
VIII. Approximation Algorithms: MAX-CUT
Problem (Outlook)
Thomas Sauerwald

Easter 2017

Outline

Simple Algorithms for MAX-CUT

A Solution based on Semidefinite Programming

Summary

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 2

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Max-Cut

Given: Undirected graph G = (V ,E)

Goal: Find a subset S ⊆ V such that |E(S,V \ S)|
is maximized.

MAX-CUT Problem

Weighted MAX-CUT: Every edge e ∈ E has a non-negative weight w(e)

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) :=

∑
{u,v}∈E(S,V\S) w({u, v})

a
b

c

d

e g
h

2

1

4

3

5
2

1
2

3

1

a

g

b

S = {a, b, g}

w(S) = 18

Applications:

cluster analysis

VLSI design

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 3

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})



=
∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v})

≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Random Sampling

Suppose that for each vertex v , we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomized 2-approximation algorithm.

Ex 35.4-3

Proof: We express the expected weight of the random cut (S,V \ S) as:

E [w(S,V \ S)]

= E

 ∑
{u,v}∈E(S,V\S)

w({u, v})


=

∑
{u,v}∈E

Pr [{u ∈ S ∩ v ∈ (V \ S)} ∪ {u ∈ (V \ S) ∩ v ∈ S}] · w({u, v})

=
∑
{u,v}∈E

(
1
4
+

1
4

)
· w({u, v})

=
1
2

∑
{u,v}∈E

w({u, v}) ≥ 1
2

w∗.

We could employ the same derandomisation used for MAX-3-CNF.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 4

Local Search

Local Search: Switch side of a vertex if it increases the cut.

LOCAL SEARCH(G,w)
1: Let S be an arbitrary subset of V
2: do
3: flag = 0
4: if ∃u ∈ S with w(S \ {u}, (V \ S) ∪ {u}) ≥ w(S,V \ S) then
5: S = S \ {u}
6: flag = 1
7: end if
8: if ∃u ∈ V \ S with w(S ∪ {u}, (V \ S) \ {u}) ≥ w(S,V \ S) then
9: S = S ∪ {u}

10: flag = 1
11: end if
12: while flag = 1
13: return S

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 5

Local Search

Local Search: Switch side of a vertex if it increases the cut.

LOCAL SEARCH(G,w)
1: Let S be an arbitrary subset of V
2: do
3: flag = 0
4: if ∃u ∈ S with w(S \ {u}, (V \ S) ∪ {u}) ≥ w(S,V \ S) then
5: S = S \ {u}
6: flag = 1
7: end if
8: if ∃u ∈ V \ S with w(S ∪ {u}, (V \ S) \ {u}) ≥ w(S,V \ S) then
9: S = S ∪ {u}

10: flag = 1
11: end if
12: while flag = 1
13: return S

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 5

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0

Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into S

Step 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0

Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into S

Step 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0

Cut = �0

Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0

Cut = 5

Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into S

Step 2: Move g into S

Step 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0

Cut = 5

Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into S

Step 2: Move g into S

Step 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5

Cut = �5

Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5

Cut = 8

Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into S

Step 3: Move d into S

Step 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5

Cut = 8

Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into S

Step 3: Move d into S

Step 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8

Cut = �8

Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8

Cut = 10

Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into S

Step 4: Move b into S

Step 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8

Cut = 10

Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into S

Step 4: Move b into S

Step 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10

Cut =��10

Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10

Cut = 11

Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into S

Step 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10

Cut = 11

Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into S

Step 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminatesA better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11

Cut =��11

Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminates

A better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11

Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminates

A better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11

Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminates

A better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminates

A better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Illustration of Local Search

a
b

c

d

e

f

g

h

i

a

g

d

b

Step 1: Move a into SStep 2: Move g into SStep 3: Move d into SStep 4: Move b into SStep 5: Move a into V \ S

(local search terminates)

After Step 5: Local Search terminates

A better solution could be found:

Cut = 0Cut = �0Cut = 5Cut = �5Cut = 8Cut = �8Cut = 10Cut =��10Cut = 11Cut =��11Cut = 12

e

b

d

Cut = 13

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 6

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:

At the time of termination, for every vertex u ∈ S:

∑
v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:

∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S

and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:

At the time of termination, for every vertex u ∈ S:

∑
v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:

∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S

and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:

∑
v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:

∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S

and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:

∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S

and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:

∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S

and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S

and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S

and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v})

and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v}) and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v}) and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v}) and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (1/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

Proof:
At the time of termination, for every vertex u ∈ S:∑

v∈V\S,v∼u

w({u, v}) ≥
∑

v∈S,v∼u

w({u, v}), (1)

Similarly, for any vertex u ∈ V \ S:∑
v∈S,v∼u

w({u, v}) ≥
∑

v∈V\S,v∼u

w({u, v}). (2)

Adding up equation 1 for all vertices in S and equation 2 for all vertices in V \ S,

w(S) ≥ 2 ·
∑

v∈S,u∈S,u∼v

w({u, v}) and w(S) ≥ 2 ·
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Adding up these two inequalities, and diving by 2 yields

w(S) ≥
∑

v∈S,u∈S,u∼v

w({u, v}) +
∑

v∈V\S,u∈V\S,u∼v

w({u, v}).

Every edge appears on one of the two sides.

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 7

Analysis of Local Search (2/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

What is the running time of LOCAL-SEARCH?

Unweighted Graphs: Cut increases by at least one in each iteration
⇒ at most n2 iterations

Weighted Graphs: could take exponential time in n (not obvious...)

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 8

Analysis of Local Search (2/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

What is the running time of LOCAL-SEARCH?

Unweighted Graphs: Cut increases by at least one in each iteration
⇒ at most n2 iterations

Weighted Graphs: could take exponential time in n (not obvious...)

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 8

Analysis of Local Search (2/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

What is the running time of LOCAL-SEARCH?

Unweighted Graphs: Cut increases by at least one in each iteration
⇒ at most n2 iterations

Weighted Graphs: could take exponential time in n (not obvious...)

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 8

Analysis of Local Search (2/2)

The cut returned by LOCAL-SEARCH satisfies W ≥ (1/2)W ∗.

Theorem

What is the running time of LOCAL-SEARCH?

Unweighted Graphs: Cut increases by at least one in each iteration
⇒ at most n2 iterations

Weighted Graphs: could take exponential time in n (not obvious...)

VIII. MAX-CUT Problem Simple Algorithms for MAX-CUT 8

Outline

Simple Algorithms for MAX-CUT

A Solution based on Semidefinite Programming

Summary

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 9

Max-Cut Problem

High-Level-Approach:

1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem

S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

Label vertices by 1, 2, . . . , n and express
weight function etc. as a n × n-matrix.

This models the MAX-CUT problem S = {i ∈ V : yi = +1},
V \ S = {i ∈ V : yi = −1}

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 10

Relaxation

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Any solution of the original program can be recovered by setting vi = (yi , 0, 0, . . . , 0)!

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 11

Relaxation

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Any solution of the original program can be recovered by setting vi = (yi , 0, 0, . . . , 0)!

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 11

Relaxation

maximize
1
2

∑
(i,j)∈E

wi,j · (1− yiyj)

subject to yi ∈ {−1,+1}, i = 1, . . . , n.

Quadratic program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Any solution of the original program can be recovered by setting vi = (yi , 0, 0, . . . , 0)!

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 11

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition

Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)

=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
,

so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)

since
(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)

= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2,

A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Positive Definite Matrices

A matrix A ∈ Rn×n is positive semidefinite iff for all y ∈ Rn,

yT · A · y ≥ 0.

Definition

1. A is symmetric and positive definite iff there exists a n × n matrix B
with BT · B = A.

2. If A is symmetric and positive definite, then the matrix B above can
be computed in polynomial time.

Remark

using Cholesky-decomposition
Examples:

A =

(
18 2
2 6

)
=

(
4 −1
1 2

)
·
(

4 1
−1 2

)
, so A is SPD.

