
1 Exercises Advanced Algorithms (Part II)

1.1 Sorting Networks, Counting Networks

Question 1 (CLRS, Question 27.2-2). Prove that a comparison network with n inputs
correctly sorts the input sequence 〈n, n−1, . . . , 1〉 if and only if it correctly sorts the n−1
zero-one sequences 〈1, 0, 0, . . . , 0, 0〉,〈1, 1, 0, . . . , 0, 0〉,. . .,〈1, 1, 1, . . . , 1, 0〉.

Question 2. [CLRS, Question 27.2-5] Prove that an n-input sorting network must contain
at least one comparator between the i-th and (i+ 1)-st lines for all i = 1, 2, . . . , n− 1.

Question 3. [CLRS, Question 27.4-3] Show that any network that can merge 1 item with
n − 1 sorted items to produce a sorted sequence of length n must have depth at least
log n.

Question 4. How many binary bitonic sequences of length n are there?

Question 5. [CLRS, Problem 27-1] An odd-even-sorting network on n inputs 〈a1, a2, . . . , an〉
is a transposition sorting network with n levels of comparators connected in the “brick-
like” pattern illustrated below.

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

a8 b8

As can be seen in the figure, for i = 1, 2, . . . , n and d = 1, 2, . . . , n, line i is connected
by a depth-d comparator to line j = i+ (−1)i+d if 1 ≤ j ≤ n.

Prove that odd-even sorting networks actually sort.

Question 6. Prove that any sorting network must have depth Ω(log n).

Question 7. Give a construction of a sorting network of depth O(log2 n) that works even
if n may not be a power of 2.

Question 8. Construct a network that is a sorting network but not a counting network.

Question 9. Prove that a perfect halver for n inputs must have depth Ω(log n).

1

1.2 Matrix Multiplication and Multithreading

Question 10. Exam Question 2014 Paper 3 Question 1 (Algorithms II). Warning: Parts
of the solution may require Theorem 27.1 (Greedy-Scheduler-Theorem) in
CLRS3, which is not covered in the lectures.

Question 11. [CLRS, Question 4.2-7] Show how to multiply the complex numbers a+ bi
and c + di using only three multiplications of real numbers. The algorithm should take
a, b, c, and d as input and produce the real component ac−bd and the imaginary component
ad+ bc separately.

Question 12. What can be said about the relation between the time complexity for
multiplying two arbitrary square matricesA andB and the time complexity for multiplying
a matrix C with itself?

Question 13. [CLRS, Question 4.2-2] Write pseudocode for Strassen’s algorithm.

1.3 Linear Programming

Question 14. [CLRS: 29.1-5] Convert the following linear program into slack form:

maximize 2x1 − 6x3
subject to

x1 + x2 − x3 ≤ 7
3x1 − x2 ≥ 8
−x1 + 2x2 + 2x3 ≥ 0

x1, x2, x3 ≥ 0

What are the basic and non-basic variables?

Question 15. [CLRS: 29.1-6] Show that the following linear program is infeasible:

maximize 3x1 − 2x2
subject to

x1 + x2 ≤ 2
−2x1 − 2x2 ≤ −10

x1, x2 ≥ 0

Question 16. [CLRS: 29.1-7] Show that the following linear program is unbounded:

maximize x1 − x2
subject to

−2x1 + x2 ≤ −1
−x1 − 2x2 ≤ −2

x1, x2 ≥ 0

Question 17. [Thanks to the student for mentioning this question.] Consider the linear
program for the minimum-weight shortest-path from s to t from the lecture notes (Slide
23 from III Linear Programming).

2

1. What happens if there exists a negative-weight cycle?

2. Prove that, if there are no negative-weight cycles, the optimal solution dt of the
linear program equals the correct distance dt.

3. Find a counter-example in which the linear program does not compute all values
dv correctly. How would you formulate the single-source-shortest path problem as a
linear program?

Question 18. Prove that the set of feasible solutions of a linear program in standard
form forms a convex set.

Question 19. [Thanks to the student for mentioning this question (and answer).] Find
a linear program which has at least one optimal solution that is not a vertex.

Question 20. [CLRS: 29.1-8] Suppose that we have a general linear program with n
variables and m constraints, and suppose we convert it into standard form. Give an upper
bound on the number of variables and constraints in the resulting linear program.

Question 21. [CLRS: 29.1-9] Give an example of a linear program for which the feasible
region is not bounded, but the optimal objective value is finite.

Question 22. [CLRS: 29.2-5] Rewrite the linear program for maximum flow so that it
uses only O(V + E) constraints.

Question 23. [CLRS: 29.3-6] Solve the following linear program using Simplex:

maximize 5x1 − 3x2

subject to
x1 − x2 ≤ 1

2x1 + x2 ≤ 2

x1, x2 ≥ 0

Question 24. [CLRS: 29.5-5] Solve the following linear program using Simplex:

maximize x1 + 3x2

subject to
x1 − x2 ≤ 8

−x1 − x2 ≤ −3

−x1 + 4x2 ≤ 2

x1, x2 ≥ 0

3

1.4 Approximation Algorithms

Question 25. Let G = (V,E) be an undirected graph with maximum degree ∆. A
dominating set is a subset of vertices S ⊆ V so that for every vertex u ∈ V there exists
a vertex v ∈ S with {u, v} ∈ E(G). The goal is to find a dominating set as small
as possible. Design an approximation algorithm based on greedy for the problem and
analyse the quality of its solution.

