
V. Approximation Algorithms via Exact
Algorithms
Thomas Sauerwald

Easter 2017

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

V. Approximation via Exact Algorithms The Subset-Sum Problem 2

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11

x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

This problem is NP-hard

x1 = 10

x2 = 4

x3 = 5

x4 = 6

x5 = 1

t = 13 tons

x1 + x5 = 11

x3 + x4 + x5 = 12

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:

S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10

L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉

L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉

L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉

L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}

Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}

Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}.

Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums ≤ t

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

S + x := {s + x : s ∈ S}

Returns the merged list (in sorted
order and without duplicates)

implementable in time O(|Li−1|) (like Merge-Sort)

Example:
S = {1, 4, 5}, t = 10
L0 = 〈0〉
L1 = 〈0, 1〉
L2 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5, 6, 9, 10〉

Correctness: Ln contains all sums of {x1, x2, . . . , xn}
Runtime: O(21 + 22 + · · ·+ 2n) = O(2n)

can be shown by induction on n

There are 2i subsets of {x1, x2, . . . , xi}. Better runtime if t
and/or |Li | are small.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉

δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1

L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Given a trimming parameter 0 < δ < 1

Trimming L yields minimal sublist L′ so that for every y ∈ L : ∃z ∈ L′ :

y
1 + δ

≤ z ≤ y .

Trimming a List

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉
δ = 0.1
L′ = 〈10, 12, 15, 20, 23, 29〉

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

TRIM works in time Θ(m), if L is given in sorted order.

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

last last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈〉

last last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last

last last last last last

i i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last

last last last last last

i

i i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10〉

last

last last last last last

i

i

i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12〉

last

last last last last last

i

i

i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12〉

last

last

last last last last

i

i

i i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12〉

last

last

last last last last

i i

i

i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15〉

last

last

last last last last

i i

i

i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15〉

last last

last

last last last

i i

i

i i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15〉

last last

last

last last last

i i i

i

i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last

last

last last last

i i i

i

i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i

i

i i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i i

i

i i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i i i

i

i i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20〉

last last last

last

last last

i i i i i i

i

i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last

last

last last

i i i i i i

i

i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last last

last

last

i i i i i i

i

i i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last last

last

last

i i i i i i i

i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23〉

last last last last

last

last

i i i i i i i i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23,29〉

last last last last

last

last

i i i i i i i i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

Illustration of the Trim Operation

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
! ´ ! y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and
L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain
L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22
are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L
and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.
TRIM.L; ı/

1 let m be the length of L
2 L0 D hy1i
3 last D y1

4 for i D 2 to m
5 if yi > last " .1C ı/ // yi # last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” !, where

δ = 0.1

L = 〈10,11,12,15,20,21,22,23,24,29〉

After the initialization (lines 1-3)The returned list L′

L′ = 〈10,12,15,20,23,29〉

last last last last last

last

i i i i i i i i

i

V. Approximation via Exact Algorithms The Subset-Sum Problem 6

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Repeated application of TRIM
to make sure Li ’s remain short.

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L
by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that
S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.
EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 remove from Li every element that is greater than t
6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then
P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity
Pi D Pi!1 [.Pi!1 C xi/ ; (35.23)
we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t
is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme
We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

We must bound the inaccuracy introduced by repeated trimming

We must show that the algorithm is polynomial time

Solution is a careful choice of δ!

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4

⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05
line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉

line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉

line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉

line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉

line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉

line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉

line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉

line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉

line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉

line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉

line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉

line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉

line 6: L4 = 〈0, 101, 201, 302〉
Returned solution z∗ = 302, which is 2%

within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Running through an Example

35.5 The subset-sum problem 1131

0 < ! < 1 : (35.25)
It returns a value ´ whose value is within a 1C ! factor of the optimal solution.
APPROX-SUBSET-SUM.S; t; !/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n
4 Li D MERGE-LISTS.Li!1; Li!1 C xi /
5 Li D TRIM.Li ; !=2n/
6 remove from Li every element that is greater than t
7 let ´" be the largest value in Ln

8 return ´"

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li!1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM
returns a correct approximation if one exists.

