended,
therefore v1 will wind up earlier in totalorder than v2.

1.

If v2 is white, i.e. not yet visited, then it will be visited in line 16 as one of v1's neighbours. During this visit, it will be
prepended to totalorder. The visit to v2 will complete before we go on to line 17 and prepend v1. Therefore v1 will end up
earlier in totalorder than v2.

2.

Suppose v2 is grey. In this case, the call visit(v1) must be nested inside the call visit(v2), and the recursion stack gives us
a path from v2 to v1. But we've assumed that v1→v2. Therefore there is a cycle. But we've assumed that g is a DAG, i.e. it has
no cycles, which is a contradiction. Therefore this case cannot occur.

3.

Proof: Take two vertices v1 and v2 with an edge v1-v2. Imagine setting a breakpoint at line 13, to be triggered when v1 becomes
coloured grey. At this point, there are three possibilities for the colour of v2:

QED.

 Graphs Page 6

Now we'll look at path-finding algorithms, of ever greater sophistication. We've seen that depth-first search can be
used to find paths, though they may be very indirect. What about shortest paths?

General idea
Keep track of an expanding ring, called the frontier. Initially it contains just our start vertex. Repeatedly expand the
frontier: first expand it to all vertices that are 1 hop from the start, then all vertices that are 2 hops, and so on. As
soon as the frontier hits our end node, we've found a shortest path.

Here, the graph has a vertex for every light grey grid cell and edges between adjacent grid cells, and we're starting
from the red blob.

(These pictures are taken from the excellent Red Blob Games blog, http://www.redblobgames.com/pathfinding/a-
star/introduction.html)

Implementation
This code is almost identical to dfs_stack, the only difference being that we use a queue rather than a stack (changed
lines labelled *). By using a queue, we will first visit all nodes in order of how many hops they are from the start
vertex, and we don't actually need to keep track of the number of hops.

1
2
3
4
5 *
6
7
8
9
10
11
12
13 *
14

def bfs(g, s):
 # Visit all the vertices reachable from s
 for v in g.vertices:
 v.seen = False
 toexplore = Queue([s])
 s.seen = True

 while not toexplore.is_empty():
 v = toexplore.popright()
 print "visiting", v
 for w in v.neighbours:
 if w.seen: continue
 toexplore.pushleft(w)
 w.seen = True

bfs

5.4. Breadth first search

 Graphs Page 7

http://www.redblobgames.com/pathfinding/a-star/introduction.html
http://www.redblobgames.com/pathfinding/a-star/introduction.html

In many applications it's natural to use graphs where each edge is labelled with a cost, and to look for paths with minimum cost.
For example, suppose the graph's edges represent road segments, and each edge is labelled with travel time: how do we find the
quickest route between two locations?

This is called the shortest path problem. We'll use the terms cost and distance interchangeably, and write "distance from v1 to
v2" to mean "the cost of a minimum-cost path from v1 to v2".

Illustration
These pictures show two possible paths between the red blob and the purple cross. The left hand picture shows the number of
hops from the red blob; the right picture shows the distance from the red blob. Here, dark grey cells can't be crossed, light grey
cells cost 1 to cross, and green cells cost 5.

number of hops distance

General idea
In breadth-first search, we visited vertices in order of how many hops they are from the start vertex. Now, we'll visit vertices in
order of distance from the start vertex. We'll keep track of a frontier of vertices that we're waiting to explore (i.e. the vertices
whose neighbours we need to examine), but now we'll order it by distance rather than by number of hops. We'll use a priority
queue to store the vertices in the frontier.

We might end up coming across a vertex multiple times, with different costs, so we need to change the logic. We'll add the
vertex to the frontier either if we've never come across it, or if we've come across it already and our new path is shorter than the
old path.

5.5. Dijkstra's algorithm

 Graphs Page 8

Problem statement
Given a directed graph where each edge is labelled with a cost ≥ 0, and a start vertex s, compute the distance from s to every
other vertex.

Implementation

The question of whether Machines Can Think [...] is about as relevant as the question of whether Submarines Can Swim.•
If you want more effective programmers, you will discover that they should not waste their time debugging, they should
not introduce the bugs to start with.

