blom:
Yo

¥

- Wi eren

hype

y - ML

M ini

2AVAES
Jors “rhare,

M\

| %

(%Ww

8
Sids
SR

M 3

C v

Yk

dn

SW

Two examples involving self-application

Qé let f = Axq (sz (xl)) il‘lff

M’ = (Af (f f)) Axr (Axz (x1))

Are M and M’ typeable in the Mini-ML type system?

(e vi\?]r?);mmv\g/ v vonna ek)

F.gw-c 1 CplS 1

(C3)
Ay = X,

€2)
N FAX(1): (coH § Hf: f: HF
{}F M.(Mz(m)= £: ,_F)C;

)b Lbefz)\x‘(hz (z)) in ff ;

&) (cs

G FAX(1,): Ty (c f VA(‘CL)I-f T? fVA(Tz)"I' £
{12 (Mg () T2 £:VA)FFF: T,
e Wt f=d(y(z)inff - <

e)
()
(Cv)

Constraints generated while inferring a type for

let f=Ax; (Ax2(x1))inf f

A =fi'v(T2) (CO)

Ty =T33 — T4 (Cl)

Ty = Ts5 — Tp (C2)

V{}(13) > T, i.e. T3 =T (C3)
Ty = Tg — T1 (C4)

VA (Tz) — T7 (C5)

VA (1) > T3 (C6)

(c)
"C;Z === T?)——b I‘LP

S
\oJ
0

(c3)
L~ (T2T) = ‘Q—-><T94T63

|

L =0>T, =G> (G>7) = Q—’;(Tg—sQ)
‘Q = N\ .
TOVL(L Tg _ 032,} "yp% VMA/L)UU.).
SO A = ’]C't\/ (@) '::PL&V <0(1"9 (°<2—30Z1)> = {0(\) NZ}
(CSD : VO{;(! oy ¥ (N\ﬁ(“'zﬁ Q\)) >C (i) Tg > T,
)~ . > T3

So _{"C& =Ty = T9= (To>Tq) for Somu To, T
T%:' Tn—> (—C\Z—DTU) Tll)-CVZ

L =0T, =5 (Ge>7) = ‘Q—’;(Tg—ﬁ’(é)
L= o
Toks, o.c %,} type Varia

So A= 7Ct\/ (’Zi) =;ghv<°<r3 (0, oY)) = {0(\, NZ}

(CSD : \7‘0&(1 oy ¥ (N\ﬁ@"zﬁ Q\)) >C \ 4) Tg > T,

&CE) ‘ n W “ > 7}
@, ‘{'C& 3‘(9 ﬁs .-C‘ = <Tlo —)-C%) ‘FOY Somy Tq) t\o)
T%:' Ty = (-C\Z—DTU) Tll)-ﬁz

S T =T, To = (> Tg =T, (tu"’ (= tu))

s
{} }‘Q% ‘FS >\-?(,| 0\7’1 ((L,)) m g) » (E\”(T)L")TnD
1’\0\&8 fw O\V\Ag/ T\O)T\) s G2

o [(b} £ hx, (A (2)) in ‘C{") :

\7‘0(‘)0('2)0(3 <.0(_b («(X'Z,_, (0(3 = 0(2)))

Two examples involving self-application

£ let f=Ax; (Axa (x1)) inf f

QA AF (F M Aa ())

Are M and M’ typeable in the Mini-ML type system?

[Pa\ge (1]
M Constraints %QV\W"QJ /Fyvyn W\Yy b "'\\7?2,
(XJC(ch)) A (A,)))

(OM”) (w2 (c
I — TLV:TG = T7-—5T5

[Page \ 1]
m Conslraints %@y\@(adta) ’FW"’" wwy b 4’\\7?6
(xf(f§)) A (A,)))

(OM") (w2 (c
@z\Tw =T =G>
Hhe

Ce
22\ Canndt be QqM — l’ﬁ\@
howe Yfterent numberss of
T ymool "= n Hhem

Two examples involving self-application

M = let f = Axy (Axp (x1)) inf f
M’ £ (AF (f f)) Ax (Axs (xlb

Are M and M’ typeable in the Mini-ML type system?

i s wit Tvpealle

Principal type schemes for closed expressions

A type scheme VA () is the principal type scheme of a
closed Mini-ML expression M if

Principal type schemes for closed expressions

A type scheme VA () is the principal type scheme of a
closed Mini-ML expression M if

(a) M :VA(T)

Principal type schemes for closed expressions

A type scheme VA () is the principal type scheme of a
closed Mini-ML expression M if

(a) M :VA(T)

(b) for any other type scheme VA’ (t’),
if - M:VA" (t'), then VA(T) > T’

Principal type schemes for closed expressions

A type scheme VA () is the principal type scheme of a
closed Mini-ML expression M if

(a) M :VA(T)
(b) for any other type scheme VA’ (),
if - M:VA" (t'), then VA(T) > T’
e, Vet o, o0y (0 (ot (6 &,))) S Py{mpf\(l@vesw\em
Bk § = A2 in £

Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e.
= M : 0 holds for some type scheme o), then there is a principal
type scheme for M.

Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e.
= M : 0 holds for some type scheme o), then there is a principal
type scheme for M.

Indeed, there is an algorithm which, given any closed Mini-ML
expression M as input, decides whether or not it is typeable and
returns a principal type scheme if it is.

An ML expression with
a principal type scheme
hundreds of pages long

letpair = Ax (Ay (Az(zxvy))) in
letx1 = Ay (pairyy) in
letxy = Ay (x1(x1y)) in
letxz = Ay (x2(x2y)) in
letxg = Ay (x3(x3y)) in
letxs = Ay (x4(xay)) in
x5(Ay (y))

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
71 and T» decides whether ;1 and T are unifiable, i.e. whether
there exists a type-substitution S € Sub with

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
71 and T» decides whether ;1 and T are unifiable, i.e. whether
there exists a type-substitution S € Sub with

(a) S(Tl) = S(Tz).

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
71 and T» decides whether ;1 and T are unifiable, i.e. whether
there exists a type-substitution S € Sub with

(a) S(m1) = S(72).

Moreover, if they are unifiable, mgu (T, T2) returns the most
general unifie—an S satisfying both (a) and

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
71 and T» decides whether ;1 and T are unifiable, i.e. whether
there exists a type-substitution S € Sub with

(a) S(m1) = S(72).

Moreover, if they are unifiable, mgu(T1, T2) returns the most
general unifie—an S satisfying both (a) and

(b) for all " € Sub, if S’(11) = S’(12), then S’ = TS for some
T € Sub

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
T1 and T» decides whether 1 and T are unifiable, i.e. whether
there exists a type-substitution S € Sub with

(a) S(71) = S(m2).

Moreover, if they are unifiable, mgu(T1, T2) returns the most
general unifie—an S satisfying both (a) and

(b) for all " € Sub, if S’(11) = S’(12), then S’ = TS for some
T € Sub
(any other substitution §’ can be factored through
S, by specialising S with T)

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
T1 and T» decides whether 1 and T are unifiable, i.e. whether
there exists a type-substitution S € Sub with

(a) S(71) = S(m2).

Moreover, if they are unifiable, mgu(T1, T2) returns the most
general unifie—an S satisfying both (a) and

(b) for all " € Sub, if S’(11) = S’(12), then S’ = TS for some
T € Sub
(any other substitution §’ can be factored through
S, by specialising S with T)

By convention mgu(ty, T2) = FAIL if (and only if) 71 and T are not
unifiable.

Principal type schemes for open expressions

A solution for the typing problem I' = M : ? is a pair | (S, o)

consisting of a type substitution S and a type scheme o satisfying

Principal type schemes for open expressions

A solution for the typing problem I' = M : ? is a pair | (S, o)

consisting of a type substitution S and a type scheme o satisfying

STHFM: o

(where ST ={x1:S01,...,x,: S0}, if T ={x1:01,...,x5: 0}).

Principal type schemes for open expressions

A solution for the typing problem I' = M : ? is a pair | (S, o)
consisting of a type substitution S and a type scheme o satisfying

STHFM: o

(where ST ={x1:S01,...,x,: S0}, if T ={x1:01,...,x5: 0}).

Such a solution is principal if given any other, (S’,0”), there is
some T € Sub with TS =S’ and T(c) > o’.

Principal type schemes for open expressions

A solution for the typing problem I' = M : ? is a pair | (S, o)

consisting of a type substitution S and a type scheme o satisfying

STHFM: o

(where ST ={x1:S01,...,x,: S0}, if T ={x1:01,...,x5: 0}).

Such a solution is principal if given any other, (S’,0”), there is
some T € Sub with TS =S’ and T(c) > o’.

(For type schemes ¢ and ¢/, with ¢’ = VA’ (t’) say, we define

o> o’

to mean A’ Nfto(c) ={} and ¢ > T’.)

Example typing problem and solutions

Typing problem

x:Va(B—-(y—a)) Fxtrue:?

has solutions:

Example typing problem and solutions

Typing problem

x:Va(B—-(y—a)) Fxtrue:?

has solutions:

» S1={B+—> bool}, o1 =Va (y—-«)

Example typing problem and solutions

Typing problem

x:Va(B—-(y—a)) Fxtrue:?

has solutions:

» S1={B+—> bool}, o1 =Va (y—-«)

» So={B+— bool,y+— a}, o0 =Va' (a—>a')

Example typing problem and solutions

Typing problem

x:Va(B—-(y—a)) Fxtrue:?

has solutions:

» S1={B+—> bool}, o1 =Va (y—-«)
» So={B+— bool,y+— a}, o0 =Va' (a—>a')

> S3={B+> bool,y — a}, o3 =V (- (&' = a))

Example typing problem and solutions

Typing problem

x:Va(B—-(y—a)) Fxtrue:?

has solutions:

» S1={B+—> bool}, o1 =Va (y—-«)
» So={B+— bool,y+— a}, o0 =Va' (a—>a')
» S3={B+— bool,y— a},o3=Va' (a > (a' > 0a'))

» Sy ={B — bool,y — bool}, o3 =V{} (bool - bool)

Example typing problem and solutions

Typing problem

x:Va(B—-(y—a)) Fxtrue:?

has solutions:

» S1={B+—> bool}, o1 =Va (y—-«)
» So={B+— bool,y+— a}, o0 =Va' (a—>a')
» S3={B+— bool,y— a},o3=Va' (a > (a' > 0a'))

» Sy ={B — bool,y — bool}, o3 =V{} (bool - bool)

Both (S1,01) and (Sz, 02) are in fact principal solutions.