As an example, suppose we have the instance
S D h104; 102; 201; 101i
with t D 308 and ! D 0:40. The trimming parameter ı is !=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:
line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

Input: S = 〈104, 102, 201, 101〉, t = 308, ε = 0.4
⇒ Trimming parameter: δ = ε/(2 · n) = ε/8 = 0.05

line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉
line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉
line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉
line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

Returned solution z∗ = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒

y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2

≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Approximation Ratio):

Returned solution z∗ is a valid solution X

Let y∗ denote an optimal solution

For every possible sum y ≤ t of x1, . . . , xi , there exists an element z ∈ L′i s.t.:

y

(1 + ε/(2n))i
≤ z ≤ y

y=y∗,i=n⇒
y∗

(1 + ε/(2n))n
≤ z ≤ y∗

y∗

z
≤
(

1 +
ε

2n

)n
,

and now using the fact that
(

1 +
ε/2

n

)n n→∞−→ eε/2 yields

y∗

z
≤ eε/2

≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε

Can be shown by induction on i

Taylor approximation of e

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)

After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.

Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =

ln t
ln(1 + ε/(2n))

+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Proof (Running Time):

Strategy: Derive a bound on |Li | (running time is linear in |Li |)
After trimming, two successive elements z and z′ satisfy z′/z ≥ 1 + ε/(2n)

⇒ Possible Values after trimming are 0, 1, and up to blog1+ε/(2n) tc additional values.
Hence,

log1+ε/(2n) t + 2 =
ln t

ln(1 + ε/(2n))
+ 2

≤
2n(1 + ε/(2n)) ln t

ε
+ 2

<
3n ln t
ε

+ 2.

This bound on |Li | is polynomial in the size of the input and in 1/ε.

For x > −1, ln(1 + x) ≥ x
1+x

Need log(t) bits to represent t and n bits to represent S

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t

Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem

A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem

A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem

A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

Given: Set of positive integers S = {x1, x2, . . . , xn} and positive integer t

Goal: Find a subset S′ ⊆ S which maximizes
∑

i : xi∈S′ xi ≤ t .

The Subset-Sum Problem

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.
Theorem 35.8

Given: Items i = 1, 2, . . . , n with weights wi and values vi , and integer t
Goal: Find a subset S′ ⊆ S which

1. maximizes
∑

i∈S′ vi
2. satisfies

∑
i∈S′ wi ≤ t

The Knapsack Problem
A more general problem than Subset-Sum

There is a FPTAS for the Knapsack problem.
Theorem

Algorithm very similar to APPROX-SUBSET-SUM

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

V. Approximation via Exact Algorithms Parallel Machine Scheduling 11

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2

M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2

M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Given: n jobs J1, J2, . . . , Jn with processing times p1, p2, . . . , pn, and
m identical machines M1,M2, . . . ,Mm

Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = max1≤j≤n Cj , where Ck is the completion time of job Jk .

Machine Scheduling Problem

J1: p1 = 2

J2: p2 = 12

J3: p3 = 6

J4: p4 = 4

For the analysis, it will be convenient to denote
by Ci the completion time of a machine i .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3

J1 J2

M1

M2 J4 J3 J1

J2

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Lemma

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1

M2 J4 J3 J1

J2

LIST SCHEDULING(J1, J2, . . . , Jn,m)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑
k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑
k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑
k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑
k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑
k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

a. The optimal makespan is at least as large as the greatest
processing time, that is,

C∗max ≥ max
1≤k≤n

pk .

b. The optimal makespan is at least as large as the average machine
load, that is,

C∗max ≥
1
m

n∑
k=1

pk .

Ex 35-5 a.&b.

