VII. Approximation Algorithms: Randomisation and Rounding

Thomas Sauerwald

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

Approximation Ratio —

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(rac{C}{C^*},rac{C^*}{C}
ight) \leq
ho(n).$$

Approximation Ratio —

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$

Call such an algorithm randomised $\rho(n)$ -approximation algorithm.

Approximation Ratio —

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$

Call such an algorithm randomised $\rho(n)$ -approximation algorithm.

Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. For example, $O(n^{2/\epsilon})$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1/\epsilon$ and n. For example, $O((1/\epsilon)^2 \cdot n^3)$.

Approximation Ratio -

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$

Call such an algorithm randomised $\rho(n)$ -approximation algorithm.

extends in the natural way to randomised algorithms

Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. For example, $O(n^{2/\epsilon})$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1/\epsilon$ and n. For example, $O((1/\epsilon)^2 \cdot n^3)$.

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-3-CNF Satisfiability

• Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$(x_1 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_3} \vee \overline{x_5}) \wedge (x_2 \vee \overline{x_4} \vee x_5) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3})$$

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_3} \lor \overline{x_5}) \land (x_2 \lor \overline{x_4} \lor x_5) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$$

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0 \text{ and } x_5 = 1 \text{ satisfies 3 (out of 4 clauses)}$$

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$(x_1 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_3} \vee \overline{x_5}) \wedge (x_2 \vee \overline{x_4} \vee x_5) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3})$$

$$x_1=1,\,x_2=0,\,x_3=1,\,x_4=0$$
 and $x_5=1$ satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable independently at random?

Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

 $Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

 $Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$

$$\mathbf{Pr}[\text{clause } i \text{ is not satisfied}] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

$$\Pr[\text{clause } i \text{ is not satisfied}] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$\Rightarrow$$
 Pr[clause *i* is satisfied] = $1 - \frac{1}{8} = \frac{7}{8}$

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

Pr[clause *i* is not satisfied] =
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

⇒ Pr[clause *i* is satisfied] = $1 - \frac{1}{8} = \frac{7}{8}$

⇒ E[Y_i] = Pr[Y_i = 1] · 1 = $\frac{7}{8}$.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

• Since each literal (including its negation) appears at most once in clause i,

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

• Since each literal (including its negation) appears at most once in clause i,

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

• Since each literal (including its negation) appears at most once in clause i,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right]$$

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

• Since each literal (including its negation) appears at most once in clause i,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]$$
(Linearity of Expectations)

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

• Since each literal (including its negation) appears at most once in clause i,

Pr[clause *i* is not satisfied] =
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

⇒ Pr[clause *i* is satisfied] = $1 - \frac{1}{8} = \frac{7}{8}$

⇒ E[Y_i] = Pr[Y_i = 1] · 1 = $\frac{7}{8}$.

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right] = \sum_{i=1}^{m} \mathbf{E}[Y_{i}]$$
(Linearity of Expectations)

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

Since each literal (including its negation) appears at most once in clause i,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{7}{8}$$
Linearity of Expectations

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

• Since each literal (including its negation) appears at most once in clause i,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \cdot m.$$
[Linearity of Expectations]

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

Since each literal (including its negation) appears at most once in clause i,

Pr[clause *i* is not satisfied] =
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

⇒ Pr[clause *i* is satisfied] = $1 - \frac{1}{8} = \frac{7}{8}$

⇒ E[Y_i] = Pr[Y_i = 1] · 1 = $\frac{7}{8}$.

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \cdot m.$$
Linearity of Expectations
maximum number of satisfiable clauses is m

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

Since each literal (including its negation) appears at most once in clause i,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \cdot m. \quad \Box$$
(Linearity of Expectations) maximum number of satisfiable clauses is m

Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{8}$ of all clauses.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \ge \mathbf{E}[Y]$

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{9}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Follows from the previous Corollary.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$

Y is defined as in the previous proof.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]!$

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]!$

Algorithm: Assign x_1 so that the conditional expectation is maximized and recurse.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]!$

GREEDY-3-CNF(ϕ , n, m)

- 1: **for** j = 1, 2, ..., n
- 2: Compute **E**[$Y \mid x_1 = v_1 \dots, x_{j-1} = v_{j-1}, x_j = 1$]
- 3: Compute **E**[$Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 0$]
- 4: Let $x_j = v_j$ so that the conditional expectation is maximized
- 5: **return** the assignment v_1, v_2, \ldots, v_n

