Il. Matrix Multiplication

Thomas Sauerwald

Easter 2017

i UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction

SRS

.-_'Er,, Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
ci=> ax-by Vij=12...n
k=1

‘;‘E.h Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
ci=> ax-by Vij=12...n
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows
2 let C be anew n X n matrix
3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

‘.‘En Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
cj=> ax-by Vij=12...n
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n?).

Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
ci=> ax-by Vij=12...n
k=1

\

SQUARE-MATRIX-MULTIPLY (4, B) | This definition suggests that n? - n = n®

1 n= A rows arithmetic operations are necessary.

2 let C be anew n X n matrix
3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n?).

‘.‘En Il. Matrix Multiplication Introduction

Outline

Serial Matrix Multiplication

s
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Bz Ci1 Ci2
<A21 Azz) ’ (Bm 522> » C (Cm sz)

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A A Bi1 By Ci1
<A21 Azz) ’ (Bm 522> ’ (Cm

Hence the equation C = A - B becomes:

C12)
Cn)’

o
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Bz Ci1 Ci2
<A21 Azz) ’ (Bm 522> ’ (Cm Ca2
Hence the equation C = A - B becomes:

Ci1 Ci2\ _ (A Aw) (B B
Co1 C2 Az A Bxy Bao

4, II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

Al A Bi1 Bz Ci
A - B =) C =
<A21 Azz) ’ (Bm Bzz) (Cm
Hence the equation C = A - B becomes:
Ci1 Ciz _ A Az) Bi1 Biz2
Co1 Ca2 A2t Az Bt Bz
This corresponds to the four equations:
Ci1 = A1 - Byt + A2 - By
Ci2 = A1 - Biz + A2 - Boo

Cot = Azt - Bi1 + Az - Bay
Co2 = At - Bia + Az - Boo

C1 2
CZZ

).

kel
4, II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Bz Ci1 Ci2
<A21 Azz) ’ (Bm Bzz) ’ (Cm Ca2
Hence the equation C = A - B becomes:
Ci1 Ciz _ A Az . Bi1 Biz2
Cxr Co Ay Az Boy Bae
This corresponds to the four equations:

Cin = A Bii + Az Bas Each equation specifies
Ciz = Ai1 - Bz + Az B2 two multiplications of
Co1 = Aot - Bi1 + A - By] N/2%xn/2 matrices and the
Coo = Aot - Bia + Asp - By | 2ddition of their products.

4, II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach (Pseudocode)

Ci1 = A1 - Bi1 + Asz - By
Ci2 = A1 - Bia + A2 - B
Co1 = Azt - Bi1 + Az - Boy
Ci1 = A2t - Biz + Az2 - Boz

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an-bn
else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

NN B W N

Ci1 = A1 - Bi1 + Asz - By
Ci2 = A1 - Bia + A2 - B
Co1 = Azt - Bi1 + Az - Boy
Ci1 = A2t - Biz + Az2 - Boz

el - el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

Line 5: Handle submatrices implicitly through

2 let C be anew n x n matrix . i . .
3 ifn == index calculations instead of creating them.
4 ¢ = an-bn
5 else partition A, B, and C as in equations (4.9) Z
6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Ci1 = A1 - Bi1 + Asz - By
Ci2 = A1 - Bia + A2 - B
Cot = Azt - Bi1 + Az - By
Ci1 = A2t - Biz + Az2 - Boz

el - el
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an-bn
else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

NN B W N

Let T(n) be the runtime of this procedure.

Sl
E:',,' II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an-bn
else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

NN B W N

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

8 Multiplications

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,
8- T(n/2) itn>1.

8 Multiplications

T(n) =

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1

[NV I SRS I S)

10

n = A.rows

let C be a new n X n matrix

ifn==

i =an-bu

else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)

return C

Let T(n) be the runtime of this procedure. Then:

i
&

/1 N
[8 Multiplications] (4 Additions and Partitioningj

T(n) =

o(1) ifn=1,
8- T(n/2) itn>1.

Il. Matrix Multiplication

Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1

[NV I SRS I S)

10

n = A.rows

let C be a new n X n matrix

ifn==

i =an-bu

else partition 4, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)

return C

Let T(n) be the runtime of this procedure. Then:

i
&

/1 N
[8 Multiplications] (4 Additions and Partitioningj

T(n) =

o(1) ifn=1,
8. T(n/2)+O©(r?) ifn>1.