Proof:

b. The total processing times of all n jobs equals
∑n

k=1 pk

⇒ One machine must have a load of at least 1
m ·

∑n
k=1 pk

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:

Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:

Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m

Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m

Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck

=
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk

⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk

≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk

≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

For the schedule returned by the greedy algorithm it holds that

Cmax ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk .

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966)

Proof:
Let Ji be the last job scheduled on machine Mj with Cmax = Cj

When Ji was scheduled to machine Mj , Cj − pi ≤ Ck for all 1 ≤ k ≤ m
Averaging over k yields:

Cj − pi ≤
1
m

m∑
k=1

Ck =
1
m

n∑
k=1

pk ⇒ Cj ≤
1
m

n∑
k=1

pk + max
1≤k≤n

pk ≤ 2 · C∗max

0 Cmax

Mj Ji

Cj − pi

Using Ex 35-5 a. & b.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

LEAST PROCESSING TIME(J1, J2, . . . , Jn,m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: Ci = 0
4: Si = ∅
5: end for
6: for j = 1 to n
7: i = argmin1≤k≤m Ck

8: Si = Si ∪ {j}, Ci = Ci + pj

9: end for
10: return S1, . . . ,Sm

Runtime:

O(n log n) for sorting

O(n log m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling

, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling, we have

Cmax = Cj = (Cj − pi) + pi

≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling, we have

Cmax = Cj = (Cj − pi) + pi ≤ C∗max +
1
2

C∗max

=
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

This can be shown to be tight (see next slide).

Proof (of approximation ratio 3/2).

Observation 1: If there are at most m jobs, then the solution is optimal.

Observation 2: If there are more than m jobs, then C∗max ≥ 2 · pm+1.

As in the analysis for list scheduling, we have

Cmax = Cj = (Cj − pi) + pi ≤ C∗max +
1
2

C∗max =
3
2

Cmax.

This is for the case i ≥ m + 1 (otherwise, an even stronger inequality holds)

0 Cmax

Mj Ji

Cj − pi

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15Proof of an instance which shows tightness:

m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:

m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines

n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9

9
8 8

7 7
6 6

5 5 5

9

9
8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8

8
7 7

6 6
5 5 5

9
9

8

8
7 7

6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7

7
6 6

5 5 5

9
9

8
8

7

7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7

6 6
5 5 5

9
9

8
8

7 7

6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6

6
5 5 5

9
9

8
8

7 7
6

6
5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5

5 5

9
9

8
8

7 7
6
6

5

5 59
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5

5

9
9

8
8

7 7
6
6

5
5

59
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5
9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 59

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9

9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9

9
8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9

8 8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8

8
7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8

8 7
7

6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8

7
7

6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7

7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7

6 6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7

6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6

6
5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6

6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5

5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5

5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5

5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5

5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15 Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19

Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15

Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

19
15 = 20

15 −
1

15Proof of an instance which shows tightness:
m machines
n = 2m + 1 jobs of length 2m − 1, 2m − 2, . . . ,m and one job of length m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 5, n = 11 :

M1

M2

M3

M4

M5

9 9
8 8

7 7
6 6

5 5 5

9
9

8
8

7 7
6
6

5
5 5

9
9

8
8 7

7
6
6

5 5 5

C∗max = 15

Cmax = 19

LPT gives Cmax = 19
Optimum is C∗max = 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma

We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) ·), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + ε)-approximation, don’t have to work with exact pk ’s.

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

SUBROUTINE can be implemented in time nO(1/ε2).

Key Lemma We will prove this on the next slides.

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Proof (using Key Lemma):
PTAS(J1, J2, . . . , Jn,m)

1: Do binary search to find smallest T s.t. Cmax ≤ (1 + ε) ·max{T ,C∗max}.
2: Return solution computed by SUBROUTINE(J1, J2, . . . , Jn,m,T)

Since 0 ≤ C∗max ≤ P and C∗max is integral,
binary search terminates after O(log P) steps.

polynomial in the size of the input

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:

Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk

⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:

Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk

⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:

Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk

⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load

If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk

⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .

Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk

⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk

⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk

⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk ⇒

Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk ⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk ⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}

the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk ⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}
the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, J2, . . . , Jn,m,T)
1: Either: Return a solution with Cmax ≤ (1 + ε) ·max{T ,C∗max}
2: Or: Return there is no solution with makespan < T

Divide jobs into two groups: Jsmall = {Ji : pi ≤ ε ·T} and Jlarge = J \Jsmall.
Given a solution for Jlarge only with makespan (1 + ε) · T , then greedily
placing Jsmall yields a solution with makespan (1 + ε) ·max{T ,C∗max}.

Observation

Proof:
Let Mj be the machine with largest load
If there are no jobs from Jsmall, then makespan is at most (1 + ε) · T .
Otherwise, let i ∈ Jsmall be the last job added to Mj .

Cj − pi ≤
1
m

n∑
k=1

pk ⇒ Cj ≤ pi +
1
m

n∑
k=1

pk

≤ ε · T + C∗max

≤ (1 + ε) ·max{T ,C∗max}
the “well-known” formula

V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine

with makespan ≤ T .

Assign some jobs to one machine, and then

use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε.

Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6

0
0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0

f (nb, nb+1, . . . , nb2) = 1 + min
(sb,sb+1,...,sb2)∈C

f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.

As every machine is assigned at most b jobs (p′i ≥
T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2

≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

Use Dynamic Programming to schedule Jlarge with makespan (1 + ε) · T .

Let b be the smallest integer with 1/b ≤ ε. Define processing times p′i =
⌈ pj b

2

T

⌉
· T

b2

⇒ Every p′i = α · T
b2 for α = b, b + 1, . . . , b2

Let C be all (sb, sb+1, . . . , sb2) with
∑b2

i=j sj · j · T
b2 ≤ T .

Let f (nb, nb+1, . . . , nb2) be the minimum number of machines required to schedule
all jobs with makespan ≤ T :

f (0, 0, . . . , 0) = 0
f (nb, nb+1, . . . , nb2) = 1 + min

(sb,sb+1,...,sb2)∈C
f (nb − sb, nb+1 − sb+1, . . . , nb2 − sb2).

Number of table entries is at most nb2
, hence filling all entries takes nO(b2)

If f (nb, nb+1, . . . , nb2) ≤ m (for the jobs with p′), then return yes, otherwise no.
As every machine is assigned at most b jobs (p′i ≥

T
b) and the makespan is ≤ T ,

Cmax ≤ T + b · max
i∈Jlarge

(pi − p′i)

≤ T + b ·
T

b2
≤ (1 + ε) · T .

Can assume there are no jobs with pj ≥ T !

Assignments to one machine
with makespan ≤ T .

Assign some jobs to one machine, and then
use as few machines as possible for the rest.

p1
p2

p3 p4 p5 p6
0

0.25 · T
0.5 · T

0.75 · T
1 · T

1.25 · T
1.5 · T

Jlarge Jsmall

ε = 0.5

b = 2

0
0.25 · T

0.5 · T
0.75 · T

1 · T
1.25 · T

1.5 · T

p′1
p′2

p′3

Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?

No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?

No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?

No!
Because for sufficiently small approximation ratio

1 + ε, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?
No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

List scheduling has an approximation ratio of 2.
Graham 1966

The LPT algorithm has an approximation ratio of 4/3− 1/(3m).
Graham 1966

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(nO(1/ε2) · log P), where P :=

∑n
k=1 pk .

Theorem (Hochbaum, Shmoys’87)

Can we find a FPTAS (for polynomially bounded processing times)?
No!

Because for sufficiently small approximation ratio
1 + ε, the computed solution has to be optimal, and

Parallel Machine Scheduling is strongly NP-hard.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

	The Subset-Sum Problem
	Parallel Machine Scheduling