A =

(
1 2
2 1

)
since

(
1 −1

)
·
(

1 2
2 1

)
·
(

1
−1

)
= −2, A is not SPD.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 12

Reformulating the Quadratic Program as a Semidefinite Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Reformulation:

Introduce n2 variables ai,j = vi · vj , which give rise to a matrix A

If V is the matrix given by the vectors (v1, v2, . . . , vn), then A = V T · V is
symmetric and positive definite

maximize
1
2

∑
(i,j)∈E

wi,j · (1− ai,j)

subject to A = (ai,j) is symmetric and positive definite,

and ai,i = 1 for all i = 1, . . . , n

Semidefinite Program
Solve this (which can be done in polynomial time),

and recover V using Cholesky Decomposition.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 13

Reformulating the Quadratic Program as a Semidefinite Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Reformulation:

Introduce n2 variables ai,j = vi · vj , which give rise to a matrix A

If V is the matrix given by the vectors (v1, v2, . . . , vn), then A = V T · V is
symmetric and positive definite

maximize
1
2

∑
(i,j)∈E

wi,j · (1− ai,j)

subject to A = (ai,j) is symmetric and positive definite,

and ai,i = 1 for all i = 1, . . . , n

Semidefinite Program
Solve this (which can be done in polynomial time),

and recover V using Cholesky Decomposition.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 13

Reformulating the Quadratic Program as a Semidefinite Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Reformulation:
Introduce n2 variables ai,j = vi · vj , which give rise to a matrix A

If V is the matrix given by the vectors (v1, v2, . . . , vn), then A = V T · V is
symmetric and positive definite

maximize
1
2

∑
(i,j)∈E

wi,j · (1− ai,j)

subject to A = (ai,j) is symmetric and positive definite,

and ai,i = 1 for all i = 1, . . . , n

Semidefinite Program
Solve this (which can be done in polynomial time),

and recover V using Cholesky Decomposition.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 13

Reformulating the Quadratic Program as a Semidefinite Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Reformulation:
Introduce n2 variables ai,j = vi · vj , which give rise to a matrix A

If V is the matrix given by the vectors (v1, v2, . . . , vn), then A = V T · V is
symmetric and positive definite

maximize
1
2

∑
(i,j)∈E

wi,j · (1− ai,j)

subject to A = (ai,j) is symmetric and positive definite,

and ai,i = 1 for all i = 1, . . . , n

Semidefinite Program
Solve this (which can be done in polynomial time),

and recover V using Cholesky Decomposition.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 13

Reformulating the Quadratic Program as a Semidefinite Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Reformulation:
Introduce n2 variables ai,j = vi · vj , which give rise to a matrix A

If V is the matrix given by the vectors (v1, v2, . . . , vn), then A = V T · V is
symmetric and positive definite

maximize
1
2

∑
(i,j)∈E

wi,j · (1− ai,j)

subject to A = (ai,j) is symmetric and positive definite,

and ai,i = 1 for all i = 1, . . . , n

Semidefinite Program

Solve this (which can be done in polynomial time),
and recover V using Cholesky Decomposition.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 13

Reformulating the Quadratic Program as a Semidefinite Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Reformulation:
Introduce n2 variables ai,j = vi · vj , which give rise to a matrix A

If V is the matrix given by the vectors (v1, v2, . . . , vn), then A = V T · V is
symmetric and positive definite

maximize
1
2

∑
(i,j)∈E

wi,j · (1− ai,j)

subject to A = (ai,j) is symmetric and positive definite,

and ai,i = 1 for all i = 1, . . . , n

Semidefinite Program
Solve this (which can be done in polynomial time),

and recover V using Cholesky Decomposition.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 13

Rounding the Vector Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Rounding by a random hyperplane :

1. Pick a random vector r = (r1, r2, . . . , rn) by drawing each
component from N (0, 1)

2. Put i ∈ V if vi · r ≥ 0 and i ∈ V \ S otherwise

The probability that two vectors vi , vj ∈ Rn are separated by the (random)
hyperplane given by r equals

arccos(vi ·vj)

π
.

Lemma 1

Follows by projecting on the
plane given by vi and vj .

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 14

Rounding the Vector Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Rounding by a random hyperplane :
1. Pick a random vector r = (r1, r2, . . . , rn) by drawing each

component from N (0, 1)

2. Put i ∈ V if vi · r ≥ 0 and i ∈ V \ S otherwise

The probability that two vectors vi , vj ∈ Rn are separated by the (random)
hyperplane given by r equals

arccos(vi ·vj)

π
.