Il. Matrix Multiplication

Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) =

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, By;)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) = e(glogz ")

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an-bn
5 else partition A, B, and C as in equations (4.9)
6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8°%") = ©(n®) {No improvement over the naive algorithm!]

el el
Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an-bn

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)

7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8%%2") = ©(n®)

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an-bn
5 else partition A, B, and C as in equations (4.9)
6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =98 T(n/2) + 0(r?) ifn>1.
\

Solution: T(n) = ©(8°%") = ©(n®) [Goal: Reduce the number of multiplicationsj

el el
Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive

multiplications of n/2 x n/2 matrices.

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive

multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969)
1. Partition each of the matrices into four n/2 x n/2 submatrices

2. Create 10 matrices Si, S, ..., Sio. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products Py, P, ..., Pz, each n/2 x n/2

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

i
E:',,' II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive

multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969) N\
1. Partition each of the matrices into four n/2 x n/2 submatrices
2. Create 10 matrices Si, S, ..., Sio. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.
3. Recursively compute 7 matrix products Py, P, ..., Pz, each n/2 x n/2
4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

\ S\ J
A

[Time for steps 1,2,4: ©(r?), hence T(n) =7 - T(n/2) + ©(n*) = T(n) = @(nlog7)_J

Il. Matrix Multiplication Serial Matrix Multiplication 7

Solving the Recursion

T(n)=7-T(n/2)+c-r?

el el
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 = S+ Bop = (A11 + At2) - B
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sg - S10 = (A11 — A21) - (By1 + Bi2)

Il. Matrix Multiplication Serial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

el - el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:

el el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — P> + Pg =

el - el
E:',,' II. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + P4 — P + Pg = A11By1 + A11B2a + A2 Bi1 + A2 Boo + A2 Bot — Az By
— A11Bo2 — A12Bo2 + A12B21 + A12Bop — Ao Boy — AxeBoo

Sl
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AtBaz — A28 + A12Bo1 + AreBas — ApeBot — ApeBe

Sl
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24

Sl
E:',,' Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps Py + P
A21Bi1 + A22Bat A21Bi2 + AaBoo P3 + P4 Ps+ Py — P3 — P
N d:
[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24

Sl
%‘.’ Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps Py + P
A21Bi1 + A22Bat A21Bi2 + AaBoo P3 + P4 Ps+ Py — P3 — P
N d:
[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24 |

Sl
%‘.’ Il. Matrix Multiplication Serial Matrix Multiplication 9

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

i

u,‘ﬂ % Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(r®), naive approach

i

u,‘ﬂ % II. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(r®), naive approach
= O(n?%%), Strassen (1969)

i

u,‘ﬂ:, II. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

O(n®), naive approach

O(n?®%,), Strassen (1969)

O(n?7%), Pan (1978)

O(n?®?2), Schénhage (1981)

O(n?®'"), Romani (1982)

O(n2'496), Coppersmith and Winograd (1982)
O(n?*79), Strassen (1986)

O(n?%7%), Coppersmith and Winograd (1989)

Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(n®), naive approach
= O(n?%%), Strassen (1969)
= O(n?7%), Pan (1978)
= O(n*%22), Schénhage (1981)
= O(n**'"), Romani (1982)
= O(n?*%), Coppersmith and Winograd (1982)
= O(n?*"9), Strassen (1986)
= O(n*37®), Coppersmith and Winograd (1989)
= O(n?*3™), Stothers (2010)
= O(n?3728842) "y Williams (2011)
= O(n?37286%9) | e Gall (2014)

Il. Matrix Multiplication Serial Matrix Multiplication

Outline

Digression: Multithreading

Il. Matrix Multiplication

Digression: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

Il. Matrix Multiplication Digression: Multithreading

Memory Models

Distributed Memory
= Each processor has its private memory

= Access to memory of another processor via messages

[

0 O 0
O———O—0

&

i II. Matrix Multiplication Digression: Multithreading

Memory Models

Distributed Memory
= Each processor has its private memory

= Access to memory of another processor via messages

[[R [[

/A VN
O—(—)—()—®)

Shared Memory

= Central location of memory
= Each processor has direct access

Il. Matrix Multiplication Digression: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

[[R [[

(D— D) —()—(D)—(5)—(z
</ N N N

Shared Memory

= Central location of memory
= Each processor has direct access

Shared Memory

T d b oe

II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

il
II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

il
II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

= Use concurrency platform which coordinates all resources
ANN
[Scheduling jobs, communication protocols, load balancing etc.]

