
II. Matrix Multiplication
Thomas Sauerwald

Easter 2017



Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Introduction 2



Matrix Multiplication

Remember: If A = (aij ) and B = (bij ) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3



Matrix Multiplication

Remember: If A = (aij ) and B = (bij ) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , the

SQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3



Matrix Multiplication

Remember: If A = (aij ) and B = (bij ) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3



Matrix Multiplication

Remember: If A = (aij ) and B = (bij ) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n2 · n = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction 3



Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Serial Matrix Multiplication 4



Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5



Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5



Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5



Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5



Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5



Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5



Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5



Divide & Conquer: First Approach (Pseudocode)

4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,

8 · T (n/2) + Θ(n2)

if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,

8 · T (n/2) + Θ(n2)

if n > 1.

8 Multiplications

4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2)

+ Θ(n2)

if n > 1.

8 Multiplications

4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2)

+ Θ(n2)

if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) =

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n)

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n) = Θ(n3) No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n) = Θ(n3)

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsSolution: T (n) = Θ(8log2 n) = Θ(n3)

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6



Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2× n/2 matrices.

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (1969)

Time for steps 1,2,4: Θ(n2), hence T (n) = 7 · T (n/2) + Θ(n2)⇒ T (n) = Θ(nlog 7).

II. Matrix Multiplication Serial Matrix Multiplication 7



Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2× n/2 matrices.

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (1969)

Time for steps 1,2,4: Θ(n2), hence T (n) = 7 · T (n/2) + Θ(n2)⇒ T (n) = Θ(nlog 7).

II. Matrix Multiplication Serial Matrix Multiplication 7



Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2× n/2 matrices.

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (1969)

Time for steps 1,2,4: Θ(n2), hence T (n) = 7 · T (n/2) + Θ(n2)⇒ T (n) = Θ(nlog 7).

II. Matrix Multiplication Serial Matrix Multiplication 7



Solving the Recursion

T (n) = 7 · T (n/2) + c · n2

II. Matrix Multiplication Serial Matrix Multiplication 8



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 =

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 + A11B22 + A22B11 + A22B22 + A22B21 − A22B11

− A11B22 − A12B22 + A12B21 + A12B22 − A22B21 − A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Details of Strassen’s Algorithm

P1 = A11 · S1 = A11 · (B12 − B22)

P2 = S2 · B22 = (A11 + A12) · B22

P3 = S3 · B11 = (A21 + A22) · B11

P4 = A22 · S4 = A22 · (B21 − B11)

P5 = S5 · S6 = (A11 + A22) · (B11 + B22)

P6 = S7 · S8 = (A12 − A22) · (B21 + B22)

P7 = S9 · S10 = (A11 − A21) · (B11 + B12)

The 10 Submatrices and 7 Products

(
A11B11 + A12B21 A11B12 + A12B21
A21B11 + A22B21 A21B12 + A22B22

)
=

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P5 + P1 − P3 − P7

)Claim

Proof:

P5 + P4 − P2 + P6 = A11B11 +���A11B22 +���A22B11 +���A22B22 +���A22B21 −���A22B11

−���A11B22 −���A12B22 + A12B21 +���A12B22 −���A22B21 −���A22B22

= A11B11 + A12B21

Other three blocks can be verified similarly.

II. Matrix Multiplication Serial Matrix Multiplication 9



Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

O(n3), naive approach

O(n2.808), Strassen (1969)

O(n2.796), Pan (1978)

O(n2.522), Schönhage (1981)

O(n2.517), Romani (1982)

O(n2.496), Coppersmith and Winograd (1982)

O(n2.479), Strassen (1986)

O(n2.376), Coppersmith and Winograd (1989)

O(n2.374), Stothers (2010)

O(n2.3728642), V. Williams (2011)

O(n2.3728639), Le Gall (2014)

. . .

II. Matrix Multiplication Serial Matrix Multiplication 10



Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

O(n3), naive approach

O(n2.808), Strassen (1969)

O(n2.796), Pan (1978)

O(n2.522), Schönhage (1981)

O(n2.517), Romani (1982)

O(n2.496), Coppersmith and Winograd (1982)

O(n2.479), Strassen (1986)

O(n2.376), Coppersmith and Winograd (1989)

O(n2.374), Stothers (2010)

O(n2.3728642), V. Williams (2011)

O(n2.3728639), Le Gall (2014)

. . .

