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— MAX-CUT Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a subset S C V such that |E(S, V' \ S)|
is maximized.
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(Weighted MAX-CUT: Every edge e € E has a non-negative weight w(e)j

— MAX-CUT Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a subset S C V such that |E(S, V' \ S)|
is maximized.
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[ Weighted MAX-CUT: Maximize the weights of edges crossing }

the cut, i.e., maximize w(S) := > "¢, ,yer(s,v\s) WH{U, v})
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— MAX-CUT Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a subset S C V such that |E(S, V' \ S)|
is maximized.
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Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) := > "¢, ,yer(s,v\s) WH{U, v})
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Max-Cut

(Weighted MAX-CUT: Every edge e € E has a non-negative weight w(e)j

— MAX-CUT Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a subset S C V such that |E(S, V' \ S)|
is maximized.

N

\

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) := > "¢, ,yer(s,v\s) WH{U, v})

S={ab,g}
w(S) =18

i
VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3



Max-Cut

(Weighted MAX-CUT: Every edge e € E has a non-negative weight w(e)j
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= Given: Undirected graph G = (V, E)
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the cut, i.e., maximize w(S) := > "¢, ,yer(s,v\s) WH{U, v})
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Max-Cut

(Weighted MAX-CUT: Every edge e € E has a non-negative weight w(e)j

— MAX-CUT Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a subset S C V such that |E(S, V' \ S)|
is maximized.

N

\

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) := > "¢, ,yer(s,v\s) WH{U, v})

S={ab,g}
w(S) =18

Applications:
= cluster analysis
= VLSI design
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Random Sampling

Ex 35.4-3

Suppose that for each vertex v, we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.
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Random Sampling

Ex 35.4-3

Suppose that for each vertex v, we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Proof: We express the expected weight of the random cut (S, V' \ S) as:
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Ex 35.4-3

Suppose that for each vertex v, we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.
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Random Sampling

Ex 35.4-3

Suppose that for each vertex v, we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Proof: We express the expected weight of the random cut (S, V' \ S) as:

E[w(S,V\ S)]

=E [ > w({u, v})]

{u,v}€E(S,V\S)
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Ex 35.4-3

Suppose that for each vertex v, we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
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Random Sampling

Ex 35.4-3

Suppose that for each vertex v, we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomize\d 2-approximation algorithm.

[We could employ the same derandomisation used for MAX-3-CNF.
Proof: We express the expected weight of the random cut (S, V' \ S) as:
E[w(S,V\ S)]

=E [ > w({u, v})]

{u,v}€E(S,V\S)

= > Pri{ueSnve(V\S)}u{uec(V\S)nveS} w({uv})

{u,v}eE
1 1
= % (5+3) waem
{u,v}€E
-1 > w({u,v}) > Twe. O
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Local Search

' Local Search: Switch side of a vertex if it increases the cut. I
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Local Search

' Local Search: Switch side of a vertex if it increases the cut. I

LOCAL SEARCH(G, w)
1: Let S be an arbitrary subset of V

2: do

3: flag =10

4 if Ju e Swith w(S\ {u},(V\ S) U {u}) > w(S, V\ S) then
5: S=S8\{u}

6: flag =1

7 end if

8 if Ju e V\ Swithw(Su{u},(V\ S)\ {u}) > w(S,V\ S) then
9 S=Su{u}

10: flag =1

11: end if

12: while flag =1

13: return S

i
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Illustration of Local Search

Cut=0
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Illustration of Local Search

Step 1: Move ainto S
Cut=0
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Illustration of Local Search

Step 1: Move ainto S
Cut=g
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Illustration of Local Search

Cut=5
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Illustration of Local Search

Step 2: Move g into S
Cut=5
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Illustration of Local Search

Step 2: Move g into S
Cut=%
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Illustration of Local Search

Cut=28
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Illustration of Local Search

Step 3: Move dinto S
Cut=8
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Illustration of Local Search