Lemma 1

Follows by projecting on the
plane given by vi and vj .

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 14

Rounding the Vector Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Rounding by a random hyperplane :
1. Pick a random vector r = (r1, r2, . . . , rn) by drawing each

component from N (0, 1)

2. Put i ∈ V if vi · r ≥ 0 and i ∈ V \ S otherwise

The probability that two vectors vi , vj ∈ Rn are separated by the (random)
hyperplane given by r equals

arccos(vi ·vj)

π
.

Lemma 1

Follows by projecting on the
plane given by vi and vj .

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 14

Rounding the Vector Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Rounding by a random hyperplane :
1. Pick a random vector r = (r1, r2, . . . , rn) by drawing each

component from N (0, 1)

2. Put i ∈ V if vi · r ≥ 0 and i ∈ V \ S otherwise

The probability that two vectors vi , vj ∈ Rn are separated by the (random)
hyperplane given by r equals

arccos(vi ·vj)

π
.

Lemma 1

Follows by projecting on the
plane given by vi and vj .

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 14

Rounding the Vector Program

maximize
1
2

∑
(i,j)∈E

wi,j · (1− vivj)

subject to vi · vi = 1 i = 1, . . . , n.

vi ∈ Rn

Vector Programming Relaxation

Rounding by a random hyperplane :
1. Pick a random vector r = (r1, r2, . . . , rn) by drawing each

component from N (0, 1)

2. Put i ∈ V if vi · r ≥ 0 and i ∈ V \ S otherwise

The probability that two vectors vi , vj ∈ Rn are separated by the (random)
hyperplane given by r equals

arccos(vi ·vj)

π
.

Lemma 1

Follows by projecting on the
plane given by vi and vj .

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 14

Illustration of the Hyperplane

N

S

v1

v2

v3

v4

v5

r

v1

v2

v3

v4

v5

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 15

Illustration of the Hyperplane

N

S

v1

v2

v3

v4

v5

r

v1

v2

v3

v4

v5

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 15

Illustration of the Hyperplane

N

S

v1

v2

v3

v4

v5

r

v1

v2

v3

v4

v5

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 15

A second (technical) Lemma

For any x ∈ [−1, 1],

1
π

arccos(x) ≥ 0.878 · 1
2
(1− x).

Lemma 2

x

f (x)

−1 −0.5 0 0.5 1

1

0.5

0

1
2 (1− x)
1
π

arrcos(x)

x

1
π

arccos(x)
1
2
(1−x)

−1 −0.5 0 0.5 1

2

1
0.878

0

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 16

A second (technical) Lemma

For any x ∈ [−1, 1],

1
π

arccos(x) ≥ 0.878 · 1
2
(1− x).

Lemma 2

x

f (x)

−1 −0.5 0 0.5 1

1

0.5

0

1
2 (1− x)
1
π

arrcos(x)

x

1
π

arccos(x)
1
2
(1−x)

−1 −0.5 0 0.5 1

2

1
0.878

0

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 16

A second (technical) Lemma

For any x ∈ [−1, 1],

1
π

arccos(x) ≥ 0.878 · 1
2
(1− x).

Lemma 2

x

f (x)

−1 −0.5 0 0.5 1

1

0.5

0

1
2 (1− x)
1
π

arrcos(x)

x

1
π

arccos(x)
1
2
(1−x)

−1 −0.5 0 0.5 1

2

1
0.878

0

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 16

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof:

Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)]

= E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof:

Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)]

= E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)]

= E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)]

= E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j



=
∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj)

= 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗

≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

Putting Everything Together

The algorithm has an approximation ratio of 1
0.878 ≈ 1.139.

Theorem (Goemans, Willamson’96)

Proof: Define an indicator variable

Xi,j =

{
1 if (i, j) ∈ E are on different sides of the hyperplane
0 otherwise.

Hence for the (random) weight of the computed cut,

E [w(S)] = E

 ∑
{i,j}∈E

Xi,j


=

∑
{i,j}∈E

E
[

Xi,j
]

=
∑
{i,j}∈E

wi,j · Pr [{i, j} ∈ E is in the cut]

=
∑
{i,j}∈E

wi,j ·
1
π

arccos(vi · vj)

≥ 0.878 ·
1
2

∑
{i,j}∈E

wi,j · (1− vi · vj) = 0.878 · z∗ ≥ 0.878 ·W∗.