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Proof:

Step 1: polynomial-time algorithm

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E} [Y | x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^{m} \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^{m} \mathbf{E} [Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$
Computable in $O(1)$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm √
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^{m} \mathbf{E} [Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$
Computable in $O(1)$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm ✓
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^{m} \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

Step 2: satisfies at least 7/8 ⋅ m clauses

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm √
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^{m} \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

- Step 2: satisfies at least 7/8 ⋅ m clauses
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm √
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^m \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

- Step 2: satisfies at least 7/8 ⋅ m clauses
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = v_j] \ge \mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}]$$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm √
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^m \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

- Step 2: satisfies at least 7/8 ⋅ m clauses
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = v_j] \ge \mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}]$$

$$\ge \mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-2} = v_{j-2}]$$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm √
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^m \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

- Step 2: satisfies at least 7/8 · m clauses
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-1} = v_{j-1}, x_{j} = v_{j}] \ge \mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-1} = v_{j-1}]$$

$$\ge \mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-2} = v_{j-2}]$$

$$\vdots$$

$$\ge \mathbf{E} [Y]$$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm √
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^m \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

- Step 2: satisfies at least 7/8 · m clauses
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\begin{split} \mathbf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = v_j \ \right] & \geq \mathbf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1} \ \right] \\ & \geq \mathbf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-2} = v_{j-2} \ \right] \\ & \vdots \\ & \geq \mathbf{E} \left[\ Y \right] = \frac{7}{8} \cdot m. \end{split}$$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm √
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^m \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

- Step 2: satisfies at least 7/8 · m clauses ✓
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-1} = v_{j-1}, x_{j} = v_{j}] \ge \mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-1} = v_{j-1}]$$

$$\ge \mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-2} = v_{j-2}]$$

$$\vdots$$

$$\ge \mathbf{E} [Y] = \frac{7}{8} \cdot m.$$

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Step 1: polynomial-time algorithm ✓
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^m \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

- Step 2: satisfies at least 7/8 ⋅ m clauses √
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-1} = v_{j-1}, x_{j} = v_{j}] \ge \mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-1} = v_{j-1}]$$

$$\ge \mathbf{E} [Y \mid x_{1} = v_{1}, \dots, x_{j-2} = v_{j-2}]$$

$$\vdots$$

$$\ge \mathbf{E} [Y] = \frac{7}{9} \cdot m.$$

 $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_3 \vee x_4) \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_$

 $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_3 \vee x_4) \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_$

 $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor$

 $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_3} \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3 \vee x_3) \wedge (x_1 \vee x_3 \vee x_3$

 $(\underline{X_1 \vee x_2 \vee x_3}) \land (\underline{X_1 \vee x_2 \vee x_4}) \land (\underline{X_1 \vee x_2 \vee x_4}) \land (\underline{X_1 \vee x_2 \vee x_3}) \land (\underline{X_1 \vee x_3 \vee x_3})$

 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (x_2 \vee x_3) \wedge (\overline{x_2} \vee x_3) \wedge 1 \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4})$

$$1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (x_2 \vee x_3) \wedge (\overline{x_2} \vee x_3) \wedge 1 \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4})$$

$$1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (x_2 \vee x_3) \wedge (\overline{x_2} \vee x_3) \wedge 1 \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4})$$

 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (\cancel{x_2} \vee x_3) \wedge (\overline{x_2} \vee x_3) \wedge 1 \wedge (\cancel{x_2} \vee \overline{x_3} \vee \overline{x_4})$

 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge 1 \wedge (x_3) \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee \overline{x_4})$

 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge 1 \wedge (x_3) \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee \overline{x_4})$

 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge 1 \wedge (x_3) \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee \overline{x_4})$

 $1 \wedge 1 \wedge 1 \wedge (\overline{X_2} \vee \overline{X_4}) \wedge 1 \wedge 1 \wedge (\overline{X_3}) \wedge 1 \wedge 1 \wedge (\overline{X_3} \vee \overline{X_4})$

$1 \land 1 \land 1 \land 1 \land 1 \land 1 \land 0 \land 1 \land 1 \land 1$

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

- Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

- Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Theorem 35.6 —

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem -

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)

For any $\epsilon > 0$, there is no polynomial time $8/7 - \epsilon$ approximation algorithm of MAX3-SAT unless P=NP.