II. Matrix Multiplication Serial Matrix Multiplication 10



Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

O(n3), naive approach

O(n2.808), Strassen (1969)

O(n2.796), Pan (1978)

O(n2.522), Schönhage (1981)

O(n2.517), Romani (1982)

O(n2.496), Coppersmith and Winograd (1982)

O(n2.479), Strassen (1986)

O(n2.376), Coppersmith and Winograd (1989)

O(n2.374), Stothers (2010)

O(n2.3728642), V. Williams (2011)

O(n2.3728639), Le Gall (2014)

. . .

II. Matrix Multiplication Serial Matrix Multiplication 10



Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

O(n3), naive approach

O(n2.808), Strassen (1969)

O(n2.796), Pan (1978)

O(n2.522), Schönhage (1981)

O(n2.517), Romani (1982)

O(n2.496), Coppersmith and Winograd (1982)

O(n2.479), Strassen (1986)

O(n2.376), Coppersmith and Winograd (1989)

O(n2.374), Stothers (2010)

O(n2.3728642), V. Williams (2011)

O(n2.3728639), Le Gall (2014)

. . .

II. Matrix Multiplication Serial Matrix Multiplication 10



Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

O(n3), naive approach

O(n2.808), Strassen (1969)

O(n2.796), Pan (1978)

O(n2.522), Schönhage (1981)

O(n2.517), Romani (1982)

O(n2.496), Coppersmith and Winograd (1982)

O(n2.479), Strassen (1986)

O(n2.376), Coppersmith and Winograd (1989)

O(n2.374), Stothers (2010)

O(n2.3728642), V. Williams (2011)

O(n2.3728639), Le Gall (2014)

. . .

II. Matrix Multiplication Serial Matrix Multiplication 10



Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Digression: Multithreading 11



Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12



Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12



Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12



Memory Models

Each processor has its private memory

Access to memory of another processor via messages

Distributed Memory

1 2 3 4 5 6

Central location of memory

Each processor has direct access

Shared Memory

Shared Memory

1 2 3 4 5 6

II. Matrix Multiplication Digression: Multithreading 12



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:

spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync

wait until all spawned threads are done
parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync
wait until all spawned threads are done

parallel

(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync
wait until all spawned threads are done

parallel
(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Dynamic Multithreading

Programming shared-memory parallel computer difficult

Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

Functionalities:
spawn

(optional) prefix to a procedure call statement
procedure is executed in a separate thread

sync
wait until all spawned threads are done

parallel
(optinal) prefix to the standard loop for
each iteration is called in its own thread

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

II. Matrix Multiplication Digression: Multithreading 13



Computing Fibonacci Numbers Recursively (Fig. 27.1)

27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n ! 1
2 return n
3 else x D FIB.n " 1/
4 y D FIB.n " 2/
5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/
also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/
replicates the work that the first call performs.

Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-
sive calls plus a constant amount of extra work, we obtain the recurrence
T .n/ D T .n " 1/C T .n " 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ ! aFn " b, where
a > 1 and b > 0 are constants. Substituting, we obtain

Very inefficient – exponential time!

0: FIB(n)
1: if n<=1 return n
2: else x=FIB(n-1)
3: y=FIB(n-2)
4: return x+y

II. Matrix Multiplication Digression: Multithreading 14



Computing Fibonacci Numbers Recursively (Fig. 27.1)
27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n ! 1
2 return n
3 else x D FIB.n " 1/
4 y D FIB.n " 2/
5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/
also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/
replicates the work that the first call performs.

Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-
sive calls plus a constant amount of extra work, we obtain the recurrence
T .n/ D T .n " 1/C T .n " 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ ! aFn " b, where
a > 1 and b > 0 are constants. Substituting, we obtain

Very inefficient – exponential time!

0: FIB(n)
1: if n<=1 return n
2: else x=FIB(n-1)
3: y=FIB(n-2)
4: return x+y

II. Matrix Multiplication Digression: Multithreading 14



Computing Fibonacci Numbers Recursively (Fig. 27.1)
27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n ! 1
2 return n
3 else x D FIB.n " 1/
4 y D FIB.n " 2/
5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/
also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/
replicates the work that the first call performs.

Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-
sive calls plus a constant amount of extra work, we obtain the recurrence
T .n/ D T .n " 1/C T .n " 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ ! aFn " b, where
a > 1 and b > 0 are constants. Substituting, we obtain

Very inefficient – exponential time!

