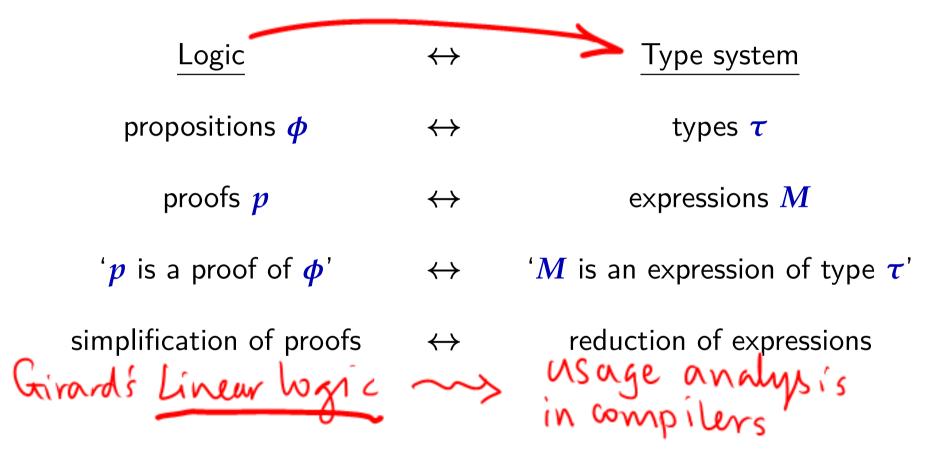
Logic	\leftrightarrow	Type system
propositions ϕ	\leftrightarrow	types $ au$
proofs <i>p</i>	\leftrightarrow	expressions M
' p is a proof of ϕ '	\leftrightarrow	' M is an expression of type $ au$ '
simplification of proofs	\leftrightarrow	reduction of expressions



Linear implication -o T, 4+4 T+ 4-04

Γ+ φ-04

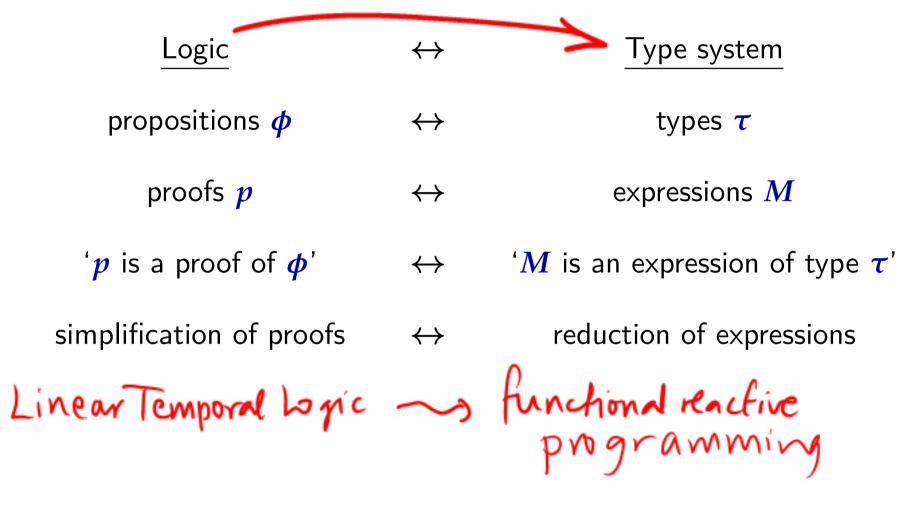
Γ-4-4 Γ-4-4 Γ-4-6)

Linear conjunction (tensor)

 $\frac{\Gamma + \varphi \quad \Delta + \psi}{\Gamma, \Delta + \varphi \otimes \psi} (\Gamma \cap \Delta = \emptyset)$

 $\frac{\Gamma + \Psi \otimes \Psi \quad \Delta, \Psi, \Psi + \Theta}{\Gamma, \Delta + \Theta} (\Gamma \wedge \Delta = \emptyset)$