S B
%E II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:

il
II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn

il
II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn

= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

* sync

Il. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn

= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

= sync
= wait until all spawned threads are done
" parallel

o
%E II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
* sync
= wait until all spawned threads are done
" parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

S B
%E II. Matrix Multiplication Digression: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
* sync
= wait until all spawned threads are done
" parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

AN

Only logical parallelism, but not actual!

Need a scheduler to map threads to processors.

i II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

0: FIB(n)

1 if n<=1 return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

Il. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

0: FIB(n)

1 if n<=1 return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

il
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

Very inefficient — exponential time!

0: FIB(n)

1 if n<=1 return n
2: else x=FIB(n-1)

3 y=FIB (n-2)

4 return x+y

i II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

o
%E II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

e Without spawn and sync same pseudocode as before
e spawn does not imply parallel execution (depends on scheduler)
z
0: P-FIB(n)
ilg if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-F1IB (n-2)
4: sync
5: return x+y

bl
a5, II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)

4

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

o
(i II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)

e V set of threads (instructions/strands without parallel control)

oo W N KE O

4

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

4

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

oo W N KE O

bl
a5, II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

i

P-FIB (n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

o
%E II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

return x+y

]
mm 1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

il
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

il
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Q
P-FIB(4)
P-FIB(3)

o O

P-FIB(2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

1. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Q
P-FIB(4)
P-FIB(3)

-0 O

P-FIB(2)

P-FIB (n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

o
%E II. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

o O

P-FIB(2)

-0 O

P-FIB(2)

P-FIB(1)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

il
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

S W N B O

il
II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

..

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

v

P-FIB(1)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s> W N P O

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1] return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)

s> W N P O

sync

1. Matrix Multiplication Digression: Multithreading 15

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

LSO

Q)

[

e

1. Matrix Multiplication

Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

. II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

II. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

w

Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Q-

N

r
1
|]
1
|]
|]
» 2
1

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1. Matrix Multiplication Digression: Multithreading

Computing Fibonacci Numbers in Parallel (DAG Perspective)

> 4

0O :
-> 2 2
N A
\ @/
o 5

—)3\ /;,3

N & /
> 2 2

1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

-~
g ¥’

1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Q-

N

-~
g ¥’

1. Matrix Multiplication Digression: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

.—> 4 4
\. _—

-~
g ¥’

1. Matrix Multiplication Digression: Multithreading 16

Performance Measures

Work

Total time to execute everything on a single processor.

.;_m o II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

. II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

30

(]
[

. II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span
Longest time to execute the threads along any path.

o

.;‘n.v, II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span
Longest time to execute the threads along any path.

o

.;‘n.v, II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

. II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work

Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

Il. Matrix Multiplication Digression: Multithreading

—Q
O<—O<—{}D

Performance Measures

Work
Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

N

AN
[If each thread takes unit time, span is }

the length of the critical path.

OO

II. Matrix Multiplication Digression: Multithreading

Performance Measures

Work
Total time to execute everything on a single processor.

Span

Longest time to execute the threads along any path.

N

AN
[If each thread takes unit time, span is }

the length of the critical path.

OO

II. Matrix Multiplication Digression: Multithreading

Performance Measures

#nodes =5

Work
Total time to execute everything on a single processor.

Span l
Longest time to execute the threads along any path.

N

AN
[If each thread takes unit time, span is }

the length of the critical path.

OO

Il. Matrix Multiplication Digression: Multithreading 17

Work Law and Span Law

Sl II. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span

Sl II. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors
~-

(Running time actually also depends on scheduler etc.!)

bl
a5, II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

T > —

o
%E II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law
7-1]
| Tp > —
PR P

(Time on P processors can’'t be shorter than if all work all timej

el
a5, II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law
7-1]
| Tp > —
PR P

(Time on P processors can’'t be shorter than if all work all timej

bl
a5, II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors = —

Work Law
T
| "ZP O O O

(Tlme on P processors can't be shorter than if all work aII t|me

bl
- 1 II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

T]

(Time on P processors can’'t be shorter than if all work all timej

bl
a5, II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

T > —

Span Law
‘ 7—F‘ Z Too

II. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors Tw =5
Work Law
T
Tp > —
P=p

Span Law
S

(Time on P processors can’'t be shorter than time on co processors]

bl
a5, II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

T > —

Span Law
‘ 7—F‘ Z Too

= Speed-Up: %

T =5

Il. Matrix Multiplication Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors Too =5
Work Law
T
Tp > —
P=p