0: FIB(n)
1: if n<=1 return n
2: else x=FIB(n-1)
3: y=FIB(n-2)
4: return x+y

II. Matrix Multiplication Digression: Multithreading 14



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3)

P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3)

P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2)

P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2)

P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB(3) P-FIB(2)

P-FIB(2) P-FIB(1) P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(0)

0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y

• Without spawn and sync same pseudocode as before
• spawn does not imply parallel execution (depends on scheduler)

Computation Dag G = (V ,E)
• V set of threads (instructions/strands without parallel control)
• E set of dependencies

Total work ≈ 17 nodes, longest path: 8 nodes

II. Matrix Multiplication Digression: Multithreading 15



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Computing Fibonacci Numbers in Parallel (DAG Perspective)

4 4 4

3

2

2

3

1

1

1

2

2

0

2

0

3

2

II. Matrix Multiplication Digression: Multithreading 16



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18

#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Performance Measures

Total time to execute everything on a single processor.

Work

Longest time to execute the threads along any path.

Span

If each thread takes unit time, span is
the length of the critical path.

4

3 6 5

2

1

5

4

∑
= 30

∑
= 18

#nodes = 5

II. Matrix Multiplication Digression: Multithreading 17



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Work Law and Span Law

T1 = work, T∞ = span

P = number of (identical) processors

TP = running time on P processors

Running time actually also depends on scheduler etc.!

TP ≥
T1

P

Work Law

Time on P processors can’t be shorter than if all work all time

TP ≥ T∞

Span Law

Time on P processors can’t be shorter than time on ∞ processors

Speed-Up: T1
TP

Parallelism: T1
T∞

Maximum Speed-Up bounded by P!

Maximum Speed-Up for ∞ processors!

T1 = 8, P = 2

T∞ = 5

II. Matrix Multiplication Digression: Multithreading 18



Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

II. Matrix Multiplication Multithreaded Matrix Multiplication 19



Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij ) and n-vector x = (xj ) yields
an n-vector y = (yi ) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20



Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij ) and n-vector x = (xj ) yields
an n-vector y = (yi ) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20



Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij ) and n-vector x = (xj ) yields
an n-vector y = (yi ) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20



Warmup: Matrix Vector Multiplication

Remember: Multiplying an n × n matrix A = (aij ) and n-vector x = (xj ) yields
an n-vector y = (yi ) given by

yi =
n∑

j=1

aijxj for i = 1, 2, . . . , n.

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

The parallel for-loops can be used since
different entries of y can be computed concurrently.

How can a compiler implement the parallel for-loop?

II. Matrix Multiplication Multithreaded Matrix Multiplication 20



Implementing parallel for based on Divide-and-Conquer

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) =

Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) =

Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) = Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Implementing parallel for based on Divide-and-Conquer786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n
3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/
6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n!n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops
Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n ! n matrix A D .aij /
by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n
3 parallel for i D 1 to n
4 yi D 0
5 parallel for i D 1 to n
6 for j D 1 to n
7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

T1(n) = Θ(n2)

T∞(n) = Θ(log n) + max
1≤i≤n

iter(n)

= Θ(n).

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

II. Matrix Multiplication Multithreaded Matrix Multiplication 21



Naive Algorithm in Parallel

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik " bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.n3= lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n ! n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n ! n matrices A and B to produce the n ! n matrix C ,
relies on partitioning each of the three matrices into four n=2 ! n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n!n matrices, we perform eight multiplications of n=2!n=2
matrices and one addition of n!n matrices. The following pseudocode implements

P-SQUARE-MATRIX-MULTIPLY(A,B) has work T1(n) = Θ(n3) and span T∞(n) =

Θ(n)

.

The first two nested for-loops parallelise perfectly.

With a more careful implementation,
T∞(n) = O(log n) (CLRS, Exercise 27.2-3)

II. Matrix Multiplication Multithreaded Matrix Multiplication 22



Naive Algorithm in Parallel

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 parallel for i D 1 to n
4 parallel for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik " bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.n3= lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication
As we learned in Section 4.2, we can multiply n ! n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n ! n matrices A and B to produce the n ! n matrix C ,
relies on partitioning each of the three matrices into four n=2 ! n=2 submatrices:

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
:

Then, we can write the matrix product as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"!
B11 B12

B21 B22

"

D
!

A11B11 A11B12

A21B11 A21B12

"
C

!
A12B21 A12B22

A22B21 A22B22

"
: (27.6)

Thus, to multiply two n!n matrices, we perform eight multiplications of n=2!n=2
matrices and one addition of n!n matrices. The following pseudocode implements

P-SQUARE-MATRIX-MULTIPLY(A,B) has work T1(n) = Θ(n3) and span T∞(n) = Θ(n).