Step 3: Move d into S
Cut=g
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Illustration of Local Search

Cut=10

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT



Illustration of Local Search

Step 4: Move binto S
Cut=10
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Illustration of Local Search

Step 4: Move binto S
Cut=40
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Illustration of Local Search

Cut = 11
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Illustration of Local Search

Step 5: Move ainto V' \ S
Cut =11
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Illustration of Local Search

Step 5: Move ainto V' \ S
Cut =1
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Illustration of Local Search

After Step 5: Local Search terminates
Cut=12
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Illustration of Local Search

A better solution could be found:
Cut=12
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A better solution could be found:
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Illustration of Local Search

A better solution could be found:
Cut=13
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Analysis of Local Search (1/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2)W™.
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Analysis of Local Search (1/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2)W™.

Proof:
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Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2)W™.
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= At the time of termination, for every vertex u € S:
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Analysis of Local Search (1/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2)W™.

Proof:
= At the time of termination, for every vertex u € S:

S ow{uh > S w{u vy,

veV\S,v~u veS,v~u
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Analysis of Local Search (1/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2)W™.

Proof:
= At the time of termination, for every vertex u € S:

S ow{uh > S w{u vy,

veV\S,v~u vES,vu

= Similarly, for any vertex u € V' \ S:
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Analysis of Local Search (1/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

Proof:
= At the time of termination, for every vertex u € S:

S ow{uh > S w{u vy,

veV\S,v~u veS,v~u

= Similarly, for any vertex u € V' \ S:

S owuv) > Y w{uv).

VES,v~u veV\S,v~u

= Adding up equation 1 for all vertices in S

s
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Analysis of Local Search (1/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

Proof:
= At the time of termination, for every vertex u € S:

S ow{uh > S w{u vy,

veV\S,v~u veS,v~u

= Similarly, for any vertex u € V' \ S:

S owuv) > Y w{uv).

veS,vu veV\S,v~u

= Adding up equation 1 for all vertices in S

ws)>2- > w({uv})

vES,UES, u~v
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Analysis of Local Search (1/2)

Theorem
The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

Proof:
= At the time of termination, for every vertex u € S:
> ow({uvh > > w({u, v, (1)
veV\S,v~u vES,vu

= Similarly, for any vertex u € V' \ S:

doowuvh> > w({u v @)

veS,vu veV\S,v~u

= Adding up equation 1 for all vertices in S and equation 2 for all vertices in V' \ S,

ws)>2- > w({uv})

veS,UeS,u~v

i
VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT



Analysis of Local Search (1/2)

Theorem
The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

Proof:
= At the time of termination, for every vertex u € S:
> ow({uvh > > w({u, v, (1)
veV\S,v~u vES,vu

= Similarly, for any vertex u € V' \ S:

doowuvh> > w({u v @)

veS,vu veV\S,v~u

= Adding up equation 1 for all vertices in S and equation 2 for all vertices in V' \ S,

w(S)>2- > w({uv}) and w(S)>2- > w({u,v}).

veS,UeS,u~v veV\S,ue V\S,u~v
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Analysis of Local Search (1/2)

Theorem
The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

Proof:
= At the time of termination, for every vertex u € S:
> ow({uvh > > w({u, v, (1)
veV\S,v~u vES,vu

= Similarly, for any vertex u € V' \ S:

doowuvh> > w({u v @)

veS,vu veV\S,v~u

= Adding up equation 1 for all vertices in S and equation 2 for all vertices in V' \ S,

w(S)>2- > w({uv}) and w(S)>2- > w({u,v}).

veS,UeS,u~v veV\S,ue V\S,u~v

= Adding up these two inequalities, and diving by 2 yields
weS)> > w({u v+ > w({u, v}).

veS,ueS,u~v veV\S,ue V\S,u~v
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Analysis of Local Search (1/2)

Theorem
The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

Proof:
= At the time of termination, for every vertex u € S:
> wuvh> Y w({uv)), (1)
veV\S,v~u veS,v~u

= Similarly, for any vertex u € V' \ S:

doowuvh> > w({u v @)

veS,vu veV\S,v~u

= Adding up equation 1 for all vertices in S and equation 2 for all vertices in V' \ S,

w(S)>2- > w({uv}) and w(S)>2- > w({u,v}).

veS,UeS,u~v veV\S,ue V\S,u~v

= Adding up these two inequalities, and diving by 2 yields
wS) > > w({uvh+ > w({u,v}).