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem -

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97) ——

For any $\epsilon > 0$, there is no polynomial time $8/7 - \epsilon$ approximation algorithm of MAX3-SAT unless P=NP.

Essentially there is nothing smarter than just guessing!

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

- Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

Applications:

- Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

Applications:

 Every edge forms a task, and every vertex represents a person/machine which can execute that task

- Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person

- Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources


```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

remove from E' every edge incident on either u or v

7 return C
```



```
APPROX-VERTEX-COVER (G)
```

```
1 C = \emptyset
2 E' = G.E
3 while E' \neq \emptyset
```

let (u, v) be an arbitrary edge of E'

- $C = C \cup \{u, v\}$
- 6 remove from E' every edge incident on either u or v
 - 7 return C


```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```



```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```


Idea: Round the solution of an associated linear program.

Idea: Round the solution of an associated linear program.

0-1 Integer Program —

minimize
$$\sum_{v \in V} w(v)x(v)$$
 subject to
$$x(u) + x(v) \geq 1 \qquad \text{for each } (u,v) \in E$$

$$x(v) \in \{0,1\} \qquad \text{for each } v \in V$$

Idea: Round the solution of an associated linear program.

minimize
$$\sum_{v \in V} w(v)x(v)$$
 subject to
$$x(u) + x(v) \geq 1 \qquad \text{for each } (u,v) \in E$$

$$x(v) \in \{0,1\} \qquad \text{for each } v \in V$$

minimize
$$\sum_{v \in V} w(v)x(v)$$
 subject to
$$x(u) + x(v) \geq 1 \qquad \text{for each } (u,v) \in E$$

$$x(v) \in [0,1] \qquad \text{for each } v \in V$$

Idea: Round the solution of an associated linear program.

minimize
$$\sum_{v \in V} w(v)x(v)$$
 subject to
$$x(u) + x(v) \geq 1 \quad \text{for each } (u,v) \in E$$

$$x(v) \in \{0,1\} \quad \text{for each } v \in V$$
 optimum is a lower bound on the optimal weight of a minimum weight-cover.}
$$\sum_{v \in V} w(v)x(v)$$

subject to

x(u) + x(v) > 1 for each $(u, v) \in E$

 $x(v) \in [0,1]$ for each $v \in V$

Idea: Round the solution of an associated linear program.

- 0-1 Integer Program –

minimize
$$\sum_{v \in V} w(v)x(v)$$
 subject to
$$x(u) + x(v) \geq 1 \qquad \text{for each } (u,v) \in E$$

$$x(v) \in \{0,1\} \qquad \text{for each } v \in V$$

optimum is a lower bound on the optimal weight of a minimum weight-cover.

Linear Program

minimize
$$\sum_{v \in V} w(v)x(v)$$

subject to
$$x(u) + x(v) \ge 1$$
 for each $(u, v) \in E$ $x(v) \in [0, 1]$ for each $v \in V$

Rounding Rule: if $x(v) \ge 1/2$ then round up, otherwise round down.

The Algorithm

```
APPROX-MIN-WEIGHT-VC(G, w)

1 C = \emptyset

2 compute \bar{x}, an optimal solution to the linear program

3 for each v \in V

4 if \bar{x}(v) \ge 1/2

5 C = C \cup \{v\}

6 return C
```

The Algorithm

```
APPROX-MIN-WEIGHT-VC(G,w)

1 C=\emptyset

2 compute \bar{x}, an optimal solution to the linear program

3 for each \nu \in V

4 if \bar{x}(\nu) \geq 1/2

5 C=C \cup \{\nu\}

6 return C
```

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

The Algorithm

```
APPROX-MIN-WEIGHT-VC (G,w)

1 C=\emptyset

2 compute \bar{x}, an optimal solution to the linear program

3 for each \nu \in V

4 if \bar{x}(\nu) \geq 1/2

5 C=C \cup \{\nu\}

6 return C
```