The first two nested for-loops parallelise perfectly.

With a more careful implementation,
T∞(n) = O(log n) (CLRS, Exercise 27.2-3)

II. Matrix Multiplication Multithreaded Matrix Multiplication 22



The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) =

Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23



The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) =

Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23



The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) =

Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23



The Simple Divide&Conquer Approach in Parallel

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1
3 c11 D a11b11

4 else let T be a new n ! n matrix
5 partition A, B , C , and T into n=2 ! n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/
7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/
8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/
9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/
11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/
12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/
13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/
14 sync
15 parallel for i D 1 to n
16 parallel for j D 1 to n
17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 ! 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 ! n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

P-MATRIX-MULTIPLY-RECURSIVE has work T1(n) = Θ(n3) and span T∞(n) = Θ(log2 n).

The same as before.

T∞(n) = T∞(n/2) + Θ(log n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 23



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Strassen’s Algorithm in Parallel

1. Partition each of the matrices into four n/2× n/2 submatrices

2. Create 10 matrices S1,S2, . . . ,S10. Each is n/2× n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products P1,P2, . . . ,P7, each n/2× n/2

4. Compute n/2× n/2 submatrices of C by adding and subtracting
various combinations of the Pi .

Strassen’s Algorithm (parallelised)

This step takes Θ(1) work and span by index calculations.

Can create all 10 matrices with Θ(n2) work and Θ(log n)
span using doubly nested parallel for loops.

Recursively spawn the computation of the seven products.

Using doubly nested parallel for
this takes Θ(n2) work and Θ(log n) span.

T1(n) = Θ(nlog 7)

T∞(n) = Θ(log2 n)

II. Matrix Multiplication Multithreaded Matrix Multiplication 24



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In



⇒ D−1 =

In −A
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In



⇒ D−1 =

In −A
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In



⇒ D−1 =

In −A
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In



⇒ D−1 =

In −A
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In

 ⇒ D−1 =

In −A AB
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In

 ⇒ D−1 =

In −A AB
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In

 ⇒ D−1 =

In −A AB
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In

 ⇒ D−1 =

In −A AB
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.

II. Matrix Multiplication Multithreaded Matrix Multiplication 25



Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Proof:

Define a 3n × 3n matrix D by:

D =

In A 0
0 In B
0 0 In

 ⇒ D−1 =

In −A AB
0 In −B
0 0 In

 .

Matrix D can be constructed in Θ(n2) = O(I(n)) time,

and we can invert D in O(I(3n)) = O(I(n)) time.

⇒ We can compute AB in O(I(n)) time.
II. Matrix Multiplication Multithreaded Matrix Multiplication 25



The Other Direction

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Suppose we can multiply two n × n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 ≤
k ≤ n and M(n/2) ≤ c · M(n) for some constant c < 1/2. Then we can
compute the inverse of any real nonsingular n×n matrix in time O(M(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)

Proof of this directon much harder (CLRS) – relies on properties of SPD matrices.

Allows us to use Strassen’s Algorithm to invert a matrix!

II. Matrix Multiplication Multithreaded Matrix Multiplication 26



The Other Direction

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Suppose we can multiply two n × n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 ≤
k ≤ n and M(n/2) ≤ c · M(n) for some constant c < 1/2. Then we can
compute the inverse of any real nonsingular n×n matrix in time O(M(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)

Proof of this directon much harder (CLRS) – relies on properties of SPD matrices.

Allows us to use Strassen’s Algorithm to invert a matrix!

II. Matrix Multiplication Multithreaded Matrix Multiplication 26



The Other Direction

If we can invert an n × n matrix in time I(n), where I(n) = Ω(n2) and I(n)
satisfies the regularity condition I(3n) = O(I(n)), then we can multiply
two n × n matrices in time O(I(n)).

Theorem 28.1 (Multiplication is no harder than Inversion)

Suppose we can multiply two n × n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 ≤
k ≤ n and M(n/2) ≤ c · M(n) for some constant c < 1/2. Then we can
compute the inverse of any real nonsingular n×n matrix in time O(M(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)

Proof of this directon much harder (CLRS) – relies on properties of SPD matrices.

Allows us to use Strassen’s Algorithm to invert a matrix!

II. Matrix Multiplication Multithreaded Matrix Multiplication 26


	Introduction
	Serial Matrix Multiplication
	Digression: Multithreading
	Multithreaded Matrix Multiplication