Applications

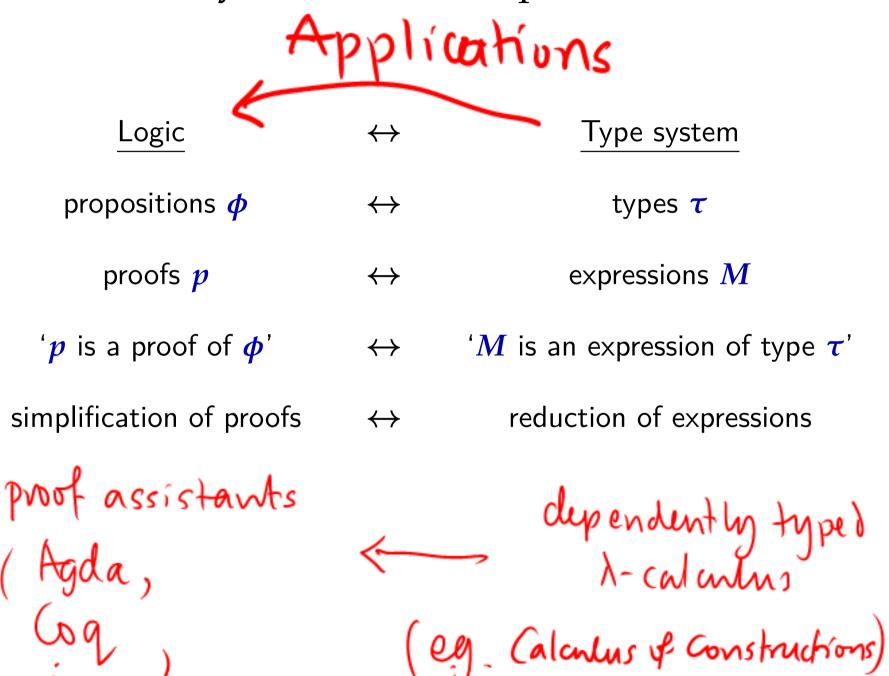


Model logics ~> partial evaluation & non-time code generation

Type-inference versus proof search

```
Type-inference: given \Gamma and M, is there a type \tau such that \Gamma \vdash M : \tau? (For PLC/2IPC this is decidable.)
```

Proof-search: given Γ and ϕ , is there a proof term M such that $\Gamma \vdash M : \phi$? (For PLC/2IPC this is undecidable.)



Logic	\leftrightarrow	Type system
propositions $m{\phi}$	\leftrightarrow	types $ au$
proofs <i>p</i>	\leftrightarrow	expressions <i>M</i>
" p is a proof of ϕ "	\leftrightarrow	' M is an expression of type $ au$ '
simplification of proofs	\leftrightarrow	reduction of expressions
a logic of proposition		
	E.g.	
2IPC	\leftrightarrow	PLC
-Halso applied	10	predicate logi

higher-order intuitionistic

predicate

Togic

Togic

Pure Type Systems – typing rules

(axiom)
$$\rightarrow \vdash s_1 : s_2$$
 if $\underline{(s_1, s_2)} \in \mathcal{A}$

(start)
$$\frac{\Gamma \vdash A : s}{\Gamma_{\iota} x : A \vdash x : A}$$
 if $x \notin dom(\Gamma)$

(weaken)
$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma_{\iota} x : B \vdash M : A}$$
 if $x \notin dom(\Gamma)$

$$(conv) \frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : s}{\Gamma \vdash M : B} \text{ if } A =_{\beta} B$$

$$(\operatorname{prod}) \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A (B) : s_3} \text{ if } \underline{(s_1, s_2, s_3) \in \mathcal{R}}$$

(abs)
$$\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash \Pi x : A (B) : s}{\Gamma \vdash \lambda x : A (M) : \Pi x : A (B)}$$

$$(app) \frac{\Gamma \vdash M : \Pi x : A(B) \quad \Gamma \vdash N : A}{\Gamma \vdash M N : B[N/x]}$$

(A, B, M, N) range over pseudoterms, s, s_1, s_2, s_3 over sort symbols)

is the Pure Type System λC , where $C = (S_C, A_C, \mathcal{R}_C)$ is the PTS specification with

```
\mathcal{S}_{\mathbf{C}} \triangleq \{ \mathsf{Prop}, \mathsf{Set} \} (Prop = a sort of propositions, Set = a sort of types) \mathcal{A}_{\mathbf{C}} \triangleq \{ (\mathsf{Prop}, \mathsf{Set}) \} (Prop is one of the types) \mathcal{R}_{\mathbf{C}} \triangleq \{ (\mathsf{Prop}, \mathsf{Prop}, \mathsf{Prop}), (\mathsf{Set}, \mathsf{Prop}, \mathsf{Prop}), (\mathsf{Prop}, \mathsf{Set}, \mathsf{Set}), (\mathsf{Set}, \mathsf{Set}, \mathsf{Set}) \}
```

is the Pure Type System λC , where $C = (S_C, A_C, \mathcal{R}_C)$ is the PTS specification with

```
\mathcal{S}_{\mathbf{C}} \triangleq \{ \mathsf{Prop}, \mathsf{Set} \}
\mathcal{A}_{\mathbf{C}} \triangleq \{ (\mathsf{Prop}, \mathsf{Set}) \}
\mathcal{R}_{\mathbf{C}} \triangleq \{ (\mathsf{Prop}, \mathsf{Prop}, \mathsf{Prop})^{\mathbf{1}}, (\mathsf{Set}, \mathsf{Prop}, \mathsf{Prop}), (\mathsf{Prop}, \mathsf{Set}, \mathsf{Set}), (\mathsf{Set}, \mathsf{Set}, \mathsf{Set}) \}
```

