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Two examples involving self-application

Qé let f = Axq (sz (xl)) il‘lff

M’ = (Af (f f)) Axr (Axz (x1))

Are M and M’ typeable in the Mini-ML type system?
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Constraints generated while inferring a type for

let f=Ax; (Ax2(x1))inf f

A =fi'v(T2) (CO)

Ty =T33 — T4 (Cl)

Ty = Ts5 — Tp (C2)

V{}(13) > T, i.e. T3 =T (C3)
Ty = Tg — T1 (C4)

VA (Tz) — T7 (C5)

VA (1) > T3 (C6)
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Two examples involving self-application

£ let f=Ax; (Axa (x1)) inf f

QA AF (F M Aa () )

Are M and M’ typeable in the Mini-ML type system?
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Two examples involving self-application

M = let f = Axy (Axp (x1)) inf f
M’ £ (AF (f f)) Ax (Axs (xlb

Are M and M’ typeable in the Mini-ML type system?
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Principal type schemes for closed expressions

A type scheme VA () is the principal type scheme of a
closed Mini-ML expression M if

(a) M :VA(T)
(b) for any other type scheme VA’ (),
if - M:VA" (t'), then VA(T) > T’
e, Vet o, o0y (0 (ot (6 &, ))) S Py{mpf\(l@vesw\em
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Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e.
= M : 0 holds for some type scheme o), then there is a principal
type scheme for M.



Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e.
= M : 0 holds for some type scheme o), then there is a principal
type scheme for M.

Indeed, there is an algorithm which, given any closed Mini-ML
expression M as input, decides whether or not it is typeable and
returns a principal type scheme if it is.



An ML expression with
a principal type scheme
hundreds of pages long

letpair = Ax (Ay (Az(zxvy))) in
letx1 = Ay (pairyy) in
letxy = Ay (x1(x1y)) in
letxz = Ay (x2(x2y)) in
letxg = Ay (x3(x3y)) in
letxs = Ay (x4(xay)) in
x5(Ay (y))
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Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
T1 and T» decides whether 1 and T are unifiable, i.e. whether
there exists a type-substitution S € Sub with

(a) S(71) = S(m2).

Moreover, if they are unifiable, mgu(T1, T2) returns the most
general unifie—an S satisfying both (a) and

(b) for all " € Sub, if S’(11) = S’(12), then S’ = TS for some
T € Sub
(any other substitution §’ can be factored through
S, by specialising S with T)

By convention mgu(ty, T2) = FAIL if (and only if) 71 and T are not
unifiable.
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Principal type schemes for open expressions

A solution for the typing problem I' = M : ? is a pair | (S, o)

consisting of a type substitution S and a type scheme o satisfying

STHFM: o

(where ST ={x1:S01,...,x,: S0}, if T ={x1:01,...,x5: 0}).

Such a solution is principal if given any other, (S’,0”), there is
some T € Sub with TS =S’ and T(c) > o’.

(For type schemes ¢ and ¢/, with ¢’ = VA’ (t’) say, we define

o> o’

to mean A’ Nfto(c) ={} and ¢ > T’.)
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Example typing problem and solutions

Typing problem

x:Va(B—-(y—a)) Fxtrue:?

has solutions:

» S1={B+—> bool}, o1 =Va (y—-«)
» So={B+— bool,y+— a}, o0 =Va' (a—>a')
» S3={B+— bool,y— a},o3=Va' (a > (a' > 0a'))

» Sy ={B — bool,y — bool}, o3 =V{} (bool - bool)

Both (S1,01) and (Sz, 02) are in fact principal solutions.
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Properties of the Mini-ML typing relation
with respect to substitution
and type scheme specialisation

» If I' = M : o, then for any type substitution S € Sub

ST M:So

» fT'HM:0 and o > ¢/, then

r'-M: o’
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Requirements for a
principal typing algorithm, pt

pt operates on typing problems I' = M : ? (consisting of a typing
environment I' and a Mini-ML expression M).

It returns either a pair (S, T) consisting of a type substitution
S € Sub and a Mini-ML type T, or the exception FAIL.

» If T = M :? has a solution (cf. Slide 28), then pt(T = M :?)
returns (S, T) for some S and T;
moreover, setting A = (fto(t) — fto(ST)), then
(S,VA (1)) is a principal solution for the problem I' = M : ?.

» If T = M :? has no solution, then pt(I' = M : ?) returns
FAIL.



How the principal typing algorithm pt works

pt(T+M:?) = (S, 1) | FAIL

» Call pt recursively following the structure of M and guided by
the typing rules, bottom-up.

» Thread substitutions sequentially and compose them together
when returning from a recursive call.

» When types need to agree to satisfy a typing rule, use mgu
(and pt returns FAIL only if mgu does).

» When types are unknown, generate a fresh type variable.



Some of the clauses in a definition of pt

Function abstractions: pt(T = Ax (M) : ?) =
let « = fresh in
let (S,7)=pt(I,x:a-M:?)in (S,S(a)—T)



Some of the clauses in a definition of pt

Function abstractions: pt(T = Ax (M) : ?) =
let « = fresh in
let (S,7)=pt(I,x:a-M:?)in (S,S(a)—T)

Function applications: pt(I'+= M1 M; : ?) =
let (51, T1) = pt(F - My : ?) in
let (Sz, Tz) o pt(Sl | M, : 7) in
let & = fresh in
let S3 = mgu (S, 71, T2 » &) in (535251, S3(&))



Mini-ML type system, 111
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