•

This algorithm was invented in 1959 and is due to Dijkstra (1930--2002), an influential pioneer of computer science, and an
idiosyncratic character famous for his way with words. Some of his sayings:

Line 5 declares that toexplore is a priority queue where the priority of an item v is v.distance. Line 10 iterates through all
the vertices w that are neighbours of v, and retrieves the cost of the edge v→w at the same time.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
 for v in g.vertices:
 v.distance = infinity
 s.distance = 0
 toexplore = PriorityQueue([s], sortkey = lambda v: v.distance)

 while not toexplore.isempty():
 v = toexplore.popmin()
 # Assert: v.distance is the true shortest distance from s to v
 # Assert: v is never put back into toexplore
 for (w, edgecost) in v.neighbours:
 dist_w = v.distance + edgecost
 if dist_w >= w.distance: continue
 w.distance = dist_w
 if w in toexplore:
 toexplore.decreasekey(w)
 else:
 toexplore.push(w)

dijkstra

Although we've called the variable v.distance, we really mean "shortest distance from s to v that we've found so far". It starts at
∞ and it decreases as we find new and shorter paths to v. It's easy to see that the algorithm never sets v.distance to be less than
the true minimum distance from s to v, since it only ever looks at legitimate paths from s.

Given the assertion on line 10, we could have coded this algorithm slightly differently: we could put all nodes into the priority
queue in line 5, and delete lines 15, 17 and 18. It takes some work to prove the assertion.

Analysis
The running time depends on how the priority queue is implemented. Later in the course, we'll describe an implementation
called the Fibonacci heap which for n items has O(1) running time for both push() and decreasekey() and O(log n) running
time for popmin(). Line 8 is run at most once per vertex (by the assertion on line 10), and lines 12--18 are run at most once per
edge. So Dijkstra has running time O(E + V log V), when implemented using a Fibonacci heap.

Theorem. When run on a graph as described in the problem statement, the algorithm terminates. When it terminates then, for
every vertex v, v.distance is equal to the distance from s to v.

 Graphs Page 9

 Graphs Page 10

 Graphs Page 11

In some applications, we have graphs where some edge weights are negative. This is useful where we think of vertices as
states that an entity can be in, and edges as actions that take it from one state to another, and where some actions have cos ts
and others have rewards.

(The word 'distance' suggests a positive number, so we'll switch to the more neutral word weight.)

Examples
Let vertices represent currencies. If you can exchange 1 unit of v1 for x units of v2, put an edge v1→v2 with weight −log(x),
which may be positive or negative. We'd expect that every cycle from a vertex back to itself would have positive weight, i.e.
that sequence of currency exchanges loses money. If however we find a cycle of negative weight, then there is an arbitrage
opportunity.

Example: cycles with negative weight
For this graph, Dijkstra's algorithm does not terminate: it visits the three vertices in the cycle over and over again, reduc ing
their distance scores each time, and each time putting the next vertex in the cycle back into toexplore.

General idea

The idea of the Bellman-Ford algorithm is simply to keep on applying this rule to all edges in the graph, over and over again,
updating "best weight from s to v found so far" if a path via u gives a lower weight. The magic is that we only need to apply it a

fixed number of times.

Problem statement
Given a directed graph where each edge is labelled with a weight, and a start vertex s, (i) if the graph contains no negative-
weight cycles reachable from s then for every pair of vertices compute the weight of the minimal-weight path between those
vertices; (ii) otherwise detect that there is a negative weight cycle reachable from s.

Implementation
In this code, lines 7 and 11 iterate over all edges in the graph, and c is the weight of the edge u→v. The assertion in line 9
refers to the true minimum weight among all paths from s to v, which it doesn't know yet; the assertion is just there to help us

5.6. Bellman-Ford

 Graphs Page 12

refers to the true minimum weight among all paths from s to v, which it doesn't know yet; the assertion is just there to help us
reason about how the algorithm works, and it's not part of the execution.

1
2
3
4
5
6
7
8
9
10
11
12
13

def bf(g, s):
 for v in g.vertices:
 v.minweight = infinity
 s.minweight = 0

 repeat len(g.vertices)-1 times:
 for (u,v,c) in g.edges:
 v.minweight = min(u.minweight + c, v.minweight)
 # Assert v.minweight >= true minimum weight from s to v

 for (u,v,c) in g.edges:
 if u.minweight + c < v.minweight:
 throw "Negative cycle detected"

bellman_ford

Analysis
The algorithm iterates over all the edges, and it repeats this V times, so the overall running time is O(V E).

Theorem. The algorithm correctly solves the problem statement. In case (i) it terminates successfully, and in case (ii) it throws
an error in line 13.

 Graphs Page 13

 Graphs Page 14

What if we want to compute shortest paths between all pairs of vertices?

Each router in the internet has to know, for every packet it might receive, where that packet should be forwarded to.
Path preferences in the Internet are based on link costs set by internet service providers. Routers send messages to
each other advertising which destinations they can reach and at what cost. The Border Gateway Protocol (BGP)
specifies how they do this. It is a distributed path-finding algorithm, and it is a much bigger challenge than computing
paths on a single machine.

•

The betweenness centrality of an edge is defined to be the number of shortest paths that use that edge, from all the
shortest paths between all pairs of vertices in a graph. (If there are n shortest paths between a pair of vertices, count
each of them as contributing 1/n.) The betweenness centrality is a measure of how important that edge is, and it's used
for summarizing the shape of e.g. a social network. To compute it, we need shortest paths between all pairs of vertices.