[\veS,ueS,UNv veV\S,ue V\S,u~v

Every edge appears on one of the two sides.j

B
VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT



Analysis of Local Search (1/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

Proof:
= At the time of termination, for every vertex u € S:

S ow{uh > S w{u vy,

veV\S,v~u veS,v~u

= Similarly, for any vertex u € V' \ S:

S owuv) > Y w{uv).

veS,vu veV\S,v~u

= Adding up equation 1 for all vertices in S and equation 2 for all vertices in V' \ S,

w({u, v}).

w(S)>2- > w({uv}) and w(S)>2- >

veS,UeS,u~v veV\S,ue V\S,u~v

= Adding up these two inequalities, and diving by 2 yields
wS) > > w({uvh+ > w({u,v}).

[\veS,ueS,UNv veV\S,ue V\S,u~v

Every edge appears on one of the two sides.j
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Analysis of Local Search (2/2)

Theorem
The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.
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Analysis of Local Search (2/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

l What is the running time of LOCAL-SEARCH? '

el b
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Analysis of Local Search (2/2)

Theorem
The cut returned by LOCAL-SEARCH satisfies W > (1/2) W™.

l What is the running time of LOCAL-SEARCH? '

/I \

= Unweighted Graphs: Cut increases by at least one in each iteration
= at most r? iterations
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Analysis of Local Search (2/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2) W™.

' What is the running time of LOCAL-SEARCH? '

/I \

= Unweighted Graphs: Cut increases by at least one in each iteration
= at most r? iterations

= Weighted Graphs: could take exponential time in n (not obvious...)
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Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

S
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Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program
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Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

Quadratic program

S

- 1
maximize = > wij-(1-yy)
2 <
(h)eE
subject to yie{-1,+1}, i=1,...,n.
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Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

Label vertices by 1,2,...,n and express
Quadratic program weight function etc. as a n x n-matrix.

1
1
maximize — wii-(1—vyiy
5 > Wi (1= y)
(i,)EE
subject to yie{-1,+1}, i=1,...,n.
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Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

Label vertices by 1,2,...,n and express
Quadratic program weight function etc. as a n x n-matrix.

1
1
maximize — wii-(1—vyiy
5 > Wi (1= y)
(i,)EE
subject to yie{-1,+1}, i=1,...,n.
N

(This models the MAX-CUT problem]
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Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

Label vertices by 1,2,...,n and express
Quadratic program weight function etc. as a n x n-matrix.

|V
- 1
maximize > Z wij- (1= yiy;)
(i))eE
subject to yie{-1,+1}, i=1,...,n.
/1

[This models the MAX-CUT problem J| S =1{ie V:y = +1},
V\S={ieV:.y=-1}

el -
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Relaxation

Quadratic program

maximize

subject to

]
> 2 Wi (1= )

(h)eE

yie {—-1,+1}, i=1,...

el b

i
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Relaxation

Quadratic program

maximize = Z wij- (1 - yiy)
(,/ )EE
subject to yie {—-1,+1}, i=1,...,n
Vector Programming Relaxation
maximize — Z wij- (1= viv)
(I,j)EE
subject to vi-vi=1 i=1,...,n
Vi € R"
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Relaxation

Quadratic program

maximize = Z wij - (1 - yiy))
(,/ )EE
subject to yie {—-1,+1}, i=1,...,n

[Any solution of the original program can be recovered by setting v; = (y;,0,0, ... ,0)!]