Span Law

= Speed-Up: % <[Maximum Speed-Up bounded by P! j

S B
%E II. Matrix Multiplication Digression: Multithreading 18

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

T =5

Work Law

T

Tp > 31
Span Law
.1
= Speed-Up: 7

= Parallelism: %

- 1 II. Matrix Multiplication

Digression: Multithreading

Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors Tw =5
Work Law
Ty
Tp > —
P=p

Span Law

» Speed-Up: I—;

Parallelism: +- iMaximum Speed-Up for oo processors! j

S B
%E II. Matrix Multiplication Digression: Multithreading 18

Outline

Multithreaded Matrix Multiplication

o

.-_'E-,, Il. Matrix Multiplication

Multithreaded Matrix Multiplication

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E ajiX; fori=1,2,...,n.
j=1

‘;‘E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication

20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E ajiX; fori=1,2,...,n.
j=1

MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallel fori = 1ton

4 Vi = 0

5 parallelfori = 1ton

6 for j = 1ton

7 Yi = Yyi +aijx;

8 return y

‘;‘E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication

20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E ajiX; fori=1,2,...,n.
j=1

MAT-VEC(A, x)

eI B R R

Sl

n = A.rows
let y be a new vector of length n
parallel fori = 1ton

yi=0 { The parallel for-loops can be used since }

paraf“el forl = lton different entries of y can be computed concurrently.
or j = 1ton

Yi = Vit aijXx;
return y

Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
yi=> ax fori=12..n
=

MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel fori = 1ton

g para{l"el_fo(r)i — lton { The parallel for-loops can be used since }
. different entries of y can be computed concurrently.

6 for j = 1ton

7 Yi = yi+aijx;

8 return y

How can a compiler implement the parallel for-loop?

Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 ifi==1i

2 for j = 1ton

3 Vi = yi+ayx;

4 elsemid = [(i +1i')/2]

5 spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid)
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')

7 sync

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton
4 yi=20

5 parallelfori = 1ton
6 for j = 1ton

7 Vi = yi taijx;
8 returny

|
Il. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)
ifi==i'
for j = 1ton
Yi = yitaix;
else mid = [(i +1i')/2]
spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')
sync

N AW~

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 yi=0

5 parallelfori = I ton

6 for j = 1ton

7 Vi = yitajjx;

8 returny

.,E Sy 1. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 ifi==i
2 for j = 1ton
3 Yi = yi +ai;x;

4 elsemid = [(i +1i')/2]

spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')
sync

<o wn

Ti(n) =

MAT-VEC(4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 yi=0

5 parallelfori = I ton

6 for j = 1ton

7 Vi = yitajjx;

8 returny

.,E Sy 1. Matrix Multiplication Multithreaded Matrix Multiplication

21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 Yi = yi +aiXx; 4 yi =0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 i = yi+ajx;
7 sync 8 return y
T Work is equal to running time of its serialization; overhead
1(n) = of recursive spawning does not change asymptotics.
it

;,E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 yi = yi+aix; 4 yi=0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP (4, x, y,n,i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
7 sync 8 return y

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

;,E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Too(n) = Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Too(n) = Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead

_ 2
Ti(n) = () of recursive spawning does not change asymptotics.

T.o(n) = ©(log n) + max iter(n) Span is the depth of recursive callings plus
1<i<n the maximum span of any of the n iterations.

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead

_ 2
Ti(n) = () of recursive spawning does not change asymptotics.

T.o(n) = ©(log n) + max iter(n) Span is the depth of recursive callings plus
1<i<n the maximum span of any of the n iterations.

= 0O(n).

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 parallelfori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by
8 return C

Il. Matrix Multiplication Multithreaded Matrix Multiplication

22

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 parallelfori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = cij + aik - by; With a more careful implementation,

8 return C T (n) = O(log n) (CLRS, Exercise 27.2-3)

P-SQUARE-MATRIX-MULTIPLY(A, B) has work T;(n) = ©(n®) and span T..(n) = ©(n).

[The first two nested for-loops parallelise perfectly.j

".,E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication 22

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1 n = A.rows

2 ifn==

3 ¢ = anbn

4 elselet T be anew n x n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
A1, Az, Az1, A2z Bii, Bia, Bary Baas Cri, Ciz, o, Caas
and Ty, Tha., Tay, Tay: respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 Cij = ¢ij + b

Il. Matrix Multiplication Multithreaded Matrix Multiplication

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1

n = A.rows

2 ifn==
3 c1 = anby
4 elselet T be anew n x n matrix
5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Ay1, Ay, Ay Asss By, Bra, Bay, By Cry, Cra, Cop, oo
and Ty, T2, Ty, T, ; respectively
6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 €y = ¢y iy [The same as before.]
74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T..(n) =

