Polymorphic Reference Types

[§3, p25]
ML types and expressions for mutable references

\(\tau ::= \ldots \)
\[\mid \text{unit} \quad \text{unit type} \]
\[\mid \tau \text{ref} \quad \text{reference type} \]

\(M ::= \ldots \)
\[\mid () \quad \text{unit value} \]
\[\mid \text{ref} \; M \quad \text{reference creation} \]
\[\mid !M \quad \text{dereference} \]
\[\mid M := M \quad \text{assignment} \]
Midi-ML’s extra typing rules

\[
\begin{array}{c}
\text{(unit)} \\
\hline
\Gamma \vdash () : \text{unit}
\end{array}
\]
Midi-ML’s extra typing rules

[unit] \[\Gamma \vdash () : \text{unit}\]

[ref] \[\Gamma \vdash M : \tau \quad \Gamma \vdash \text{ref } M : \tau\text{ ref}\]
Midi-ML’s extra typing rules

(unit) \[\Gamma \vdash () : \text{unit} \]

(ref) \[\Gamma \vdash M : \tau \quad \Gamma \vdash \text{ref } M : \tau \text{ ref} \]

(get) \[\Gamma \vdash M : \tau \text{ ref} \quad \Gamma \vdash !M : \tau \]
Midi-ML’s extra typing rules

\[
\begin{array}{c}
\text{(unit)} & \Gamma \vdash () : \text{unit} \\
\text{(ref)} & \Gamma \vdash M : \tau \\
& \Gamma \vdash \text{ref } M : \tau \text{ ref} \\
\text{(get)} & \Gamma \vdash M : \tau \text{ ref} \\
& \Gamma \vdash !M : \tau \\
\text{(set)} & \Gamma \vdash M_1 : \tau \text{ ref} \\
& \Gamma \vdash M_2 : \tau \\
& \Gamma \vdash M_1 := M_2 : \text{unit}
\end{array}
\]
Example

The expression

\[
\text{let } r = \text{ref } \lambda x \ (x) \ \text{in} \\
\text{let } u = (r := \lambda x' \ (\text{ref } !x')) \ \text{in} \\
\text{(!r)()} \\
\]

has type \textit{unit}.
The expression

\[
\text{let } r = \text{ref } \lambda x (x) \text{ in } \notag
\text{let } u = (r := \lambda x' (\text{ref }!x')) \text{ in } \notag
(!r)()
\]

has type \textit{unit}.
Example

The expression

\[
\text{let } r = \text{ref } \lambda x \,(x) \text{ in } \left(\text{let } u = (r := \lambda x' \,(\text{ref }!x')) \text{ in } (\text{!}r)() \right)
\]

has type \textit{unit}.
The expression

\[
\text{let } r = \text{ref } \lambda x \, x \text{ in}
\]

\[
\text{let } u = (r := \lambda x' \, (\text{ref } !x')) \text{ in}
\]

\[
(!r)()
\]

has type \textit{unit}.

\[
\forall \alpha \, ((\alpha \to \alpha) \text{ref})
\]

\[
:\ (\beta \text{ref} \to \beta \text{ref}) \text{ ref}
\]
Example

The expression

\[
\text{let } r = \text{ref } \lambda x \; (x) \text{ in } \\
\text{let } u = (r := \lambda x' \; (\text{ref} \; !x')) \text{ in } \\
(!r)()
\]

has type \textit{unit}.
Example

\[\sigma \triangleq \forall \alpha ((\alpha \rightarrow \alpha) \text{ref}) \]

The expression

\[
\begin{align*}
\text{let } r &= \text{ref } \lambda x \ (x) \text{ in } \text{ref} !x' \\
\text{let } u &= (r := \lambda x' \ (\text{ref} !x')) \text{ in } \text{ref} !r \\
(\text{!}r)()
\end{align*}
\]

has type \textit{unit}.

\[\sigma \Rightarrow (\beta \text{ref} \rightarrow \beta \text{ref}) \text{ref} \]

\[\sigma \Rightarrow (\text{unit} \rightarrow \text{unit}) \text{ref} \]
Formal type systems

- Constitute the precise, mathematical characterisation of informal type systems (such as occur in the manuals of most typed languages.)