(%
Vector Programming Relaxation
maximize = Z wij- (1= viv)
(l NEE
subject to vi-vi=1 i=1,...,n
Vi € R"
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

yT-A-y>o.
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

yT-A-y>o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

el b
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tir&.

[using Cholesky-decompositionj
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tir@.

[using Cholesky-decompositionj

Examples:

i
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tir&.

[using Cholesky-decompositionj

Examples:

18 2
A= (2 5)
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tir@.

[using Cholesky-decompositionj

Examples:

(56D
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tir@.

[using Cholesky-decompositionj

Examples:

18 2 4 4 1 .
A:<2 6>:<1 2>'(_1 2), so Ais SPD.
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tir@.

[using Cholesky-decompositionj

Examples:

18 2 4 4 1 .
A:<2 6>:<1 2>'(_1 2), so Ais SPD.
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tin@.

[using Cholesky-decompositionj

Examples:
18 2 4 —1 4 1 .
A:<2 6):<1 2>'(_1 2), so Ais SPD.
1 2 . 1 2 1

A:<2 1) since (1 —1)-<2 1>-(_1>
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tin@.

[using Cholesky-decompositionj

Examples:
18 2 4 —1 4 1 .
A:<2 6):<1 2>'(_1 2), so Ais SPD.
1 2 . 1 2 1
A:<2 1) since (1 —1)-<2 1>-(_1> =-2,
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Positive Definite Matrices

Definition

A matrix A € R™" is positive semidefinite iff for all y € R”,

y Ay >o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with B . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tin@.

[using Cholesky-decompositionj

Examples:
18 2 4 1 4 1 .
A:<2 6):<1 2>'(_1 2), so Ais SPD.

1 2 . 1 2 1 .
A:<2 1) since (1 —1)-<2 1>-(_1>:—2, Ais not SPD.
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Reformulating the Quadratic Program as a Semidefinite Program

Vector Programming Relaxation

. 1
maximize — wij- (1 —wvy
L3 (1w
(if)eE
subject to vi-vi=1 i=1,...,n
v, e R"
VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 13
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Reformulating the Quadratic Program as a Semidefinite Program

Vector Programming Relaxation

maximize — Z wij- (1 —viv))
(I,j )EE
subject to vi-vi=1 i=1,...,n
Vi € R"
ANN
Reformulation:
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Reformulating the Quadratic Program as a Semidefinite Program

Vector Programming Relaxation

maximize — Z wij- (1 —viv))
(I,j )EE
subject to vi-vi=1 i=1,...,n
Vi € R"
ANN
Reformulation:

= Introduce n? variables ajj = Vi - vj, which give rise to a matrix A
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Reformulating the Quadratic Program as a Semidefinite Program

Vector Programming Relaxation

maximize — Z wij- (1 —viv))
(I,j )EE
subject to vi-vi=1 i=1,...,n
Vi € R"
N

Reformulation:
= Introduce n? variables ajj = Vi - vj, which give rise to a matrix A

= |f V is the matrix given by the vectors (v4, Vs, ..., vy), then A = VT . Vis
symmetric and positive definite
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Reformulating the Quadratic Program as a Semidefinite Program

Vector Programming Relaxation
maximize — Z wij- (1 —viv))
(I,j )EE
subject to vi-vi=1 i=1,...,n
Vi € R"
N

Reformulation:

= Introduce n? variables ajj = Vi - vj, which give rise to a matrix A

= |f V is the matrix given by the vectors (v4, Vs, ..., vy), then A = VT . Vis
symmetric and positive definite

Semidefinite Program

maximize - Z wi;- (1 — aiy)
(i,))eE
subject to A = (a;;) is symmetric and positive definite,
andg;=1foralli=1,...,n
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Reformulating the Quadratic Program as a Semidefinite Program

Vector Programming Relaxation
maximize — Z wij- (1 —viv))
(I,j )EE
subject to vi-vi=1 i=1,...,n
Vi € R"
ANN