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

is polynomial-time because we can solve the linear program in polynomial time

Example of APPROX-MIN-WEIGHT-VC

fractional solution of LP with weight = 5.5

Example of APPROX-MIN-WEIGHT-VC

fractional solution of LP with weight = 5.5

rounded solution of LP with weight = 10

Example of APPROX-MIN-WEIGHT-VC

fractional solution of LP with weight = 5.5

rounded solution of LP with weight = 10

optimal solution with weight = 6

Approximation Ratio

Proof (Approximation Ratio is 2):

Proof (Approximation Ratio is 2):

• Let C^* be an optimal solution to the minimum-weight vertex cover problem

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

Proof (Approximation Ratio is 2):

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

• Step 1: The computed set C covers all vertices:

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$
 - \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least 1/2

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$
 - \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ ⇒ at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies w(C) ≤ 2z*:

Proof (Approximation Ratio is 2):

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ ⇒ at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies w(C) ≤ 2z*:

7

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ ⇒ at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w(C^*) > z^*$$

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w(C^*) \ge z^* = \sum_{v \in V} w(v)\overline{x}(v)$$

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w(C^*) \geq z^* = \sum_{v \in V} w(v)\overline{x}(v) \geq \sum_{v \in V: \overline{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2}$$

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ ⇒ at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w(C^*) \geq z^* = \sum_{v \in V} w(v) \overline{x}(v) \geq \sum_{v \in V \colon \overline{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2} = \frac{1}{2} w(C).$$

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w(C^*) \geq z^* = \sum_{v \in V} w(v)\overline{x}(v) \geq \sum_{v \in V: \overline{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2} = \frac{1}{2}w(C).$$

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ ⇒ at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w(C^*) \geq z^* = \sum_{v \in V} w(v)\overline{x}(v) \geq \sum_{v \in V: \overline{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2} = \frac{1}{2}w(C). \quad \Box$$

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

Set Cover Problem

- Given: set X and a family of subsets F, and a cost function c: F → R⁺
- ullet Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.

Set Cover Problem

- Given: set X and a family of subsets \mathcal{F} , and a cost function $c: \mathcal{F} \to \mathbb{R}^+$
- ullet Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$

Sum over the costs of all sets in C

s.t.
$$X = \bigcup_{S \in S} S$$
.

Set Cover Problem -

- Given: set X and a family of subsets \mathcal{F} , and a cost function $c: \mathcal{F} \to \mathbb{R}^+$
- ullet Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$

Sum over the costs of all sets in C

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.

$$S_1$$
 S_2 S_3 S_4 S_5 S_6 $c: 2 3 3 5 1 2$

Set Cover Problem -

- Given: set X and a family of subsets \mathcal{F} , and a cost function $c: \mathcal{F} \to \mathbb{R}^+$
- Goal: Find a minimum-cost subset $C \subseteq \mathcal{F}$

Sum over the costs of all sets in C

 $X = \bigcup_{S \in \mathcal{C}} S$.

 S_1 S_2 S_3 S_4 S_5 S_6 c: 2 3 3 5 1 2

Remarks:

- generalisation of the weighted vertex-cover problem
- models resource allocation problems

Setting up an Integer Program

Setting up an Integer Program

0-1 Integer Program ——

minimize
$$\sum_{S\in\mathcal{F}}c(S)y(S)$$
 subject to
$$\sum_{S\in\mathcal{F}\colon x\in S}y(S)\ \geq\ 1\qquad \text{for each }x\in X$$

$$y(S)\ \in\ \{0,1\}\qquad \text{for each }S\in\mathcal{F}$$

Setting up an Integer Program

o-1 Integer Program
$$\sum_{S \in \mathcal{F}} c(S) y(S)$$
 subject to
$$\sum_{S \in \mathcal{F}: \ x \in S} y(S) \ \geq \ 1 \qquad \text{for each } x \in X$$

$$y(S) \ \in \ \{0,1\} \qquad \text{for each } S \in \mathcal{F}$$

Linear Program
$$\sum_{S\in\mathcal{F}}c(S)y(S)$$
 subject to
$$\sum_{S\in\mathcal{F}:\,x\in S}y(S)~\geq~1~~\text{for each }x\in X$$

$$y(S)~\in~[0,1]~~\text{for each }S\in\mathcal{F}$$

c: 2 3 3 5 1 2 y(.): 1/2 1/2 1/2 1 1/2 Cost equals 8.5		S_1	S_2	S_3	S_4	S_5	S_6	
y(.): 1/2 1/2 1/2 1 1/2 Cost equals 8.5	c :	2	3	3		1	2	
	y(.):	1/2	1/2	1/2	1/2	1	1/2	Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y's were below 1/2, we would not even return a valid cover!