•

General idea
If all edge weights are ≥ 0, we can just run Dijkstra's algorithm V times, once from each vertex. The running time is O(V2 log(V)
+ V E), which is just V times the running time of Dijkstra.

If some edge weights are < 0, we could run the Bellman-Ford algorithm once from each vertex, and the total running time
would be O(V2 E). But there is a clever trick, published by Donald Johnson in 1977, whereby we can run Bellman-Ford once,
then run Dijkstra once from each vertex, then run some cleanup for every pair of vertices. The running time is therefore O(V2

log(V) + V E) + O(V E) + O(V2) which is O(V2 log(V) + V E).

Problem statement
Given a directed graph where each edge is labelled with a weight, (i) if the graph contains no negative-weight cycles then for
every pair of vertices compute the weight of the minimal-weight path between those vertices; (ii) if the graph contains a
negative-weight cycle then detect that this is so.

Implementation and analysis

5.7. Johnson's algorithm

 Graphs Page 15

 Graphs Page 16

 Graphs Page 17

There is another algorithm to find shortest paths between all pairs of vertices which is based entirely on algebra with barely any
thought about graphs. Its running time is O(V3 log(V)). This is worse than Johnson's algorithm, but it's very simple to implement.
And it's a nice example of what you can do with clever notation, which is a good trick to have up your sleeve.

General idea
The art of dynamic programming is figuring out how to express our problem in a way that has easier subproblems. Sometimes, we
can achieve this by turning our original problem into something that seems harder. In this case,

Let M(n) be a VxV matrix, where M(n)
ij = minimum weight among all paths from i to j that have n or fewer edges.

We can write out an equation for M(n) in terms of M(n-1), and this leads directly to an algorithm for computing M(n). We still need to figure out how
large n has to be, and that turns out to be easy.

Problem statement
(Same as for Johnson's algorithm.) Given a directed graph where each edge is labelled with a weight, (i) if the graph contains no negative-weight
cycles then for every pair of vertices compute the weight of the minimal-weight path between those vertices; (ii) if the graph contains a negative-
weight cycle then detect that this is so.

Analysis

5.8. All-pairs shortest paths with matrices

 Graphs Page 18

 Graphs Page 19

Given a connected undirected graph, where all edges have weights, a minimum spanning tree (MST) is a tree that 'spans' the
graph i.e. connects all the vertices, and which has minimum weight among all spanning trees. (The weight of a tree is just the sum
of the weights of its edges.)

For clustering: let vertices represent the things we want to cluster, and let the weight of an edge measure the dissimilarity
between its vertices. If we delete the k-1 edges of largest weight, we're left with k clusters. This can be used, for example,
to find regions in an image.

•

The MST problem was first posed and solved by the Czech mathematician Borůvka in 1926, motivated by a network
planning problem. His friend, an employee of the West Moravian Powerplants company, put to him the question: if you
have to build an electrical power grid to connect a given set of locations, and you know the costs of running cabling
between locations, what is the cheapest power grid to build?

•

For solving the MST problem, and for other problems to do with constructing networks on top of graphs, it's useful to make a
definition: a cut of a graph is an assignment of its vertices into two non-empty sets, and an edge crosses the cut if its two ends are
in different sets.

General idea
We'll build up the MST greedily. Pick an arbitrary vertex to start the tree. Every iteration, we have some vertices which are already
part of the tree, and a frontier of vertices which aren't in the tree yet but which are neighbours of some vertex in the tree. Pick
the edge from the tree to the frontier that has lowest weight, and add it to the tree. Repeat until there are no vertices lef t. (Recall
Dijkstra's algorithm, which used a frontier in a very similar way.)

This greedy algorithm will certainly give us a spanning tree. To prove that it's a MST takes some more thought.

5.9. Prim's algorithm

 Graphs Page 20

This greedy algorithm will certainly give us a spanning tree. To prove that it's a MST takes some more thought.

Problem statement
Given an undirected graph g with edge weights, construct an MST.

Implementation
This code is very similar to Dijkstra's algorithm. There are some extra lines to keep track of the tree (labelled +), and two modified
lines (labelled *) because here we're interested in 'distance from the tree' whereas Dijkstra is interested in 'distance from the
start node'. The start vertex s can be chosen arbitrarily. The algorithm is due to Jarnik (1930), and independently to Prim (1957)
and Dijkstra (1959).

Line 7 declares that toexplore is a priority queue where the priority of an item v is v.distance. For the vertices in the
frontier, this records the distance from that vertex to the tree we've built so far. Line 15 iterates through all the vertice s w that are
neighbours of v, and retrieves the weight of the edge v—w at the same time.