Reformulation:

= Introduce n? variables ajj = Vi - vj, which give rise to a matrix A

= If V is the matrix given by the vectors (v, vz, ..., v,s), then A= V' . Vis
symmetric and positive definite

Solve this (which can be done in polynomial time),
Semidefinite Program and recover V using Cholesky Decomposition.

maximize - Z wi;- (1 — aiy)
(i,))eE
subject to A = (a;;) is symmetric and positive definite,
andg;=1foralli=1,...,n
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Rounding the Vector Program

maximize

subject to

Vector Programming Relaxation

]
> Do wij-(1—=viv)

(i.)eE

vi-vi=1 i=1,...

V,'ER'7

,n.
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Rounding the Vector Program

Vector Programming Relaxation

. 1
maximize > Z wij- (1= viv)
(I,J))eE
subject to vi-vi=1 i=1,...
Vi € R"

Rounding by a random hyperplane :

1. Pick a random vector r = (1, I, . . ., In) by drawing each
component from A/(0, 1)
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Rounding the Vector Program

Vector Programming Relaxation

- 1
maximize > Z wij- (1= viv)
(i,j))eE
subject to vi-vi=1 i=1,...,n.
Vi € R"

Rounding by a random hyperplane :

1. Pick a random vector r = (1, I, . . ., In) by drawing each
component from A/(0, 1)

2. Putie Vifv,-r >0and i€ V\ S otherwise

i
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Rounding the Vector Program

maximize

subject to

Vector Programming Relaxation

1
> Do wij-(1—=viv)

(iJ)€E
Vi-vi=1 i=1,...,n

V,'ER"

Rounding by a random hyperplane :

1. Pick a random vector r = (1, I, . . ., In) by drawing each

component from A/(0, 1)

2. Putie Vifv,-r >0and i€ V\ S otherwise

Lemma 1

The probability that two vectors v;, v; € R” are separated by the (random)

hyperplane given by r equals

arccos(V;V;)

™
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Rounding the Vector Program

Vector Programming Relaxation

. 1
maximize > Z wij- (1= viv)
(i,j))eE
subject to vi-vi=1 i=1,...,n
Vi € R"

Rounding by a random hyperplane :

1. Pick a random vector r = (1, I, . . ., In) by drawing each
component from A/(0, 1)

2. Putie Vifv,-r >0and i€ V\ S otherwise

Lemma 1

The probability that two vectors v;, v; € R” are separated by the (random)
hyperplane given by r equals arooosv ) { Follows by projecting on the 1

" plane given by v; and v;.

sl

.-,.E:,. VIIl. MAX-CUT Problem A Solution based on Semidefinite Programming 14



=
=

lllustration of the Hyperplane

ar

S

=

ﬂn % VIII. MAX-CUT Problem A Solution based on Semidefinite Programming



T

lllustration of the Hyperplane

=

]
ﬂ =) VIII. MAX-CUT Problem A Solution based on Semidefinuu@ramming



By

lllustration of the Hyperplane
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A second (technical) Lemma

Lemma 2

Forany x € [—1,1],

1 1
- > 0. . =(1=x).
arccos(x) > 0.878 - —(1 — x)

el b
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A second (technical) Lemma

Lemma 2

Forany x € [—1,1],

1 1
- > 0. . =(1=x).
arccos(x) > 0.878 - —(1 — x)

f(x)
A
1 i
SRRE
L arrcos(x)
\\\
\\\
0.5
N \
\\
N
A
\\
N
\\
0 X
-1 05 0 0.5 1
\-..E S VIIl. MAX-CUT Problem A Solution based on Semidefinite Programming 16



A second (technical) Lemma

Lemma 2

Forany x € [—1,1],

1 1
- > 0. . =(1=x).
arccos(x) > 0.878 - —(1 — x)

1

- arccos(x)
f(x) T /
A
1 1 2
)
N 1
N - arrcos(x)
\\\
\\\ /
0.5 X 1
AN \ 0.878 | T vl
\\
N
A
\\
N
\\
0 X 0 X
-1 05 0 0.5 1 -1 -05 0 0.5 1
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of g5 ~ 1.139.
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of g5 ~ 1.139.