	S ₁	S_2	<i>S</i> ₃	S_4	S ₅	S ₆ 2 1/2
C :	2	3	3	5	1	2
y(.):	1/2	1/2	1/2	1/2	1	1/2

	S_1	S_2	S_3	S_4	<i>S</i> ₅	S_6	
C :	2	3	3	5	1	2	
y(.):	1/2	1/2	1/2	1/2	1	1/2	

Idea: Interpret the *y*-values as probabilities for picking the respective set.

	S_1	S_2	<i>S</i> ₃	S_4	<i>S</i> ₅	S_6
C :	2	3	3	5	1	2
y(.):	1/2	1/2	1/2	1/2	1	1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding -

- Let C ⊆ F be a random set with each set S being included independently with probability y(S).
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution \(\bar{y}\) by:

$$\bar{y}(S) = \begin{cases} 1 & \text{with probability } y(S) \\ 0 & \text{otherwise.} \end{cases}$$
 for all $S \in \mathcal{F}$.

	S_1	S_2	<i>S</i> ₃	S_4	<i>S</i> ₅	S_6	
C :	2	3	3	5	1	2	
y(.):	1/2	1/2	1/2	1/2	1	1/2	

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding -

- Let C ⊆ F be a random set with each set S being included independently with probability y(S).
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution \(\bar{y}\) by:

$$\bar{y}(S) = \begin{cases} 1 & \text{with probability } y(S) \\ 0 & \text{otherwise.} \end{cases}$$
 for all $S \in \mathcal{F}$.

• Therefore, $\mathbf{E}[\bar{y}(S)] = y(S)$.

	S ₁	S_2	S ₃	S_4	S ₅	S_6	
C :	2	3	3	5	1	2	
y(.):	1/2	1/2	1/2	1/2	1	1/2	

Idea: Interpret the *y*-values as probabilities for picking the respective set.

- Lemma

	S_1	S_2	<i>S</i> ₃	S_4	<i>S</i> ₅	S_6	
C :	2	3	3	5	1	2	
y(.):	1/2	1/2	1/2	1/2	1	1/2	

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

The expected cost satisfies

$$\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$$

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

The expected cost satisfies

$$\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$$

The probability that an element x ∈ X is covered satisfies

$$\Pr\left[x\in\bigcup_{S\in\mathcal{C}}S\right]\geq 1-\frac{1}{e}.$$

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$.

Proof:

• Step 1: The expected cost of the random set \mathcal{C}

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$.

Proof:

• Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})]$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right]$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

• Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S)$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\begin{aligned} \mathbf{E}\left[c(\mathcal{C})\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\ &= \sum_{S \in \mathcal{F}} \mathbf{Pr}\left[S \in \mathcal{C}\right] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S). \end{aligned}$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S]$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\begin{aligned} \mathbf{E}\left[c(\mathcal{C})\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\ &= \sum_{S \in \mathcal{F}} \mathbf{Pr}\left[S \in \mathcal{C}\right] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S). \end{aligned}$$

$$\Pr[x \notin \bigcup_{S \in C} S] = \prod_{S \in \mathcal{F}: x \in S} \Pr[S \notin C]$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\begin{aligned} \mathbf{E}\left[c(\mathcal{C})\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\ &= \sum_{S \in \mathcal{F}} \mathbf{Pr}\left[S \in \mathcal{C}\right] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S). \end{aligned}$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\begin{aligned} \mathbf{E}\left[c(\mathcal{C})\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\ &= \sum_{S \in \mathcal{F}} \mathbf{Pr}\left[S \in \mathcal{C}\right] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S). \end{aligned}$$

$$\Pr[x \notin \bigcup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

$$1+x \leq e^x$$
 for any $x \in \mathbb{R}$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\begin{aligned} \mathbf{E}\left[c(\mathcal{C})\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\ &= \sum_{S \in \mathcal{F}} \mathbf{Pr}\left[S \in \mathcal{C}\right] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S). \end{aligned}$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: x \in S} e^{-y(S)}$$

$$1 + x \leq e^{x} \text{ for any } x \in \mathbb{R}$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-y(S)}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} y(S)}$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-y(S)} \text{ y solves the LP!}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} y(S)}$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

• Step 1: The expected cost of the random set \mathcal{C}

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-y(S)} \text{ y solves the LP!}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} y(S)} < e^{-1}$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-y(S)} \text{ y solves the LP!}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} y(S)} < e^{-1}$$

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

• Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-y(S)} \text{ y solves the LP!}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} y(S)} < e^{-1} \quad \square$$

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets C.

