Questions labelled FS are from Dr Stajano’s list of exercises. Questions labelled CLRS are from Introduction to Algorithms, 3rd ed. by Cormen, Leiserson, Rivest and Stein. Questions labelled ∗ involve more coding or more thinking and are best tackled after the other questions, if you have time.

Question 1 (CLRS-24.3-4). A contractor has written a program that she claims solves the shortest path problem, on directed graphs with non-negative edge weights. The program produces \(\text{distance} \) and \(\text{come_from} \) for every vertex \(v \) in a graph. Give an \(O(V + E) \)-time algorithm to check the output of the contractor’s program.

Question 2 ∗. The Bellman-Ford code given in the handout will report “Negative cycle detected” if there is a negative-weight cycle reachable from the start vertex. Modify the code so that, in such cases, it returns a negative-weight cycle, rather than just reporting that one exists.

Question 3. By hand, run both Dijkstra’s algorithm and the Bellman-Ford algorithm on each of the graphs below, starting from the shaded vertex. The labels indicate edge costs, and one is negative. Does Dijkstra’s algorithm correctly compute minimum weights?

```
3 2 -4 3
1 3 2 -4 2
1
```

Question 4 (CLRS-25.3-4) ∗. An engineer friend tells you there is a simpler way to reweight edges than the method used in Johnson’s algorithm. Let \(w^* \) be the minimum weight of all edges in the graph, and just define \(w'(u \rightarrow v) = w(u \rightarrow v) - w^* \) for all edges \(u \rightarrow v \). What is wrong with your friend’s idea?

Question 5 (FS58, FS59). In Section 5.8, we defined \(M^{(n)}_{ij} \) to be the minimum weight among all paths from \(i \) to \(j \) that have \(n \) or fewer edges, and we derived the recursion

\[
M^{(1)} = W, \quad M^{(n)} = M^{(n-1)} \otimes W
\]

where \(W_{ij} = 0 \) if \(i = j \), \(W_{ij} = \text{weight}(i \rightarrow j) \) if there is an edge \(i \rightarrow j \), and \(W_{ij} = \infty \) otherwise. How can we define \(M^{(0)} \) so that \(M^{(1)} = M^{(0)} \otimes W \)? What is the relationship between \(M^{(0)} \) and the identity matrix \(I \) used in standard matrix multiplication?

Question 6 ∗. The incidence matrix of a directed graph is a \(V \times E \) matrix \(B \) defined by

\[
B_{ve} = \begin{cases}
1 & \text{if } e = u \rightarrow v \text{ for some vertex } u \\
-1 & \text{if } e = v \rightarrow w \text{ for some vertex } w \\
0 & \text{otherwise.}
\end{cases}
\]

From a directed graph \(g \), we can produce a dual graph \(g' \) whose vertices correspond to edges of \(g \). Draw an edge connecting two vertices \(e \) and \(f \) in \(g' \), if the corresponding edges in \(g \) share a vertex, i.e. if \(e = u \rightarrow v \) and \(f = v \rightarrow w \) for some vertices \(u, v \) and \(w \) in \(g \). Give a formula for the adjacency matrix of \(g' \) in terms of the incidence matrix of \(g \).
Question 7 (FS55, FS56). Try to find, by hand, a minimum spanning tree for this graph. Now run, by hand, the Kruskal and Prim algorithms. Note how, even when they reach the same end result, they may get to it via wildly different intermediate stages.

Question 8. In an undirected graph with positive edge weights, let \(u - v \) be a minimum-weight edge. Show that \(u - v \) belongs to a minimum spanning tree.

Question 9. Use the Ford-Fulkerson algorithm, by hand, to find the maximum flow from \(s \) to \(t \) in the following graph. How many iterations did you take? What is the largest number of iterations it might take, with unfortunate choice of augmenting path?

Question 10*. Devise an algorithm that takes as input a flow \(f \) on a network, and produces as output a decomposition \(\{(f_1, p_1), \ldots, (f_n, p_n)\} \) where each \(p_i \) is a path from the source to the sink, and each \(f_i \) is a positive number. The decomposition must satisfy \(f = \sum f_i \), by which we mean “put flow \(f_i \) along path \(p_i \), and add together all these flows-along-paths, and the answer must be equal to \(f \)”. Explain why your algorithm works.

Question 11. The Russian mathematician A.N. Tolstoy introduced the following problem in 1930. Consider a directed graph with edge capacities, representing the rail network. There are three types of vertex: supplies, demands, and ordinary interconnection points. There is a single type of cargo we wish to carry. Each demand vertex \(v \) has a requirement \(d_v > 0 \). Each supply vertex \(v \) has a maximum amount it can produce \(s_v > 0 \). Tolstoy asked: can the demands be met, given the supplies and graph and capacities, and if so then what flow will achieve this?

Explain how to translate Tolstoy’s problem into a max-flow problem of the sort we have studied.

Question 12*. In the London tube system (including DLR and Overground), there are occasional signal failures that prevent travel in either direction between a pair of adjacent stations. Find the minimum number of disruptions that will prevent travel between Kings Cross and Embankment. Justify your answer carefully using a max-flow formulation.

Question 13*. Consider a bipartite graph, in which edges go between the left vertex set \(L \) and the right vertex set \(R \). A matching is called complete if every vertex in \(L \) is matched to a vertex in \(R \), and vice versa. For a complete matching to exist, we obviously need \(|L| = |R|\). The following result is known as Hall’s Theorem:

A complete matching exists if and only if, for every subset \(X \subseteq L \), the set of vertices in \(R \) connected to a vertex in \(X \) is at least as big as \(X \).

Prove Hall’s Theorem, using a max-flow formulation. [Hint: Use the same construction as we used in lectures, except with capacity \(\infty \) on the edges between \(L \) and \(R \). In this graph, some cuts have infinite capacity, and some cuts have finite capacity. If a cut has finite capacity, what can you deduce about its capacity?]