Proof:

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming



Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of g5 ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

s
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,

E[w(S)]

s
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,

E[w(S)] =E [ > X/,f]

{ij}eE
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,
El > X,
{i,j}eE

> E[X]

{i.it€E

E[w(S)]
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,
El > X,
{i,j}eE
> E[Xy]
{ij}eE

= > wy-Pr[{ij} € Eisinthe cut]
{ij}eE

E[w(S)]

i
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

0 otherwise.

- {1 if (i,j) € E are on different sides of the hyperplane
ij =

Hence for the (random) weight of the computed cut,
El > X,
{i,j}eE

> E[X]

{i.it€E

= > wy-Pr[{ij} € Eisinthe cut]

{ijreE
By Lemma 1

E[w(S)]

i
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,
El > X,
{i,j}eE
> E[Xy]
{ij}eE

= > wy-Pr[{ij} € Eisinthe cut]
{ij}eE

E[w(S)]

1
By Lemma 1 = Z Wij — arccos(V; - vj)
{ij}eE
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

0 otherwise.

- {1 if (i,j) € E are on different sides of the hyperplane
ij =

Hence for the (random) weight of the computed cut,
El > X,
{i,j}eE

> E[X]

{i.it€E

= > wy-Pr[{ij} € Eisinthe cut]
{ij}eE

1
By Lemma 1 = Z Wij — arccos(V; - vj)
{ij}€E
By Lemma 2

E[w(S)]

S
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,
El > X,
{i,j}eE
> E[Xy]
{ij}eE

= > wy-Pr[{ij} € Eisinthe cut]
{ij}eE

E[w(S)]

1
By Lemma 1 = Z Wij — arccos(V; - vj)
{ij}€E
]
By Lemma 2 >0.878 - 5 ST owiy-(1=vi-v)

— {i.j}€E
i
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,
El > X,
{i,j}eE
> E[Xy]
{ij}eE

= > wy-Pr[{ij} € Eisinthe cut]
{ij}eE

E[w(S)]

1
By Lemma 1 = Z Wij — arccos(V; - vj)
{ij}€E
1 *
By Lemma 2 >0.878 - 5 > wiy-(1-vi-v)=0878-z

— {i.j}€E
i
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,

E[w(S)] =E [ > Xi,f:|

{ij}eE
= > E[Xy]
{ij}€E

= > wy-Pr[{ij} € Eisinthe cut]
{ij}eE

1
By Lemma 1 = Z Wij — arccos(V; - vj)

{ij}€E

1
By Lemma 2 > 0.878 - 5 > wi-(1—v-v)=0878-z° >0.878- W*.

— {i.j}€E
i
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;o= ~ 1.139.

Proof: Define an indicator variable

~_ )1 if (i,j) € E are on different sides of the hyperplane
"7 10 otherwise.

Hence for the (random) weight of the computed cut,

E[w(S)] =E [ > Xi,f:|

{ij}eE
= > E[Xy]
{ij}€E

= > wy-Pr[{ij} € Eisinthe cut]
{ij}eE

1
By Lemma 1 = Z Wij — arccos(V; - vj)

{ij}€E

’
Bylemma2 > >0878. > S wij-(1-v-v)=0878-2°>0878 W*. O

— {i.j}€E
i
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MAX-CUT: Concluding Remarks

Theorem (Goemans, Willamson’96)

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT.

i
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MAX-CUT: Concluding Remarks

Theorem (Goemans, Willamson’96)

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT./)

can be derandomized
(with some effort)
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MAX-CUT: Concluding Remarks

Theorem (Goemans, Willamson’96)
There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT. N

can be derandomized Similar approach can be applied to MAX-3-CNF
(with some effort) and yields an approximation ratio of 1.345
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MAX-CUT: Concluding Remarks