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets C.

```
WEIGHTED SET COVER-LP(X, \mathcal{F}, c)
```

- 1: compute y, an optimal solution to the linear program
- 2: $\mathcal{C} = \emptyset$
- 3: repeat 2 ln n times
- 4: **for** each $S \in \mathcal{F}$
- 5: let $C = C \cup \{S\}$ with probability y(S)
- 6. return C

Lemma

Let $C \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets C.

```
WEIGHTED SET COVER-LP(X, \mathcal{F}, c)
```

- 1: compute y, an optimal solution to the linear program
- 2: $\mathcal{C} = \emptyset$
- 3: repeat 2 ln n times
- 4: **for** each $S \in \mathcal{F}$
- 5: let $C = C \cup \{S\}$ with probability y(S)
- 6: return C

clearly runs in polynomial-time!

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

• Step 1: The probability that C is a cover

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{a}$, so that

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \not\in \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n}$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \le \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr\left[X = \cup_{S \in \mathcal{C}} S\right] =$$

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$$

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in C} S]$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{\theta}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\Pr[A \cup B] \le \Pr[A] + \Pr[B]$$

$$\ge 1 - \sum_{x \in X} \Pr[x \notin \cup_{S \in \mathcal{C}} S] \ge 1 - n \cdot \frac{1}{n^2}$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\Pr[A \cup B] \leq \Pr[A] + \Pr[B] > 1 - \sum_{x \in X} \Pr[x \notin \cup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover √
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\Pr[A \cup B] \leq \Pr[A] + \Pr[B] > 1 - \sum_{x \in X} \Pr[x \notin \cup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover √
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

This implies for the event that all elements are covered:

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

Step 2: The expected approximation ratio

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover \checkmark
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover √
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
 - Linearity \Rightarrow **E** [c(C)] \leq 2 ln(n) $\cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover √
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
 - Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2\ln(n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq 2\ln(n) \cdot c(\mathcal{C}^*)$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover √
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio √
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
 - Linearity \Rightarrow **E** [c(C)] \leq 2 ln(n) $\cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq$ 2 ln(n) $\cdot c(C^*)$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover √
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio √
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
 - Linearity \Rightarrow **E** [c(C)] \leq 2 ln(n) $\cdot \sum_{S \in \mathcal{F}} c(S) \cdot y(S) \leq$ 2 ln(n) $\cdot c(C^*)$

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

By Markov's inequality, $\Pr\left[c(\mathcal{C}) \leq 4 \ln(n) \cdot c(\mathcal{C}^*)\right] \geq 1/2$.

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

By Markov's inequality,
$$\Pr\left[c(\mathcal{C}) \leq 4 \ln(n) \cdot c(\mathcal{C}^*)\right] \geq 1/2$$
.

Hence with probability at least $1 - \frac{1}{n} - \frac{1}{2} > \frac{1}{3}$, solution is within a factor of $4 \ln(n)$ of the optimum.

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

By Markov's inequality,
$$\Pr\left[c(\mathcal{C}) \leq 4 \ln(n) \cdot c(\mathcal{C}^*)\right] \geq 1/2$$
.

Hence with probability at least $1 - \frac{1}{n} - \frac{1}{2} > \frac{1}{3}$, solution is within a factor of $4 \ln(n)$ of the optimum.

probability could be further increased by repeating

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

By Markov's inequality,
$$\Pr\left[c(\mathcal{C}) \leq 4 \ln(n) \cdot c(\mathcal{C}^*)\right] \geq 1/2$$
.

Hence with probability at least $1 - \frac{1}{n} - \frac{1}{2} > \frac{1}{3}$, solution is within a factor of $4 \ln(n)$ of the optimum.

probability could be further increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