- Basis for *type soundness* theorems: “any well-typed program cannot produce run-time errors (of some specified kind).”

- Can decouple specification of typing aspects of a language from algorithmic concerns: the formal type system can define typing independently of particular implementations of type-checking algorithms.
Midi-ML transition system

Small-step transition relations

\[\langle M, s \rangle \rightarrow \langle M', s' \rangle \]
\[\langle M, s \rangle \rightarrow \text{FAIL} \]
Midi-ML transition system

Small-step transition relations

\[\langle M, s \rangle \rightarrow \langle M', s' \rangle \]
\[\langle M, s \rangle \rightarrow \text{FAIL} \]

where

- \(M, M' \) range over Midi-ML expressions
- \(s, s' \) range over states = finite functions
 \[s = \{ x_1 \mapsto V_1, \ldots, x_n \mapsto V_n \} \] mapping variables \(x_i \) to values \(V_i \):

\[V ::= x \mid \lambda x (M) \mid () \mid \text{true} \mid \text{false} \mid \text{nil} \mid V :: V \]
Midi-ML transition system

Small-step transition relations

\[\langle M, s \rangle \rightarrow \langle M', s' \rangle \]
\[\langle M, s \rangle \rightarrow \text{FAIL} \]

where

- \(M, M' \) range over Midi-ML expressions
- \(s, s' \) range over states = finite functions
- \(s = \{x_1 \mapsto V_1, \ldots, x_n \mapsto V_n\} \) mapping variables \(x_i \) to values \(V_i \):

\[V ::= x | \lambda x (M) | () | \text{true} | \text{false} | \text{nil} | V :: V \]

- configurations \(\langle M, s \rangle \) are required to satisfy that the free variables of expression \(M \) are in the domain of definition of the state \(s \)
- symbol \(\text{FAIL} \) represents a run-time error
Midi-ML transition system

Small-step transition relations

\[\langle M, s \rangle \rightarrow \langle M', s' \rangle \]
\[\langle M, s \rangle \rightarrow \text{FAIL} \]

where

- \(M, M' \) range over Midi-ML expressions
- \(s, s' \) range over states = finite functions
 \[s = \{ x_1 \mapsto V_1, \ldots, x_n \mapsto V_n \} \] mapping variables \(x_i \) to values \(V_i \):

 \[V ::= x | \lambda x (M) | () | \text{true} | \text{false} | \text{nil} | V :: V \]

- configurations \(\langle M, s \rangle \) are required to satisfy that the free variables of expression \(M \) are in the domain of definition of the state \(s \)
- symbol \(\text{FAIL} \) represents a run-time error

are inductively defined by syntax-directed rules...
Midi-ML transitions involving references

\[\langle !x, s \rangle \rightarrow \langle s(x), s \rangle \quad \text{if } x \in \text{dom}(s) \]

where \(V \) ranges over values:

\[V ::= x \mid \lambda x (M) \mid () \mid \text{true} \mid \text{false} \mid \text{nil} \mid V :: V \]
Midi-ML transitions involving references

\[
\langle !x, s \rangle \rightarrow \langle s(x), s \rangle \quad \text{if } x \in \text{dom}(s)
\]

\[
\langle !V, s \rangle \rightarrow \text{FAIL} \quad \text{if } V \text{ not a variable}
\]

where \(V \) ranges over values:

\[
V ::= x \mid \lambda x \,(M) \mid () \mid \text{true} \mid \text{false} \mid \text{nil} \mid V :: V
\]
Midi-ML transitions involving references

\[\langle !x, s \rangle \rightarrow \langle s(x), s \rangle \quad \text{if } x \in \text{dom}(s) \]

\[\langle !V, s \rangle \rightarrow \text{FAIL} \quad \text{if } V \text{ not a variable} \]

