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“One of the most helpful concepts in the whole of programming is the
notion of type, used to classify the kinds of object which are
manipulated. A significant proportion of programming mistakes are
detected by an implementation which does type-checking before it runs
any program. Types provide a taxonomy which helps people to think and
to communicate about programs.”

R. Milner, Computing Tomorrow (CUP, 1996), p264

“The fact that companies such as Microsoft, Google and Mozilla are
investing heavily in systems programming languages with stronger type
systems is not accidental – it is the result of decades of experience
building and deploying complex systems written in languages with weak
type systems.”

T. Ball and B. Zorn, Teach Foundational Language Principles,
Viewpoints, Comm. ACM (2014) 58(5) 30–31



Uses of type systems

I Detecting errors via type-checking, either statically (decidable
errors detected before programs are executed) or dynamically
(typing errors detected during program execution).

I Abstraction and support for structuring large systems.

I Documentation.

I E�ciency.

I Whole-language safety.
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Formal type systems

I Constitute the precise, mathematical characterisation of
informal type systems (such as occur in the manuals of most
typed languages.)

I Basis for type soundness theorems: “any well-typed program
cannot produce run-time errors (of some specified kind).”

I Can decouple specification of typing aspects of a language
from algorithmic concerns: the formal type system can define
typing independently of particular implementations of
type-checking algorithms.
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Typical type system judgement

is a relation between typing environments (G), program phrases (e)
and type expressions (t) that we write as

G ` e : t

and read as: given the assignment of types to free identifiers of e
specified by type environment G, then e has type t.

E.g.

f : int list � int, b : bool ` (if b then f nil else 3) : int

is a valid typing judgement about ML.

We consider structural type systems, in which there is a language
of type expressions built up using type constructs (e.g.
int list � int in ML).
(By contrast, in nominal type systems, type expressions are just
unstructured names.)
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Notations for the typing relation

‘foo has type bar’

ML-style (used in this course):

foo : bar

Haskell-style:
foo :: bar

C/Java-style:
bar foo
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Type checking, typeability, and type inference

Suppose given a type system for a programming language with
judgements of the form G ` e : t.

I Type-checking problem: given G, e, and t, is G ` e : t
derivable in the type system?

I Typeability problem: given G and e, is there any t for which
G ` e : t is derivable in the type system?

Solving the second problem usually involves devising a type
inference algorithm computing a t for each G and e (or failing, if
there is none).
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Progress, type preservation & safety

Recall that the simple, typed imperative language considered in
CST Part IB Semantics of Programming Languages satisfies:

Progress. If G ` e : t and dom(G) ✓ dom(s), then either e is a
value, or there exist e0, s0 such that he, si ! he0, s0i.

Type preservation. If G ` e : t and dom(G) ✓ dom(s) and
he, si ! he0, s0i, then G ` e0 : t and dom(G) ✓ dom(s0).

Hence well-typed programs don’t get stuck:
Safety. If G ` e : t, dom(G) ✓ dom(s) and he, si !⇤ he0, s0i,
then either e0 is a value, or there exist e00, s00 such that
he0, s0i ! he00, s00i.
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Outline of the rest of the course

I
ML polymorphism. Principal type schemes and type inference. [2]

I
Polymorphic reference types. The pitfalls of combining ML
polymorphism with reference types. [1]

I
Polymorphic lambda calculus (PLC). Explicit versus implicitly
typed languages. PLC syntax and reduction semantics. Examples of
datatypes definable in the polymorphic lambda calculus. [3]

I
Dependent types. Dependent function types. Pure type systems.
System F-omega. [2]

I
Propositions as types. Example of a non-constructive proof. The
Curry-Howard correspondence between intuitionistic second-order
propositional calculus and PLC. The calculus of Constructions.
Inductive types. [3]



Polymorphism = has many types

I Overloading (or ad hoc polymorphism): same symbol denotes
operations with unrelated implementations. (E.g. + might mean
both integer addition and string concatenation.)

I Subsumption: subtyping relation t
1

<: t
2

allows any M
1

: t
1

to be used as M
1

: t
2

without violating safety.

I Parametric polymorphism (generics): same expression belongs
to a family of structurally related types.
E.g. in Standard ML, length function

fun length nil = 0
| length (x :: xs) = 1 + (length xs)

has type t list � int for all types t.
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Type variables and type schemes in Mini-ML

To formalise statements like
“length has type t list � int, for all types t”

we introduce type variables a (i.e. variables for which types may be
substituted) and write

length : 8a (a list � int).

8a (a list � int) is an example of a type scheme.
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Polymorphism of let-bound variables in ML

For example in

let f = lx (x) in ( f true) :: ( f nil)

lx (x) has type t � t for any type t, and the variable f to which
it is bound is used polymorphically:

in ( f true), f has type bool � bool
in ( f nil), f has type bool list � bool list

Overall, the expression has type bool list.
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Forms of hypothesis in typing judgements

I Ad hoc (overloading):
if f : bool � bool
and f : bool list � bool list,
then ( f true) :: ( f nil) : bool list.

Appropriate for expressions that have di�erent behaviour at
di�erent types.

I Parametric:
if f : 8a (a � a),
then ( f true) :: ( f nil) : bool list.

Appropriate if expression behaviour is uniform for di�erent
type instantiations.

ML uses parametric hypotheses (type schemes) in its typing
judgements.
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Mini-ML typing judgement

takes the form
G ` M : t

where

I the typing environment G is a finite function from variables to
type schemes.
(We write G = {x

1

: s
1

, . . . , xn : sn} to indicate that G has domain
of definition dom(G) = {x

1

, . . . , xn} (mutually distinct variables)
and maps each xi to the type scheme si for i = 1 . . . n.)

I M is a Mini-ML expression

I t is a Mini-ML type.
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Mini-ML types and type schemes

Types t ::= a type variable
| bool type of booleans
| t � t function type
| t list list type

where a ranges over a fixed, countably infinite set TyVar.

Type Schemes s ::= 8A (t)

where A ranges over finite subsets of the set TyVar.

When A = {a
1

, . . . , an} (mutually distinct type variables) we write
8A (t) as

8a
1

, . . . , an (t).

When A = {} is empty, we write 8A (t) just as t. In other words,
we regard the set of types as a subset of the set of type schemes

by identifying the type t with the type scheme 8{ } (t).
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