1. Prop has implications, $\phi \to \psi = \Pi x : \phi(\psi)$ (where ϕ, ψ : Prop and $x \notin fv(q)$).

is the Pure Type System λC , where $C = (S_C, A_C, \mathcal{R}_C)$ is the PTS specification with

```
\mathcal{S}_{C} \triangleq \{\text{Prop, Set}\}
\mathcal{A}_{C} \triangleq \{(\text{Prop, Prop, Prop})^{1}, (\text{Set, Prop, Prop})^{2},
(\text{Prop, Set, Set}), (\text{Set, Set, Set})\}
1. Prop has implications, \phi \rightarrow \psi = \Pi x : \phi(\psi) (where \phi, \psi : \text{Prop and } x \notin fv(q)).

2. Prop has universal quantifications over elements of a type, \Pi x : A(\phi(x)) (where A : \text{Set and } x : A \vdash \phi(x) : \text{Prop}).
```

N.B. A might be Prop $(\lambda 2 \subseteq \lambda C)$.

is the Pure Type System λC , where $C = (S_C, A_C, \mathcal{R}_C)$ is the PTS specification with

```
\mathcal{S}_{\mathbf{C}} \triangleq \{ \mathsf{Prop}, \mathsf{Set} \}
\mathcal{A}_{\mathbf{C}} \triangleq \{ (\mathsf{Prop}, \mathsf{Set}) \}
\mathcal{R}_{\mathbf{C}} \triangleq \{ (\mathsf{Prop}, \mathsf{Prop}, \mathsf{Prop})^{1}, (\mathsf{Set}, \mathsf{Prop}, \mathsf{Prop})^{2}, \}
              (Prop, Set, Set)<sup>3</sup>, (Set, Set, Set)}
1. Prop has implications, \phi \rightarrow \psi = \Pi x : \phi(\psi) (where \phi, \psi : \text{Prop and}
x \notin fv(q).
2. Prop has universal quantifications over elements of a type, \Pi x : A(\phi(x))
(where A : Set and x : A \vdash \phi(x) : Prop).
N.B. A might be Prop (\lambda 2 \subseteq \lambda C).
3. Set has types of function dependent on proofs of a proposition,
\Pi x : p(A(x)) (where p : Prop and <math>x : p \vdash A(x) : Set).
```

is the Pure Type System λC , where $C = (S_C, A_C, \mathcal{R}_C)$ is the PTS specification with

```
\mathcal{S}_{\mathbf{C}} \triangleq \{ \mathsf{Prop}, \mathsf{Set} \}
\mathcal{A}_{\mathbf{C}} \triangleq \{ (\mathsf{Prop}, \mathsf{Set}) \}
\mathcal{R}_{C} \triangleq \{ (Prop, Prop, Prop)^{1}, (Set, Prop, Prop)^{2}, \}
             (Prop, Set, Set)<sup>3</sup>, (Set, Set, Set)<sup>4</sup>}
1. Prop has implications, \phi \rightarrow \psi = \Pi x : \phi(\psi) (where \phi, \psi : \text{Prop and}
x \notin fv(q).
2. Prop has universal quantifications over elements of a type, \Pi x : A(\phi(x))
(where A : Set and x : A \vdash \phi(x) : Prop).
N.B. A might be Prop (\lambda 2 \subseteq \lambda C).
3. Set has types of function dependent on proofs of a proposition,
```

4. Set has dependent function types, $\Pi x : A(B(x))$ (where A : Set and $x : A \vdash B(x) : Set$).

 $\Pi x : p(A(x))$ (where $p : Prop and <math>x : p \vdash A(x) : Set$).

Some general properties of λC

▶ It extends both $\lambda 2$ (PLC) and $\lambda \omega$ (F_{ω}).

Some general properties of λC

- ▶ It extends both $\lambda 2$ (PLC) and $\lambda \omega$ (F_{ω}).
- \triangleright λC is strongly normalizing.
- ► Type-checking and typeability are decidable.

Some general properties of λC

- ▶ It extends both $\lambda 2$ (PLC) and $\lambda \omega$ (F_{ω}).
- \triangleright λ **C** is strongly normalizing.
- Type-checking and typeability are decidable.
- ▶ λC is logically consistent (relative to the usual foundations of classical mathematics), that is, there is no pseudo-term t satisfying $\Diamond \vdash t : \Pi p : \text{Prop}(p)$.

Indeed there is no proof of LEM $(\Pi p : \text{Prop}(\neg p \lor p))$.