By Lemma 1

By Lemma 2

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 17

MAX-CUT: Concluding Remarks

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT.

Theorem (Goemans, Willamson’96)

can be derandomized
(with some effort)

Similar approach can be applied to MAX-3-CNF
and yields an approximation ratio of 1.345

Unless P=NP, there is no ρ-approximation algorithm for MAX-CUT with
ρ ≤ 17

16 = 1.0625.

Theorem (Håstad’97)

Assuming the so-called Unique Games Conjecture holds, unless P=NP
there is no ρ-approximation algorithm for MAX-CUT with

ρ ≤ max
−1≤x≤1

1
2 (1− x)

1
π

arccos(x)
≤ 1.139

Theorem (Khot, Kindler, Mossel, O’Donnell’04)

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 18

MAX-CUT: Concluding Remarks

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT.

Theorem (Goemans, Willamson’96)

can be derandomized
(with some effort)

Similar approach can be applied to MAX-3-CNF
and yields an approximation ratio of 1.345

Unless P=NP, there is no ρ-approximation algorithm for MAX-CUT with
ρ ≤ 17

16 = 1.0625.

Theorem (Håstad’97)

Assuming the so-called Unique Games Conjecture holds, unless P=NP
there is no ρ-approximation algorithm for MAX-CUT with

ρ ≤ max
−1≤x≤1

1
2 (1− x)

1
π

arccos(x)
≤ 1.139

Theorem (Khot, Kindler, Mossel, O’Donnell’04)

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 18

MAX-CUT: Concluding Remarks

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT.

Theorem (Goemans, Willamson’96)

can be derandomized
(with some effort)

Similar approach can be applied to MAX-3-CNF
and yields an approximation ratio of 1.345

Unless P=NP, there is no ρ-approximation algorithm for MAX-CUT with
ρ ≤ 17

16 = 1.0625.

Theorem (Håstad’97)

Assuming the so-called Unique Games Conjecture holds, unless P=NP
there is no ρ-approximation algorithm for MAX-CUT with

ρ ≤ max
−1≤x≤1

1
2 (1− x)

1
π

arccos(x)
≤ 1.139

Theorem (Khot, Kindler, Mossel, O’Donnell’04)

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 18

MAX-CUT: Concluding Remarks

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT.

Theorem (Goemans, Willamson’96)

can be derandomized
(with some effort)

Similar approach can be applied to MAX-3-CNF
and yields an approximation ratio of 1.345

Unless P=NP, there is no ρ-approximation algorithm for MAX-CUT with
ρ ≤ 17

16 = 1.0625.

Theorem (Håstad’97)

Assuming the so-called Unique Games Conjecture holds, unless P=NP
there is no ρ-approximation algorithm for MAX-CUT with

ρ ≤ max
−1≤x≤1

1
2 (1− x)

1
π

arccos(x)
≤ 1.139

Theorem (Khot, Kindler, Mossel, O’Donnell’04)

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 18

MAX-CUT: Concluding Remarks

There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT.

Theorem (Goemans, Willamson’96)

can be derandomized
(with some effort)

Similar approach can be applied to MAX-3-CNF
and yields an approximation ratio of 1.345

Unless P=NP, there is no ρ-approximation algorithm for MAX-CUT with
ρ ≤ 17

16 = 1.0625.

Theorem (Håstad’97)

Assuming the so-called Unique Games Conjecture holds, unless P=NP
there is no ρ-approximation algorithm for MAX-CUT with

ρ ≤ max
−1≤x≤1

1
2 (1− x)

1
π

arccos(x)
≤ 1.139

Theorem (Khot, Kindler, Mossel, O’Donnell’04)

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 18

Other Approximation Algorithms for MAX-CUT

For any ε > 0, there is a randomised algorithm with running time
O(n2)2O(1/ε2) so that the expected value of the output deviates from the
maximum cut value by at most O(ε · n2).

Theorem (Mathieu, Schudy’08)

This is an additive approximation!