\[\langle x := V', s \rangle \rightarrow \langle (), s[x \leftarrow V'] \rangle \]

where \(V \) ranges over values:

\[V ::= x \mid \lambda x (M) \mid () \mid \text{true} \mid \text{false} \mid \text{nil} \mid V :: V \]
Midi-ML transitions involving references

\[\langle !x, s \rangle \rightarrow \langle s(x), s \rangle \] if \(x \in \text{dom}(s) \)

\[\langle !V, s \rangle \rightarrow \text{FAIL} \] if \(V \) not a variable

\[\langle x := V', s \rangle \rightarrow \langle (), s[x \mapsto V'] \rangle \]

\[\langle V := V', s \rangle \rightarrow \text{FAIL} \] if \(V \) not a variable

where \(V \) ranges over values:

\[V ::= x \mid \lambda x (M) \mid () \mid \text{true} \mid \text{false} \mid \text{nil} \mid V :: V \]
Midi-ML transitions involving references

\[\langle !x, s \rangle \rightarrow \langle s(x), s \rangle \text{ if } x \in \text{dom}(s) \]

\[\langle !V, s \rangle \rightarrow \text{FAIL} \text{ if } V \text{ not a variable} \]

\[\langle x := V', s \rangle \rightarrow \langle (), s[x \mapsto V'] \rangle \]

\[\langle V := V', s \rangle \rightarrow \text{FAIL} \text{ if } V \text{ not a variable} \]

\[\langle \text{ref } V, s \rangle \rightarrow \langle x, s[x \mapsto V] \rangle \text{ if } x \notin \text{dom}(s) \]

where \(V \) ranges over values:

\[V ::= x \mid \lambda x (M) \mid () \mid \text{true} \mid \text{false} \mid \text{nil} \mid V :: V \]
\[\langle M, s \rangle \rightarrow \langle M', s' \rangle \]
\[\frac{\langle E[M], s \rangle \rightarrow \langle E[M'], s' \rangle}{\langle M, s \rangle \rightarrow \text{FAIL}} \]
\[\frac{\langle M, s \rangle \rightarrow \text{FAIL}}{\langle E[M], s \rangle \rightarrow \text{FAIL}} \]

where \(E \) ranges over evaluation contexts:

\[E ::= _ | \text{let } x = E \text{ in } M | \text{ref } E | _! E | E := M | V ::= E \]
\[
\begin{aligned}
&\text{let } r = \text{ref } \lambda x \, (x) \text{ in} \\
&\langle \text{let } u = (r := \lambda x' \, (\text{ref } !x')) \text{ in } (!r)(), \{\} \rangle \\
\rightarrow^* &\langle \text{let } u = (r := \lambda x' \, (\text{ref } !x')) \text{ in } (!r)(), \{r \mapsto \lambda x \, (x)\} \rangle
\end{aligned}
\]
\[
\begin{aligned}
&\text{let } r = \text{ref } \lambda x (x) \text{ in} \\
&\left< \text{let } u = (r := \lambda x' (\text{ref } !x')) \text{ in } (!r)(), \{\} \right> \\
\rightarrow^* &\left< \text{let } u = (r := \lambda x' (\text{ref } !x')) \text{ in } (!r)(), \{r \mapsto \lambda x (x)\} \right> \\
\rightarrow^* &\left< (!r)(), \{r \mapsto \lambda x' (\text{ref } !x')\} \right>
\end{aligned}
\]
\[
\begin{align*}
&\langle \text{let } r = \text{ref } \lambda x (x) \text{ in} \\
&\quad \langle \text{let } u = (r := \lambda x' (\text{ref } !x')) \text{ in } (!r)() , \{\} \rangle \\
\rightarrow^* &\langle \text{let } u = (r := \lambda x' (\text{ref } !x')) \text{ in } (!r)() , \{r \mapsto \lambda x (x)\} \rangle \\
\rightarrow^* &\langle (!r)() , \{r \mapsto \lambda x' (\text{ref } !x')\} \rangle \\
\rightarrow &\langle \lambda x' (\text{ref } !x') () , \{r \mapsto \lambda x' (\text{ref } !x')\} \rangle
\end{align*}
\]
\[
\begin{align*}
&\ \text{let } r = \text{ref } \lambda x \ (x) \ \text{in} \\
&\ \left(\text{let } u = (r := \lambda x' \ (\text{ref \!} x')) \ \text{in} \ (r)(), \ \{} \right)
\end{align*}
\]