Il. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1

n = A.rows

2 ifn==
3 c1 = anby
4 elselet T be anew n x n matrix
5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Ay1, Ay, Ay Asss By, Bra, Bay, By Cry, Cra, Cop, oo
and Ty, T2, Ty, T, ; respectively
6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 €y = ¢y iy [The same as before.]
74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T..(n) =

—

(7(m = Ttn/2) + O(log)|

Il. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

I n = A.rows

2 ifn==

3 cn = anbn

4 else let 7 be a new n X n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
A1, Az, Az1, A2z Bii, Bia, Bary Baas Cri, Ciz, o, Caas
and Ty, Tha., Tay, Tay: respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, By)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T5,, A23, By,)
14 sync

15 parallel fori = 1ton
16 parallel for j = 1ton

17 € = i+ [The same as before.]

74

P-MATRIX-MULTIPLY-RECURSIVE has work Ty(n) = ©(n®) and span T..(n) = ©(log?® n).

—

(7(m = Ttn/2) + O(log)|

Il. Matrix Multiplication Multithreaded Matrix Multiplication 28

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

‘;‘E.-n Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised) N\
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

;,E.-n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.}

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

;,E.;n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

,',E.;n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

,',E.;n II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

\.

Rl
E;E II. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Rl
II. Matrix Multiplication Multithreaded Matrix Multiplication

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

this takes ©(n?) work and ©(log n) span.

[Using doubly nested parallel for }

(85 Il. Matrix Multiplication Multithreaded Matrix Multiplication

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

this takes ©(n?) work and ©(log n) span.

[Using doubly nested parallel for } Ti(n) = ©(n'°97)

Rl
Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Using doubly nested parallel for Ti(n) = ©(n'°97)
this takes ©(n?) work and ©(log n) span. To(n) = ©(log? n)

\. J

Rl
Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

bl - e

.-,,a;, Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Proof:

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Proof:
= Define a 3n x 3n matrix D by:

Ih A O
D == 0 /n B
0 0 I

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Proof:
= Define a 3n x 3n matrix D by:

L A O L, —-A AB
D=|0 I, B = p'=|0 1 -BJ.
0 0 I 0 0 Iy

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Proof:
= Define a 3n x 3n matrix D by:

L A O L, —A AB
D=|0 I, B = p'=|0 1 -BJ.
0 0 I 0 0 Iy

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Proof:
= Define a 3n x 3n matrix D by:

L A O L, —A AB
D=|0 I, B = p'=|0 1 -BJ.
0 0 I 0 0 Iy

= Matrix D can be constructed in ©(r?) = O(/(n)) time,

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Proof:
= Define a 3n x 3n matrix D by:

L A O L, —A AB
D=|0 I, B = p'=|0 1 -BJ.
0 0 I 0 0 Iy

= Matrix D can be constructed in ©(r?) = O(/(n)) time,
= and we can invert D in O(/(3n)) = O(/(n)) time.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Proof:
= Define a 3n x 3n matrix D by:

L A O L, —A AB
D=|0 I, B = p'=|0 1 -BJ.
0 0 I 0 0 Iy

= Matrix D can be constructed in ©(r?) = O(/(n)) time,
= and we can invert D in O(/(3n)) = O(/(n)) time.
We can compute ABin O(/(n)) time. O

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c- M(n) for some constant ¢ < 1/2. Then we can
compute the inverse of any real nonsingular nx n matrix in time O(M(n)).

;,E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication

26

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)

Suppose we can multiply two n x n real matrices in time M(n) and M(n)

satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <

k < nand M(n/2) < c- M(n) for some constant ¢ < 1/2. Then we can

compute the inverse of any real nonsingular nx n matrix in time O(M(n)).
/)

L

[Proof of this directon much harder (CLRS) — relies on properties of SPD matrices.]

Rl

,',E.;n Il. Matrix Multiplication Multithreaded Matrix Multiplication 26

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

[Allows us to use Strassen’s Algorithm to invert a matrix!]

~NJ
Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c¢- M(n) for some constant ¢ < 1/2. Then we can

compute the inverse of any real nonsingular nx n matrix in time O(M(n)).
/)

L

[Proof of this directon much harder (CLRS) — relies on properties of SPD matrices.]

Rl
E;E Il. Matrix Multiplication Multithreaded Matrix Multiplication 26

	Introduction
	Serial Matrix Multiplication
	Digression: Multithreading
	Multithreaded Matrix Multiplication