Logical operations definable in 2IPC

- ► Truth $\top \triangleq \forall p (p \rightarrow p)$
- ► Falsity $\bot \triangleq \forall p (p)$
- ► Conjunction $\phi \land \psi \triangleq \forall p ((\phi \rightarrow \psi \rightarrow p) \rightarrow p)$ (where $p \notin fv(\phi, \psi)$)
- **▶** *Disjunction* $\phi \lor \psi \triangleq \forall p ((\phi \rightarrow p) \rightarrow (\psi \rightarrow p) \rightarrow p)$ (where $p \notin fv(\phi, \psi)$)
- ▶ Negation $\neg \phi \triangleq \phi \rightarrow \bot$
- ▶ Bi-implication $\phi \leftrightarrow \psi \triangleq (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$

$$P \rightarrow q \stackrel{\triangle}{=} TT x: P(q) \quad x \notin fr(p)$$

 $\forall P(\varphi) \stackrel{\triangle}{=} TT p: Prop(\varphi)$

Leibniz equality in λC

Gottfried Wilhelm Leibniz (1646–1716), identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit (two distinct things cannot have all their properties in common).

Leibniz equality in λC

Gottfried Wilhelm Leibniz (1646–1716), identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit (two distinct things cannot have all their properties in common).

Given $\Gamma \vdash A : Set \text{ in } \lambda C$, we can define

$$ext{Eq}_A riangleq \lambda x, y : A\left(\Pi P : A o ext{Prop}\left(P \, x \leftrightarrow P \, y
ight)
ight)$$

satisfying $\Gamma \vdash \text{Eq}_A : A \to A \to \text{Prop}$ and giving a well-behaved (but not extensional) equality predicate for elements of type A.

Leibniz equality in λC

Gottfried Wilhelm Leibniz (1646–1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit (two distinct things cannot have all their properties in common).

Given $\Gamma \vdash A : Set$ in λC , we can define

$$ext{Eq}_A riangleq \lambda x, y : A\left(\Pi P : A o ext{Prop}\left(P \, x \leftrightarrow P \, y
ight)
ight)$$

satisfying $\Gamma \vdash \text{Eq}_A : A \to A \to \text{Prop}$ and giving a well-behaved (but not extensional) equality predicate for elements of type A.

$$p \Leftrightarrow q \stackrel{\Delta}{=} (p \Rightarrow q) \wedge (q \Rightarrow p)$$

Functional extensionality:

$$ext{FunExt}_{A,B} riangleq \Pi f,g:A o B \ (\Pi x:A \left(ext{Eq}_{B} \left(f \, x
ight) \left(g \, x
ight)
ight) o ext{Eq}_{A o B} \, f \, g
ight)$$

Functional extensionality:

```
	ext{FunExt}_{A,B} 	riangleq \Pi f,g:A	o B \ ( \Pi x:A \left( 	ext{Eq}_B \left( f \, x 
ight) \left( g \, x 
ight) 
ight) 	o 	ext{Eq}_{A	o B} \, f \, g 
ight)
```

If $\Gamma \vdash A, B$: Set in λC , then $\Gamma \vdash \operatorname{Ext}_{A,B}$: Prop is derivable, but for some A,B there does not exist a pseudo-term t for which $\Gamma \vdash t : \operatorname{Ext}_{A,B}$ is derivable.

Functional extensionality:

$$ext{FunExt}_{A,B} riangleq \Pi f, g: A o B \ (\Pi x: A \left(ext{Eq}_B \left(f \, x
ight) \left(g \, x
ight)
ight) o ext{Eq}_{A o B} \, f \, g
ight)$$

If $\Gamma \vdash A, B$: Set in λC , then $\Gamma \vdash \operatorname{Ext}_{A,B}$: Prop is derivable, but for some A,B there does not exist a pseudo-term t for which $\Gamma \vdash t : \operatorname{Ext}_{A,B}$ is derivable.

Propositional extensionality:

$$exttt{PropExt} riangleq oldsymbol{\Pi} p, q: exttt{Prop} \left((p \leftrightarrow q)
ightarrow exttt{Eq}_{ exttt{Prop}} \, p \, q
ight)$$

 $\diamond \vdash \text{PropExt} : \text{Prop}$ is derivable in λC , but there does not exist a pseudo-term t for which $\diamond \vdash t : \text{PropExt}$ is derivable.

This is a weak form of Voevodsky's Univalence Axiom - unvently a Hot topic in type theory research Propositional extensionality: (Homotopy Type Theory)

ig> PropExt $riangleq \Pi p, q$: Prop $((p \leftrightarrow q)
ightarrow ext{Eq}_{ ext{Prop}} \, p \, q)$

 $\diamond \vdash \text{PropExt} : \text{Prop}$ is derivable in λC , but there does not exist a pseudo-term t for which $\diamond \vdash t : \text{PropExt}$ is derivable.