1
2
3
4 +
5 +
6
7
8
9
10
11 +
12
13
14
15
16 *
17 *
18 +
19
20
21
22

def prim(g, s):
 for v in g.vertices:
 v.distance = infinity
 v.in_tree = False
 s.come_from = None
 s.distance = 0
 toexplore = PriorityQueue([s], lambda v : v.distance)

 while not toexplore.isempty():
 v = toexplore.popmin()
 v.in_tree = True
 # Let t be the graph made of vertices with in_tree=True, and edges
 # {w--w.come_from for w in g.vertices}
 # Assert: t is part of an MST
 for (w, edgeweight) in v.neighbours:
 if w.in_tree or edgeweight > w.distance: continue
 w.distance = edgeweight
 w.come_from = v
 if w in toexplore:
 toexplore.decreasekey(w)
 else:
 toexplore.push(w)

prim

Analysis
Prim's algorithm is nearly identical to Dijkstra's algorithm, and exactly the same analysis of running time applies: it is O(E + V log
V), assuming the priority queue is implemented using a Fibonacci heap.

Theorem. Whatever the start vertex s, Prim's algorithm terminates, and the set of edges {v—v.come_from for all vertices v except
s} forms an MST.

At line 11, the algorithm adds a new vertex to the tree, via the minimum weight edge from the tree to the rest of the graph. Think
of this as a cut: on one side the vertices already in the tree, on the other side the vertices not in the tree, and we're pic king the
minimum weight edge across the cut. The following lemma says that the enlarged tree is still part of an MST, i.e. the asserti on on
line 14 is true. Thus, when it terminates, the algorithm has produced a full MST.

 Graphs Page 21

of this as a cut: on one side the vertices already in the tree, on the other side the vertices not in the tree, and we're pic king the
minimum weight edge across the cut. The following lemma says that the enlarged tree is still part of an MST, i.e. the asserti on on
line 14 is true. Thus, when it terminates, the algorithm has produced a full MST.

Lemma. Let g be a connected graph with edge weights, let f be a subset of the edges of an MST, and consider a cut of the vertices
of g such that no edges in f cross the cut. Let e be the minimum weight edge of g that crosses the cut. Then, f ∪ {e} is also a subset
of the edges of an MST.

 Graphs Page 22

 Graphs Page 23

Another algorithm for finding a minimum spanning tree is due to Kruskal (1956). It makes the same assumptions as Prim's
algorithm, and it has the same running time.

General idea
Kruskal's algorithm builds up the MST by agglomerating smaller subtrees together. At each stage, we've built up some fragments of
the MST, and the algorithm joins the two fragments that have the lowest-weight edge between them.

Implementation
This code uses a data structure called a disjoint set. This is used to keep track of a collection of disjoint sets (sets with no common
elements), also known as a partition. Here, we're using it to keep track of which vertices are in which fragment. Initially (lines 4--5)
every vertex is in its own fragment. As the algorithm proceeds, it considers each edge in turn, and looks up the vertex-sets
containing the start and the end of the edge. If they correspond to different fragments, it's safe to join the fragments, i.e. merge
the two sets (line 13).

Lines 6 and 8 are used to iterate through all the edges in the graph in order of edge weight, lowest edge weight first.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

def kruskal(g):
 tree_edges = []
 partition = DisjointSet()
 for v in g.vertices:
 partition.addsingleton(v)
 edges = sorted(g.edges, sortkey = lambda u,v,edgeweight: edgeweight)

 for (u,v,edgeweight) in edges:
 p = partition.getsetwith(u)
 q = partition.getsetwith(v)
 if p == q: continue
 tree_edges.append((u,v))
 partition.merge(p, q)
 # Let f be the forest made up of edges in tree_edges.
 # Assert: the connected components of f correspond to vertex-sets in partition.
 # Assert: f is part of a MST

 return tree_edges

kruskal

Analysis
The running time of Kruskal's algorithm depends on how DisjointSet is implemented. We will see (later in the course) that the
operations on DisjointSet can all be done in O(1) time, giving total cost O(E log E) for the sort on line 6, and O(V + 3E) = O(E) for
everything else, so the total running time is O(E log E). Since the maximum possible number of edges in an undirected graph is
V(V-1)/2, log E = O(log V), and so the running time can equivalently be written O(E log V).

To prove that Kruskal's algorithm finds an MST, we apply the lemma used for the proof of Prim's algorithm, as follows. When the
algorithm merges p and q, consider the cut of g's vertices into p versus not-p; the algorithm picks the lowest weight edge across
this cut, and so by the lemma we've still got an MST.

5.10. Kruskal's algorithm

 Graphs Page 24

this cut, and so by the lemma we've still got an MST.

 Graphs Page 25