Theorem (Goemans, Willamson’96)
There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT. N

can be derandomized Similar approach can be applied to MAX-3-CNF
(with some effort) and yields an approximation ratio of 1.345

Theorem (Hastad’97)

Unless P=NP, there is no p-approximation algorithm for MAX-CUT with
p < % = 1.0625.
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MAX-CUT: Concluding Remarks

Theorem (Goemans, Willamson’96)

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT. N

can be derandomized Similar approach can be applied to MAX-3-CNF
(with some effort) and yields an approximation ratio of 1.345

Theorem (Hastad’97)

Unless P=NP, there is no p-approximation algorithm for MAX-CUT with
p < % = 1.0625.

Theorem (Khot, Kindler, Mossel, O’'Donnell’'04)

Assuming the so-called Unique Games Conjecture holds, unless P=NP
there is no p-approximation algorithm for MAX-CUT with

3(1—x)
p< max —2— L <1139
—1<x<t L arccos(x)

VIIl. MAX-CUT Problem A Solution based on Semidefinite Programming 18



Other Approximation Algorithms for MAX-CUT

Theorem (Mathieu, Schudy’08)

For any ¢ > 0, there is a randomised algorithm with running time

O(r2)2°1/¥) so that the expected value of the output deviates from the
maximum cut value by at most O(e - n?).

s

.-,,E:,_ VIII. MAX-CUT Problem A Solution based on Semidefinite Programming



Other Approximation Algorithms for MAX-CUT

Theorem (Mathieu, Schudy’08)

For any ¢ > 0, there is a randomised algorithm with running time
O(r2)2°1/¥) so that the expected value of the output deviates from the

maximum cut value by at most O(e - 7). {This is an additive approximation!]

i
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Other Approximation Algorithms for MAX-CUT

Theorem (Mathieu, Schudy’08)

For any ¢ > 0, there is a randomised algorithm with running time
O(r2)2°1/¥) so that the expected value of the output deviates from the

maximum cut value by at most O(e - n?). {This is an additive approximat

ion!]

N\
f ' N
Algorithm (1):
1. Take a sample S of x = O(1/¢?) vertices chosen uniformly at random
2. For each of the 2* possible cuts, go through vertices in V' \ Sin
random order and place them on the side of the cut which maximizes
the crossing edges
3. Output the best cut found
- J

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming



Other Approximation Algorithms for MAX-CUT

Theorem (Mathieu, Schudy’08)

For any ¢ > 0, there is a randomised algorithm with running time
O(r2)2°1/¥) so that the expected value of the output deviates from the

maximum cut value by at most O(e - 7). {This is an additive approximation!]

N

1 X

~

( Algorithm (1):
1. Take a sample S of x = O(1/¢?) vertices chosen uniformly at random

2. For each of the 2* possible cuts, go through vertices in V' \ Sin
random order and place them on the side of the cut which maximizes
the crossing edges

3. Output the best cut found

Theorem (Trevisan’08)

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(r? - polylog(n)) time.
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Other Approximation Algorithms for MAX-CUT

Theorem (Mathieu, Schudy’08)

For any ¢ > 0, there is a randomised algorithm with running time
O(r2)2°1/¥) so that the expected value of the output deviates from the

maximum cut value by at most O(e - 7). {This is an additive approximation!]

N\
f ' N
Algorithm (1):
1. Take a sample S of x = O(1/¢?) vertices chosen uniformly at random
2. For each of the 2* possible cuts, go through vertices in V' \ Sin
random order and place them on the side of the cut which maximizes
the crossing edges
3. Output the best cut found
- J

Theorem (Trevisan’08)

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(r? - polylog(n)) time.
4

[Exploits relation between the smallest eigenvalue and the structure of the graph.J
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Spectrum of Approximations

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

CHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
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The End

Thank you very much and
Best Wishes for the Exam!
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