Algorithm (1):
1. Take a sample S of x = O(1/ε2) vertices chosen uniformly at random

2. For each of the 2x possible cuts, go through vertices in V \ S in
random order and place them on the side of the cut which maximizes
the crossing edges

3. Output the best cut found

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(n2 · polylog(n)) time.

Theorem (Trevisan’08)

Exploits relation between the smallest eigenvalue and the structure of the graph.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 19

Other Approximation Algorithms for MAX-CUT

For any ε > 0, there is a randomised algorithm with running time
O(n2)2O(1/ε2) so that the expected value of the output deviates from the
maximum cut value by at most O(ε · n2).

Theorem (Mathieu, Schudy’08)

This is an additive approximation!

Algorithm (1):
1. Take a sample S of x = O(1/ε2) vertices chosen uniformly at random

2. For each of the 2x possible cuts, go through vertices in V \ S in
random order and place them on the side of the cut which maximizes
the crossing edges

3. Output the best cut found

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(n2 · polylog(n)) time.

Theorem (Trevisan’08)

Exploits relation between the smallest eigenvalue and the structure of the graph.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 19

Other Approximation Algorithms for MAX-CUT

For any ε > 0, there is a randomised algorithm with running time
O(n2)2O(1/ε2) so that the expected value of the output deviates from the
maximum cut value by at most O(ε · n2).

Theorem (Mathieu, Schudy’08)

This is an additive approximation!

Algorithm (1):
1. Take a sample S of x = O(1/ε2) vertices chosen uniformly at random

2. For each of the 2x possible cuts, go through vertices in V \ S in
random order and place them on the side of the cut which maximizes
the crossing edges

3. Output the best cut found

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(n2 · polylog(n)) time.

Theorem (Trevisan’08)

Exploits relation between the smallest eigenvalue and the structure of the graph.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 19

Other Approximation Algorithms for MAX-CUT

For any ε > 0, there is a randomised algorithm with running time
O(n2)2O(1/ε2) so that the expected value of the output deviates from the
maximum cut value by at most O(ε · n2).

Theorem (Mathieu, Schudy’08)

This is an additive approximation!

Algorithm (1):
1. Take a sample S of x = O(1/ε2) vertices chosen uniformly at random

2. For each of the 2x possible cuts, go through vertices in V \ S in
random order and place them on the side of the cut which maximizes
the crossing edges

3. Output the best cut found

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(n2 · polylog(n)) time.

Theorem (Trevisan’08)

Exploits relation between the smallest eigenvalue and the structure of the graph.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 19

Other Approximation Algorithms for MAX-CUT

For any ε > 0, there is a randomised algorithm with running time
O(n2)2O(1/ε2) so that the expected value of the output deviates from the
maximum cut value by at most O(ε · n2).

Theorem (Mathieu, Schudy’08)

This is an additive approximation!

Algorithm (1):
1. Take a sample S of x = O(1/ε2) vertices chosen uniformly at random

2. For each of the 2x possible cuts, go through vertices in V \ S in
random order and place them on the side of the cut which maximizes
the crossing edges

3. Output the best cut found

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(n2 · polylog(n)) time.

Theorem (Trevisan’08)

Exploits relation between the smallest eigenvalue and the structure of the graph.

VIII. MAX-CUT Problem A Solution based on Semidefinite Programming 19

Outline

Simple Algorithms for MAX-CUT

A Solution based on Semidefinite Programming

Summary

VIII. MAX-CUT Problem Summary 20

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS

PTAS APX log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS

PTAS APX log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS

APX log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS

APX log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS APX

log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS APX

log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS APX log-APX

poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS APX log-APX

poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS APX log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

SCHEDULING,
EUCLIDEAN-

TSP

VERTEX-COVER,
MAX-3-CNF, MAX-CUT

METRIC-TSP

SET-COVER

MAX-CLIQUE

FPTAS PTAS APX log-APX poly-APX

VIII. MAX-CUT Problem Summary 21

The End

Thank you very much and
Best Wishes for the Exam!

VIII. MAX-CUT Problem Summary 22

	Simple Algorithms for MAX-CUT
	A Solution based on Semidefinite Programming
	Summary