Properties of the Mini-ML typing relation
with respect to substitution
and type scheme specialisation

» If I' = M : o, then for any type substitution S € Sub

ST M:So

Properties of the Mini-ML typing relation
with respect to substitution
and type scheme specialisation

» If I' = M : o, then for any type substitution S € Sub

ST M:So

» fT'HM:0 and o > ¢/, then

r'-M: o’

Requirements for a
principal typing algorithm, pt

pt operates on typing problems I' = M : ? (consisting of a typing
environment I' and a Mini-ML expression M).

Requirements for a
principal typing algorithm, pt

pt operates on typing problems I' = M : ? (consisting of a typing
environment I' and a Mini-ML expression M).

It returns either a pair (S, T) consisting of a type substitution
S € Sub and a Mini-ML type T, or the exception FAIL.

Requirements for a
principal typing algorithm, pt

pt operates on typing problems I' = M : ? (consisting of a typing
environment I' and a Mini-ML expression M).

It returns either a pair (S, T) consisting of a type substitution
S € Sub and a Mini-ML type T, or the exception FAIL.

» If T = M :? has a solution (cf. Slide 28), then pt(T = M :?)
returns (S, T) for some S and T;

Requirements for a
principal typing algorithm, pt

pt operates on typing problems I' = M : ? (consisting of a typing
environment I' and a Mini-ML expression M).

It returns either a pair (S, T) consisting of a type substitution
S € Sub and a Mini-ML type T, or the exception FAIL.

» If T = M :? has a solution (cf. Slide 28), then pt(T = M :?)
returns (S, T) for some S and T;

moreover, setting A = (fto(t) — fto(ST)), then
(S,VA (1)) is a principal solution for the problem I' = M : ?.

Requirements for a
principal typing algorithm, pt

pt operates on typing problems I' = M : ? (consisting of a typing
environment I' and a Mini-ML expression M).

It returns either a pair (S, T) consisting of a type substitution
S € Sub and a Mini-ML type T, or the exception FAIL.

» If T = M :? has a solution (cf. Slide 28), then pt(T = M :?)
returns (S, T) for some S and T;
moreover, setting A = (fto(t) — fto(ST)), then
(S,VA (1)) is a principal solution for the problem I' = M : ?.

» If T = M :? has no solution, then pt(I' = M : ?) returns
FAIL.

How the principal typing algorithm pt works

pt(T+M:?) = (S, 1) | FAIL

» Call pt recursively following the structure of M and guided by
the typing rules, bottom-up.

» Thread substitutions sequentially and compose them together
when returning from a recursive call.

» When types need to agree to satisfy a typing rule, use mgu
(and pt returns FAIL only if mgu does).

» When types are unknown, generate a fresh type variable.

Some of the clauses in a definition of pt

Function abstractions: pt(T = Ax (M) : ?) =
let « = fresh in
let (S,7)=pt(I,x:a-M:?)in (S,S(a)—T)

Some of the clauses in a definition of pt

Function abstractions: pt(T = Ax (M) : ?) =
let « = fresh in
let (S,7)=pt(I,x:a-M:?)in (S,S(a)—T)

Function applications: pt(I'+= M1 M; : ?) =
let (51, T1) = pt(F - My : ?) in
let (Sz, Tz) o pt(Sl | M, : 7) in
let & = fresh in
let S3 = mgu (S, 71, T2 » &) in (535251, S3(&))

Mini-ML type system, 111

r,x2T1|—M2T2

if d I
TEFAx(M) : - 1 fx & dom(I)

(fn)

I-M:y—-1©H TI'FN:7m
r|—MN:T2

(app)

pe(TM:?)=(S),5)

- SUVE M T

L k(e m,7) -

pe(ll M|:?)=(S.,’G) P‘:(Slfl—- Mz:?)z@z)tz)

+shde 28
SZS»F F M,:S,T, S53T'FM,: T,

LPGO"I' MM, -7)=

pE(ll Mlt?)z(an) Pl:(Slﬂ- Mz:?)zﬁz)tz)

m w(sltl)tL'?d)_'—SZ, +$'|‘0(LZZ

Sarl-ﬁgga
“ S;5,8T'F M,:5,1,
S:S,SU E M, 1835, 39,9,

LPGO"I' MM, -7)=

(53 SZSI J S.? M)

?)=6.7)
)=(80) ESITEM,?)=6
pe(MkMy:?)=

mau (S, 5+e0)=S;

33922'» N
| S,STFM,:S, i(o.ﬂ,)
S Tz—aggol 53 ,
F M, 3z
558,51

(4 &
35,51 - MM, : &
3

.7) =
MEMM, - ¢
LP&<(SBS;S, NED,