Question 26. Given an undirected graph G = (V,E), a vertex cover of G is a set of
vertices C ⊆ V so that each edge in G is incident to at least one vertex in C. A minimum
vertex cover is a vertex cover with smallest possible size |C|. Consider a greedy approach
which iteratively adds the vertex with the highest degree to C and then removes all covered
edges from E. Find an example that shows that this greedy algorithm does not always
find the optimum solution.

Question 27. [CLRS: 35.1-3, this one improves on the previous question and is marked
with a “?” in CLRS] Professor Bündchen proposes the following heuristic to solve the
vertex-cover problem. Repeatedly select a vertex of highest degree, and remove all of its
incident edges. Give an example to show that the professor’s heuristic does not have an
approximation ratio of 2. (Hint: Try a bipartite graph with vertices of uniform degree on
the left and vertices of varying degree on the right.)

Question 28. How can you implement Approx-Vertex-Cover in time O(V + E)?

Question 29. [CLRS: Problem 35.3-3] Consider the analysis of Greedy-Set-Cover
(Theorem 35.4). Show that the following weaker form of Theorem 35.4 is trivially true:

|C| ≤ |C∗| ·max{|S| : S ∈ F}

Question 30. How would you solve an instance of the Vertex-Cover problem using the
Greedy Algorithm for the Set-Cover?

Question 31. Consider the problem Subset-Sum. Design a simple Greedy algorithm
which runs in polynomial-time and achieves an approximation ratio of 2.

Question 32. Consider the algorithm Approx-Subset-Sum from the lecture. Prove
formally that for every element y, at most t, which can be written as a sum of a subset of
{x1, x2, . . . , xn}, there exists an element z ∈ Ln (the list in iteration n after the trimming
operation), such that

y

(1 + δ)n
≤ z,

where 0 < δ < 1 is the trimming parameter.

Question 33. [CLRS: 35.3-3] Show how to implement Greedy-Set-Cover in such a
way that it runs in time O(

∑
S∈F |S|).

4

Question 34. [CLRS: 35.2-1] Suppose that a complete undirected graph G = (V,E) with
at least 3 vertices has a cost function that satisfies the triangle inequality. Prove that
c(u, v) ≥ 0 for all u, v ∈ V .

Question 35. [CLRS: 35.2-5] Suppose that the vertices for an instance of the travelling-
salesman problem are points in the plane and that the cost c(u, v) is the euclidean distance
between points u and v. Show that an optimal tour never crosses itself.

Question 36. Recall the subtour elimination procedure from Lecture 10: In order to
eliminate a subtour going through cities in S only, we add the following constraint:∑

i∈S,j 6∈S
x(max(i, j),min(i, j)) ≥ 2.

Prove that adding this constraint to the linear program is equivalent to adding the con-
straint ∑

i∈S,j∈S,i<j

x(i, j) ≤ |S| − 1.

Question 37. [CLRS: 35.2-3] Show how in polynomial time we can transform one instance
of the travelling-salesman problem into another instance whose cost function satisfies the
triangle inequality. The two instances must have the same set of optimal tours. Explain
why such a polynomial-time transformation does not contradict the inapproximability
result (Theorem 35.3), assuming that P 6= NP.

Question 38. Consider the following problem. Given an undirected, connected graph
G = (V,E) with non-negative, integral edge capacities c(u, v) for each edge (u, v) ∈ E(G)
and |E| ≥ |V | = n, the goal is to find a subset E′ ⊆ E with |E′| = n so that (i) E′

connects all vertices and (ii)
∑

e∈E′ c(e) is minimized. Either prove that this problem is
NP-hard or design a polynomial-time algorithm.

Question 39. Find an example of a graph in the Euclidean space, with as few vertices
as possible, so that the optimal TSP tour does not include a minimum spanning tree.

Question 40. [CLRS: 35.4-2] The MAX-CNF satisfiability problem is like the MAX-
3-CNF satisfiability problem, except that it does not restrict each clause to have exactly
3 literals. Give a randomized 2-approximation algorithm for the MAX-CNF satisfiability
problem.

Question 41. [CLRS: Problem 35-1] Suppose that we are given a set of n objects, where
the size si of the ith object satisfies 0 < si < 1. We wish to pack all the objects into the
minimum number of unit-size bins. Each bin can hold any subset of the objects whose
total size does not exceed 1.

The first-fit heuristic takes each object in turn and places it into the first bin that
can accommodate it. Let S :=

∑n
i=1 si.

1. Argue that the optimal number of bins required is at least dSe.

5

2. Argue that the first-fit heuristic leaves at most one bin less than half full.

3. Prove that the number of bins used by the first-fit heuristic is never more than d2Se.

4. Prove an approximation ratio of 2 for the first-fit heuristic.

5. Give an efficient implementation of the first-fit heuristic, and analyse its running
time.

Question 42. Consider the following algorithm for MAX-CUT on an unweighted, undi-
rected graph G = (V,E), which can be regarded as an iterative colouring procedure with
three colours possible, grey (=unassigned), red (assigned to S) and blue (assigned to V \S).
Initially, all vertices are grey. Then the algorithm does the following in each step: If there
is a grey vertex u which has more blue than red neighbours colour it red, if there is a grey
vertex u which has more red than blue neighbours colour it blue. Otherwise, take a grey
vertex and colour it arbitrarily. Prove that this algorithm returns a 2-approximation.

Last updated: May 24, 2017

6