\[\text{→* } \langle\text{let } u = (r := \lambda x' \ (\text{ref \!} x')) \ \text{in} \ (r)(), \ \{r \mapsto \lambda x \ (x)\}\rangle\]

\[\text{→* } \langle(r)(), \ \{r \mapsto \lambda x' \ (\text{ref \!} x')\}\rangle\]

\[\text{→ } \langle\lambda x' \ (\text{ref \!} x') (()), \ \{r \mapsto \lambda x' \ (\text{ref \!} x')\}\rangle\]

\[\text{→ } \langle\text{ref \!}(), \ \{r \mapsto \lambda x' \ (\text{ref \!} x')\}\rangle\]
\[
\begin{align*}
\text{let } r &= \text{ref } \lambda x (x) \text{ in} \\
\text{let } u &= (r := \lambda x' (\text{ref }!x')) \text{ in } (!r)() , \{\} \\
\end{align*}
\]

\[
\rightarrow^* \langle \text{let } u = (r := \lambda x' (\text{ref }!x')) \text{ in } (!r)() , \{ r \mapsto \lambda x (x) \} \rangle
\]

\[
\rightarrow^* \langle (!r)() , \{ r \mapsto \lambda x' (\text{ref }!x') \} \rangle
\]

\[
\rightarrow \langle \lambda x' (\text{ref }!x') () , \{ r \mapsto \lambda x' (\text{ref }!x') \} \rangle
\]

\[
\rightarrow \langle \text{ref }!() , \{ r \mapsto \lambda x' (\text{ref }!x') \} \rangle
\]

\[
\rightarrow \text{FAIL}
\]
Example

\[\sigma \models \forall \alpha ((\alpha \rightarrow \alpha) \text{ref}) \]

The expression

\[
\text{let } r = \text{ref } \lambda x (x) \text{ in } \ \\
\text{let } u = (r := \lambda x' (\text{ref }!x')) \text{ in } \ \\
(\!r\!)(())
\]

has type \textit{unit}.
Value-restricted typing rule for \texttt{let}-expressions

\[
\begin{array}{c}
\Gamma \vdash M_1 : \tau_1 \\
\Gamma, x : \forall A (\tau_1) \vdash M_2 : \tau_2
\end{array}
\]
\[\Gamma \vdash \texttt{let} \ x = M_1 \ \texttt{in} \ M_2 : \tau_2 \] (†)
Value-restricted typing rule for \texttt{let}-expressions

\[
\begin{align*}
\text{(letv)} & \quad \frac{\Gamma \vdash M_1 : \tau_1 \quad \Gamma, x : \forall A(\tau_1) \vdash M_2 : \tau_2}{\Gamma \vdash \text{let } x = M_1 \text{ in } M_2 : \tau_2}
\end{align*}
\]

\((\dagger)\) provided \(x \notin \text{dom}(\Gamma)\) and
Value-restricted typing rule for let-expressions

\[
(\text{let}v) \quad \frac{\Gamma \vdash M_1 : \tau_1 \quad \Gamma, x : \forall A(\tau_1) \vdash M_2 : \tau_2}{\Gamma \vdash \text{let } x = M_1 \text{ in } M_2 : \tau_2} \quad (\dagger)
\]

(\dagger) provided \(x \notin \text{dom}(\Gamma) \) and

\[
A = \begin{cases}
\{ \} & \text{if } M_1 \text{ is not a value} \\
ftv(\tau_1) - ftv(\Gamma) & \text{if } M_1 \text{ is a value}
\end{cases}
\]

