
Example sheet week 5
Graphs. Path finding.

Algorithms—DJW—2016/2017

Questions labelled FS are from Dr Stajano’s list of exercises. Questions labelled CLRS are from
Introduction to Algorithms, 3rd ed. by Cormen, Leiserson, Rivest and Stein. Questions labelled ∗
involve more coding or more thinking and are best tackled after the other questions, if you have time.

Question 1 (FS52). First, some definitions.
• A DAG is a directed graph without cycles (a Directed Acyclic Graph)
• A graph is reflexive if the edge (v,v) is present for every vertex v, and anti-reflexive if (v,v) is

absent for every vertex v.
Draw an example of each of the following, or explain why no example exists:
(i) An anti-reflexive directed graph with 5 vertices and 7 edges
(ii) A reflexive directed graph with 5 vertices and 12 edges
(iii) A DAG with 8 vertices and 10 edges
(iv) An undirected tree with 8 vertices and 10 edges
(v) A graph without cycles that is not a tree

Question 2*. You’ve learned what O(n) means when there’s a single variable n that increases. How
would you define O(E +V logV)?

Question 3. Do the algorithms dfs_stack and dfs_recurse (as given in the handout) always
visit vertices in the same order? If not, modify dfs_stack so that they do. Give pseudocode.

Question 4. Give pseudocode for a modified version of dfs_recurse_path, which does not visit
any further vertices once it has reached the destination vertex t.

Question 5 (CLRS-22-4)*. Consider a directed graph in which every vertex v is labelled with a real
number xv. For each vertex v, define mv to be the minimum value of xu among all vertices u such
that either u = v or u is reachable via some path from v. Give an O(E +V logV)-time algorithm that
computes mv for all vertices v. [Correction: the printed handout erroneously asked for O(V +E).]

Question 6*. Here is a modified version of dfs_stack that keeps track of which vertices are cur-
rently being investigated. Prove that the assertion on line 6 always succeeds when the graph is
undirected. Give an example of a directed graph where the assertion fails.

1 def v i s i t (v) :
2 v . v i s i t e d = True
3 v . a c t i v e = True
4 f o r w in v . n e i g h b o u r s :
5 i f w. v i s i t e d :
6 a s s e r t w. a c t i v e == True
7 e l s e :
8 v i s i t (w)
9 v . a c t i v e = F a l s e

[Correction: the assertion should read assert (w.active == True) or (w is not v’s first

neighbour).]

Question 7 (FS53). Give an example DAG with 9 vertices and 9 edges. Pick some vertex that has
one or more edges coming in, and run through dfs_recurse_all starting from this vertex. Mark

1

each vertex with two numbers as you proceed: the discovery time (the time we printed “visiting”)
and the exit time (the time that visit() returns). Then draw a linearized DAG by arranging the
vertices on a line in reverse order of their finishing time, and reproducing the appropriate arrows
between them. Do all the arrows go forwards?

Question 8*. Sometimes we want to impose a total order on a collection of objects, given a set
of pairwise comparisons that can be thought of as a “DAG with noise”. For example, let vertices
represent movies, and write v1→ v2 to mean “The user has said she prefers v1 to v2.” A user is likely
to give answers that are by and large consistent, but with some exceptions. Discuss what properties
you would like in an “approximate total order”, and how you might go about finding it.

Question 9*. Give pseudocode for an algorithm that takes as input an arbitrary directed graph g,
and returns a boolean indicating whether or not g is a DAG.

Question 10 (FS54)*. Write out a formal proof of the correctness of the toposort algorithm, fill-
ing out all the details that are skipped over in the handout. Pay particular attention to step 3, where
it is claimed “the recursion stack gives us a path from v2 to v1”.

Question 11. The bfs algorithm given in the handout will visit all vertices and print out a log
message at each. Modify the code so that, given a destination vertex t, it produces a shortest path
from s to t. (Hint. See dfs_recurse_path.) Modify it further to produce all shortest paths from s
to t.

Question 12*. Consider a graph without edge weights, and write d(u,v) for the length of the short-
est path from u to v. The diameter of the graph is defined to be

max
u,v∈V

d(u,v).

Give an efficient algorithm to compute the diameter of an undirected tree, and analyse its running
time.

Question 13 (FS57). In a directed graph with edge weights, give a formal proof of the triangle
inequality

d(u,v)≤ d(u,w)+ c(w→ v) for all vertices u, v, w with w→ v

where d(u,v) is the minimum weight of all paths from u to v (or ∞ if there are no such paths) and
c(w→ v) is the weight of edge w→ v. Make sure your proof covers the cases where no path exists.

Question 14*. Consider a directed graph with edge weights that are ≥ 0, and suppose we want
to find a shortest path from some start vertex s to a destination t. Let h(v) be the distance from
s to v for any vertex v. Write down a recursion from h(v), and give pseudocode for a dynamic
programming algorithm that uses recursion and memoization to compute h(s). Comment on the
relationship between this and Dijkstra’s algorithm.

Question 15*. Describe a class hierarchy that you might use for a library of graph algorithms,
including depth-first search, breadth-first search, topological sort, and shortest-path computation.
Bear in mind
• Each algorithm has its own variables it wants to store with a vertex.
• A programmer using your library may want to construct a graph, then apply to it a variety of

different algorithms.
• Sometimes an algorithm only needs to inspect a few nodes to return its answer.

2