Recall that values are given by

\[
V ::= x \mid \lambda x (M) \mid () \mid \text{true} \mid \text{false} \mid \text{nil} \mid V :: V
\]
The expression

\[
\text{let } r = \text{ref } \lambda x (x) \text{ in } \\
\text{let } u = (r := \lambda x' (\text{ref } !x')) \text{ in } \\
(\text{!}r)()
\]

has type \textit{unit}.

with (letv) rule, this gets type scheme

\[
\circ' \triangleq \forall \{\} ((\alpha \to \alpha) \text{ref})
\]
Example

with \(\text{(letv)} \) rule, this gets type scheme

\[
\sigma' \triangleq \forall \beta \exists \alpha. (\alpha \rightarrow \alpha) \text{ref}
\]

The expression

\[
\text{let } r = \text{ref } \lambda x \ (x) \text{ in } \\
\text{let } u = (r := \lambda x' \ (\text{ref } !x')) \text{ in } \\
(\!r)()
\]

has type \textit{unit}.
Type soundness for Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type scheme σ for which

$$\vdash M : \sigma$$

is provable in the value-restricted type system

$$(\text{var } \triangleright) + (\text{bool}) + (\text{if}) + (\text{nil}) + (\text{cons}) + (\text{case}) + (\text{fn}) + (\text{app}) + (\text{unit}) + (\text{ref}) + (\text{get}) + (\text{set}) + (\text{letv})$$

then *evaluation of* M *does not fail*,

$h \vdash M, \{\}! \cdots !\text{FAIL}$ for the transition system defined in Figure 4 (where $\{\}$ denotes the empty state).
Type soundness for
Midi-ML with the value restriction

For any closed Midi-ML expression \(M \), if there is some type scheme \(\sigma \) for which
\[
\vdash M : \sigma
\]
is provable in the value-restricted type system
\[
(var \nRightarrow) + (\text{bool}) + (\text{if}) + (\text{nil}) + (\text{cons}) + (\text{case}) + (\text{fn}) + (\text{app}) + (\text{unit}) + (\text{ref}) + (\text{get}) + (\text{set}) + (\text{letv})
\]
then evaluation of \(M \) does not fail,
i.e. there is no sequence of transitions of the form
\[
\langle M, \{ \} \rangle \rightarrow \cdots \rightarrow \text{FAIL}
\]
for the transition system \(\rightarrow \) defined in Figure 4
(where \(\{ \} \) denotes the empty state).
In Midi-ML’s value-restricted type system, some expressions that were typeable using \(\texttt{let} \) become untypeable using \(\texttt{letv} \).

But one can often

1. use \(\texttt{h-expansion} \) replace \(M \) by \(\texttt{lx}(Mx) \) (where \(x \) is a free variable of \(M \))

or

2. use \(\texttt{b-reduction} \) replace \(\texttt{lx}(M) \) by \(M[N/x] \) to get around the problem.

(1) These transformations do not always preserve meaning [contextual equivalence].)
In Midi-ML’s value-restricted type system, some expressions that were typeable using \(\text{let} \) become untypeable using \(\text{letv} \).

For example (exercise):

\[
\text{let } f = (\lambda x (x)) \lambda y (y) \text{ in } (f \text{ true}) :: (f \text{ nil})
\]
In Midi-ML’s value-restricted type system, some expressions that were typeable using (let) become untypeable using (letv).

For example (exercise):

\[
\text{let } f = (\lambda x (x)) \lambda y (y) \text{ in } (f \, \text{true}) :: (f \, \text{nil})
\]

But one can often\(^1\) use \(\eta\)-expansion

- replace \(M\) by \(\lambda x (M \, x)\) (where \(x \notin fv(M)\))

or \(\beta\)-reduction

- replace \((\lambda x (M)) \, N\) by \(M[N/x]\)

to get around the problem.

(\(^1\) These transformations do not always preserve meaning [contextual equivalence].)